
RC23357 (W0410-015) October 1, 2004
Computer Science

IBM Research Report

A Multi-Agent Systems Approach to Autonomic Computing

Gerald Tesauro, David M. Chess, William E. Walsh, Rajarshi Das, Alla Segal,
Ian Whalley, Jeffrey O. Kephart, Steve R. White

IBM Research Division
Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

A Multi-Agent Systems Approach to Autonomic Computing

Gerald Tesauro, David M. Chess, William E. Walsh, Rajarshi Das,
Alla Segal, Ian Whalley, Jeffrey O. Kephart and Steve R. White

IBM T.J. Watson Research Center
19 Skyline Drive, Hawthorne, NY 10532

�gtesauro,chess,wwalsh1,rajarshi,segal,inw,kephart,srwhite�@us.ibm.com

Abstract

The goal of autonomic computing is to create computing
systems capable of managing themselves to a far greater
extent than they do today. This paper presents Unity, a de-
centralized architecture for autonomic computing based on
multiple interacting agents called autonomic elements. We
illustrate how the Unity architecture realizes a number of
desired autonomic system behaviors including goal-driven
self-assembly, self-healing, and real-time self-optimization.
We then present a realistic prototype implementation, show-
ing how a collection of Unity elements self-assembles, re-
covers from certain classes of faults, and manages the use of
computational resources (e.g. servers) in a dynamic multi-
application environment. In Unity, an autonomic element
within each application environment computes a resource-
level utility function based on information specified in that
application’s service-level utility function. Resource-level
utility functions from multiple application environments are
sent to a Resource Arbiter element, which computes a glob-
ally optimal allocation of servers across the applications.
We present illustrative empirical data showing the behavior
of our implemented system in handling realistic Web-based
transactional workloads running on a Linux cluster.

1. Introduction

The vision of autonomic computing [8] is of computing
systems that manage themselves to a far greater extent than
they do today. To achieve this vision, we believe that inter-
acting sets of individual computing elements must regulate
and adapt their own behavior in response to widely chang-
ing conditions, with only high-level direction from humans.

While traditional approaches to computer systems man-
agement are often centralized and hierarchical, today’s
large-scale computing systems are highly distributed with
increasingly complex connectivity and interactions, ren-
dering centralized management schemes infeasible. We

propose instead that a multi-agent systems (MAS) ap-
proach is much better suited for autonomic computing.
Jennings [6] advocates an agent-based approach to soft-
ware engineering based on decomposing problems in
terms of decentralized, autonomous agents that can en-
gage in flexible, high-level interactions. This approach
is particularly well-suited for autonomic computing sys-
tems, which must self-configure, self-protect, self-heal,
and self-optimize on both local and system levels. Many
ideas developed in the MAS community, such as those per-
taining to automatic group formation, emergent behavior,
multiagent adaptation, and agent coordination, among oth-
ers, could likely be fruitfully adapted for autonomic
computing. The practical challenges of automatic comput-
ing may likewise spur basic research advances within the
MAS community.

Motivated by the above considerations, we have devel-
oped a software architecture called Unity, which aims to
achieve self-management of a distributed computing system
via interactions amongst a population of autonomous agents
called autonomic elements. The specific software engineer-
ing objectives of Unity are: to enable a distributed system to
self-configure at runtime initialization; to develop software
design patterns that enable self-healing within the system;
and to self-optimize in real time the use of distributed com-
putational resources in accordance with the system’s over-
all business objectives. We have developed a prototype data
center in Unity as a concrete testbed to pursue these ob-
jectives. The data center, based on industrial systems un-
der research and development, provides a number of com-
putational resources to run multiple applications for many
customers. Managing data centers is of real and practical
concern for corporate information technology and provides
many interesting challenges for autonomic computing.

Unity performs self-optimization based on utility func-
tions that express the value to the data center as a function
of the service level attained for customers and other users.
The MAS architecture encapsulates the local optimization
of resource usage from the global allocation of resources.

A key contribution of this paper is a working demonstra-
tion of service-level utility functions operating in the con-
text of our prototype data center.

The remainder of the paper is organized as follows. We
begin by outlining the basic structure and components of the
Unity system in Sections 2. We then describe Unity’s goal-
driven self-assembly methodology in Section 3, and its de-
sign for cluster self-healing in Section 4. We then present
our scenario for optimal resource allocation in a dynamic
multi-workload environment in Section 5. Implementation
details and empirical observations of our prototype system
are given in Section 6, following by concluding remarks and
future research directions in Section 7.

2. The Structure of Unity

The essential structure of Unity follows that outlined by
Kephart and Chess [8]. The Unity system components are
implemented as autonomic elements— individual agents
that control resources and deliver services to humans and to
other autonomic elements. Every Unity component is an au-
tonomic element. This includes: computing resources (e.g.
databases, storage systems, servers), higher-level elements
with some management authority (e.g. workload managers
or provisioners), and elements that assist other elements in
doing their tasks (e.g. policy repositories, sentinels, brokers,
or registries). We are particularly interested in the properties
that all autonomic element subtypes have in common.

Each autonomic element is responsible for its own in-
ternal autonomic behavior, namely, managing the resources
that it controls, and managing its own internal oper-
ations, including self-configuration, self-optimization,
self-protection, and self-healing. Each element is also re-
sponsible for forming and managing relationships that it
enters into in order to accomplish its goals, that is, the ex-
ternal autonomic behavior that enables the system as a
whole to be self-managing.

Unity’s autonomic elements are implemented as Java
programs, using the Autonomic Manager Toolset [1] . They
communicate with each other using a variety of Web Ser-
vice interfaces, including both standard OGSA [5] inter-
faces and additional interfaces that we and others have de-
fined for autonomic elements. An important principle of the
system is that no other means of communication between
the elements is permitted; there are no back doors or un-
documented interfaces between elements. This allows us
to completely specify the interactions between elements in
terms of the interfaces that they support, and the behaviors
that they exhibit through these interfaces.

Unity can support multiple, logically separated applica-
tion environments, each providing a distinct application ser-
vice. Each application environment is represented by an ap-
plication manager element, which is responsible for man-

aging the environment, for obtaining the resources that the
environment needs to meet its goals, and for communicat-
ing with other elements on matters relevant to the manage-
ment of the environment. One key responsibility of an ap-
plication manager is to predict how changes in its allocated
resources would affect the environment’s ability to meet its
goals. We have written application managers for typical web
service requests directed to a set of servers by a workload
driver or by IBM’s WebSphere Edge Server, for applica-
tions parallelized through IBM’s Topology Aware Grid Ser-
vices Scheduler, and for our own test applications.

Resource arbiter elements compute allocations of re-
sources to application environments. This is done by ob-
taining from each application environment an estimate of
the value of various possible allocations, and calculating an
optimum allocation, as described in Section 5. Resource ar-
biters also represent the “solution” as a whole (the entire
set of application environments, resources, etc.) to the out-
side world, and are responsible for any overall bootstrap-
ping and maintenance issues.

In the current Unity configuration, the resources being
allocated are individual servers. Each server is represented
by a server element, which is responsible for (among other
things) announcing the server’s address and capabilities in
such a way that possible users of the server can see them.

Each host computer that can support autonomic elements
is represented by an OSContainer element, which accepts
requests from elements to start up certain services or other
autonomic elements.

Registry elements, based on the Virtual Organization
Registry [5], enable elements to locate other elements with
which they need to communicate. This role is analogous to
registries in other multi-agent systems (e.g., [2]).

Policy repository elements support interfaces that allow
human administrators to enter high-level policies that guide
the operation of the system. We describe utility-function
based policies below; other policies control simpler aspects
of the system’s operation, such as reserving a server for test-
ing or freeing it for use.

Sentinel elements support interfaces that allow one ele-
ment to ask the sentinel to monitor the functioning of an-
other. If the monitored element becomes unresponsive, the
sentinel notifies the element that requested the monitoring.
Sentinels take part in cluster self-healing, as described in
Section 4.

Unity sentinels are designed explicitly for monitoring
OGSA services. When a sentinel is asked to monitor a tar-
get service, the sentinel periodically reads standard Service
Data Elements from that target service to determine if is still
functioning. The sentinel then passes the target service sta-
tus to the requesting service via Service Data.

Unity also has a user interface that allows an adminis-
trator to observe and direct the system. The user interface

is a web application consisting of a number of servlets,
portlets, and applets, built using IBM’s Integrated Solutions
Console, an interface framework that is itself built on Web-
Sphere Portal technology. It communicates with the auto-
nomic elements in the system through their defined Web-
Services interfaces; it has no privileged access to any com-
ponent. This allows one to create replacement or alternative
user interfaces for Unity without altering any other part of
the system.

The Unity user interface allows the user to define high-
level policies and utility functions and enter them into the
policy repository. It polls the registry and the autonomic ele-
ments at regular intervals to obtain current performance val-
ues for each application environment, and allows the user to
examine the performance of the application environments in
the system and the current state of each autonomic element.

The Unity UI is a system-wide management interface,
but it is possible to construct user interfaces to specific
autonomic elements. One of the goals of Unity is to ex-
plore user-interface design patterns in autonomic systems
and to study, for instance, the relationship between element-
specific user interfaces and broader system interfaces.

3. Goal-driven Self-assembly

One of our design aims for autonomic systems is to self-
configure, based on the environment in which they find
themselves and the high-level tasks to which they have been
set, without any detailed human intervention in the form of
configuration files or installation dialogs.

Within Unity, we are experimenting with a technique
that we call “goal-driven self-assembly”. Ideally, each auto-
nomic element, when it first begins to execute, knows only
a high-level description of what it is supposed to be doing
(e.g., “make yourself available as an application server”, or
“join policy repository cluster 17”), and the contact infor-
mation (Grid Service Handle) of the registry.1

The self-assembly process proceeds as follows. When
each element initializes, it contacts the registry to locate
existing elements that can supply services that it requires.
It contacts the elements thus located, and enters into rela-
tionships to obtain the needed services. Once the element
has entered into all the relationships and obtained all the re-
sources that it needs, it registers itself in the registry, so that
it can be located by elements that in turn need its services.
This process is not confined to initialization. If an elements
need another certain service later on in its lifecycle, it simi-
larly contacts the registry to find available suppliers.

A key service located through the registry is the policy
repository, which contains, in principle, everything that an

1 In a commercial-grade version of this technique, each element would
also be provided with the security credentials needed to prove its iden-
tity to the other elements in the system.

element needs to know beyond the registry address and its
own high-level role. As one of its first actions, a newly-
initialized element locates and contacts a policy repository,
queries it for the policies governing elements acting in its
role, and uses the result of the query to make decisions
about further configuration and subsequent operation. 2

Concretely, the first elements to start are the OSContain-
ers and the registry, which are necessary to start the other el-
ements. A bootstrap process then starts the resource arbiter,
which decides what other elements need to be started and
contacts OSContainers (found in the registry) to arrange for
their starting. The policy repository and sentinels register
with the registry immediately upon coming up. The arbiter
registers with the registry, locates the existing policy repos-
itories and sentinels, and contracts with a sentinel to watch
each policy repository. Server elements locate and contact
the arbiter to announce themselves, and application environ-
ment managers contact the arbiter to have servers allocated
to them. None of the elements knows in advance where the
others are, or even how many other elements of a given kind
will exist.

The above description glosses over some potentially
complex issues of bootstrapping. Our current system cen-
tralizes much of the bootstrapping process, relying on the
resource arbiter to contact OSContainers to bring into be-
ing those other elements required by the system. We plan
to develop a more dynamic and decentralized bootstrap-
ping protocol in which each element would be responsible
for instantiating any other elements that it requires, if none
are already available. Another interesting approach would
be to retain the resource arbiter function and define a lan-
guage for solution recipes which would tell the solution
manager which elements (or at least which initial elements)
to bring up to start the system. It is important that any new
approaches properly handle circular dependencies.

A smaller-scale bootstrapping issue is that when the first
OSContainer element comes up it cannot register because
there is not yet a registry running. In our current design,
each OSContainer consults its information about where the
registry should be, and if that address refers to a registry
that the OSContainer could create, it creates it.

Similarly, no element is able to contact a policy reposi-
tory until both a registry and a policy repository have come
up. This means that at least both the OSContainers and the
registry must be able to function at least temporarily with-
out a policy repository. In fact all elements should have min-
imal default policies that suffice at least to get them through
the process of waiting for a policy repository to appear, and
correctly reporting the error if none ever does.

2 In the current Unity implementation, only some of these policies are
actually stored in and retrieved from the policy repository. We intend
to increase that fraction in the coming year.

4. Self-Healing for Clusters

Another main goal of Unity is to demonstrate and study
self-healing clusters of autonomic elements. We have ini-
tially implemented this style of self-healing in a single ele-
ment: the policy repository.

The purpose of a self-healing system is to provide re-
liability and data integrity in the face of imperfect under-
lying software and hardware. We approach this by adding
function to the policy repository to support joining an exist-
ing cluster of synchronized policy repositories, and replicat-
ing data changes within that cluster. It is also necessary for
the cluster as a whole to detect the failure of one of its ele-
ments, and to create a replacement element. Care and con-
sideration must be given to which machine should host this
new element. For instance, the current policy in Unity is
that two elements in the same cluster should not be hosted
on the same machine, and that elements in a cluster should
not be instantiated on machines that have previously hosted
failed elements in that same cluster.

Unity supports clustering with two operations added to
the policy repository element. First, whenever a new or
modified piece of policy data is received by one of the pol-
icy repositories in the cluster, it is sent to all other reposi-
tories. This maintains a consistent view (within a few sec-
onds) amongst all policy repositories. (The algorithm cur-
rently used does not have transactional integrity, and race
conditions can lead to desynchronization in rare conditions.
We intend to address this in the near future.)

Secondly, we have modified the subscription system by
which Unity elements learn of changes to their policies. In
standard OGSI [13] notification, a single OGSA service (the
subscriber) subscribes to a given Service Data Element on
a single other OGSA service (the publisher). In Unity, the
publisher would be the policy repository. In the event of
that policy repository failing, even if its data is still safe and
available from the other policy repositories in the cluster,
the subscriber is left with no subscription, and is never no-
tified of policy changes. In our modified system, subscrip-
tions themselves (including the identity of the subscriber,
the class of data subscribed to, and the member of the clus-
ter currently servicing the subscription) are part of the data
replicated between elements of the cluster. When a member
of the cluster fails, all of its subscriptions are still recorded
in the state data of the surviving cluster members. By reas-
signing those subscriptions to a surviving member, the sys-
tem can continue providing notifications to the subscribers.

The self-healing cluster operates as follows. When the
Unity system is initialized, the resource arbiter determines
how many policy repositories are required (this is nominally
done by consulting the system policy, but due to the obvi-
ous bootstrapping problem this policy is not stored in the
policy repository). The resource arbiter then deploys the re-

quired policy repositories, each of which is supplied with
its intended role (including the identifier of the cluster that
it should join) and the registry address. As each one initial-
izes, it consults the registry to contact the already registered
members of the cluster and thereby join the cluster itself,
using a simple serial algorithm that avoids most race con-
ditions. The resource arbiter also contracts with the sentinel
to monitor these policy repositories.

From this point, whenever one of the policy repositories
receives changes to its policy set, the changes are commu-
nicated to the rest of the cluster, as discussed above. Simi-
larly, policy repositories within the cluster exchange infor-
mation about which elements are subscribers to the policy
data, and to which policy data they are subscribed.

Now, let us assume that the sentinel determines that one
of the policy repositories has failed. Perhaps the software
has failed, or perhaps the network connection has been sev-
ered. The resource arbiter will be notified by the sentinel of
this failure, and will first choose one of the still-functioning
policy repositories to take over subscriptions previous han-
dled by the failed one, and notify all cluster members of
this reassignment. Then, typically, it will determine that it
should replace the failed policy repository. In this case, it
will examine the available hosts, and select one upon which
to deploy a replacement policy repository. The policy repos-
itory is deployed (via a standard interaction with the OS-
Container on the target host), and upon initialization, the
new policy repository joins the cluster and retrieves a copy
of the current cluster state data (policies and subscriptions).

Such clusters are still subject to a significant data repli-
cation problem. A more complete solution could be assisted
by the use of the failover and data replication features of a
database management system. The method is also most ef-
fective in the case of simple single-element failures; it is not
robust against network partitions or similar problems.

The above description still contains a central point of
failure, if the system contains only one sentinel. This prob-
lem is easily solved with a cluster of sentinels similar to the
cluster of policy repositories. Sentinels within a cluster keep
each other’s state up-to-date, and provide resiliency against
the failure of a single sentinel.

5. Self-Optimization Scenario

In this section, we illustrate how utility functions may
be effectively used in autonomic systems by means of a
data center scenario. The data center manages numerous re-
sources, including compute servers, database servers, stor-
age devices, etc., and serves many different customers us-
ing multiple applications. We focus in particular on the dy-
namic allocation and management of the compute servers
within the data center, although our general methodology
applies to multiple, arbitrary resources.

While utility-based resource allocation is widely studied
in MAS and other fields, we find surprisingly that it is little
known in real-world computer systems management. Addi-
tionally, those approaches proposed in the research litera-
ture do not fully meet the needs of autonomic computing.
Some approaches [4, 7, 10], require humans to ascribe util-
ity value to low-level resources. However, a truly autonomic
system should allow utility to be expressed in terms of
the service-level attributes that matter to them or their cus-
tomers, such as end-to-end response time, latency, through-
put, etc. Our approach is to use service-level utility functions
specifying the business value (e.g., payment/penalty terms
of a customer contract) as a function of the service level
given to users of the application environment. Some market-
based approaches [9, 12, 14] allow applications to specify
their utility directly for goods representing QoS guarantees.
The market contains agents that provide these QoS guaran-
tees and know how to transform demand for QoS into de-
mand for actual resources, and the market mechanism deter-
mines the resource allocation. This approach works well in
domains where standard mappings between resources and
QoS can be established. However, in a real data center the
service specifications and the mappings from resource to
QoS can be arbitrarily complex and application-specific. To
this end, we encapsulate this special knowledge of applica-
tion environments inside the application managers, as de-
scribed below.

5.1. Data Center Scenario

The Unity elements and their relationships bearing di-
rectly on self-optimization are illustrated in Figure 1. Each
application environment has a service-level utility function,
obtained from the policy repository. We assume the utility
function is independent of that of other application environ-
ments, and that all utility functions share a common scale
of valuation, such as a common currency. The utility func-
tion for environment i is of the form Ui�Si�Di�, where Si is
the service level provided in i and D i is the demand in i.
Both Si and Di are vectors that can specify values for mul-
tiple user classes. Si is particular to i, and can be any viable
service metric (e.g., response time, throughput, etc.). Al-
though such service-level specification will often be most
useful, we do not exclude the possibility that S i could di-
rectly measure resources assigned to the classes in i.

The system goal is to optimize ∑iUi�Si�Di� on a con-
tinual basis to accommodate fluctuations in demand. Con-
trol and optimization of a fixed amount of resource within
an application environment is handled by a resident applica-
tion manager. As demand shifts, application manager i can
adjust certain control parameters or divert resources from
one transaction class to another in order to keep Ui�Si�Di�
as optimal as possible, given a fixed Ri. (Here Ri represents

U1(R) U2(R)

Resource
Arbiter

Application Environment 1

Router ServersServersServers
ServersServersServers

Application
Manager U1(S, D)U1(S, D)

Application Environment 2

Router
ServersServersServersRouter
ServersServersServers
ServersServersServers

Application
Manager U (S, D)U2(S, D)

Figure 1. Architecture for self-optimization.

a vector, each component of which indicates the amount of
a specific type of resource.)

A single resource arbiter allocates resources across dif-
ferent application environments. The arbiter is privy neither
to details of how the individual application managers opti-
mize their utility nor of the services provided by the indi-
vidual application environments. Instead, prompted by its
own perceived need for more resource, or by a query from
the resource arbiter, an application manager sends to the ar-
biter a resource-level utility function Û�R� that specifies the
value to the application environment of obtaining each pos-
sible level R of resource.3

All of the internal complexities of individual application
environments, including representing and modeling a po-
tentially infinite variety of services and systems, are com-
pressed by the application manager into a uniform resource-
level utility function that relates value to resources in com-
mon units. This approach makes it easy to add, change or
remove application environments—even different types of
application environments—because the resource arbiter re-
quires no information about their internal workings. Our
two-level architecture also neatly handles the different time
scales appropriate to different types of optimization. Appli-
cation managers adjust control parameters on a timescale
of seconds to respond to changes in demand, while the re-
source arbiter typically operates on a timescale of minutes,
which is more commensurate with switching delays neces-
sitated by flushing out the current workload, changing con-
nections, and installing or uninstalling applications.

5.2. Application Manager Architecture

Figure 2 illustrates the major components and infor-
mation flows in a single application manager. (As we re-
fer here to only a single manager, we dispense with the

3 If the Û�R� is too expensive to compute or communicate, it is possible
to avoid sending the entire function by having the arbiter query each
application manager for a limited set of R [3].

subscripts.) The application manager receives a continual
stream of measured service S and demand D data from the
router and servers. The data aggregator aggregates these
raw measurements (e.g., by averaging them over a suitable
time window). The controller continually adjusts the router
and server control parameters C to optimize the utility in the
face of fluctuating demand. These parameters may specify
how workloads from different customer classes are routed
to the servers, as well as any other tunable parameters on the
servers (e.g. buffer sizes, operating system settings, etc.).

Utility
Calculator

S, D

Application Manager

Data
Aggregator

S, D

Application Environment

Demand
Forecaster

D

D'

Controller

U(R)

C

S, D

Modeler

Router

ServersServersServers
ServersServersServers

Resource
Arbiter

RtS(C, R, D)S(C, R, D)

(U S, D)

Figure 2. The modules and data flow in an ap-
plication manager.

The application manager maintains at least three kinds
of knowledge: U�S�D�, the current resource level R t , and a
model S�C�R�D� of system performance. The model spec-
ifies the service level obtained by setting control parame-
ters to C, given the current R and D. The model yields a
vector of (estimated) service attribute measurements, which
could for example represent one or more performance val-
ues for each customer class.

The controller optimizes the utility U�S�D� subject to
the fixed current Rt . It receives D from the data aggregator,
and when this quantity changes sufficiently, or other speci-
fied conditions occur, the controller recomputes the control
parameters C� that optimize U�S�D� based on the perfor-
mance model and current resource level:

C� � argmax
C

U�S�C�Rt �D��D� (1)

and resets the control parameter vector to C�.

The utility calculator computes resource-level utility
from U�S�D�. Since resources are allocated on a relatively
long time scale, the application manager uses a demand
forecaster to estimate the average future demand D � over
an appropriate time window (e.g., up until the next reallo-
cation), based on the historical observed demand D received
from the data aggregator. Methods such as time series anal-
ysis and special knowledge of the typical usage patterns of
the application may be used. The utility calculator computes

Û�R� � max
C

U�S�C�R�D���D�� (2)

for each possible resource level R. To compute the entire
Û�R� essentially requires repeated computation of (1) us-
ing each possible hypothetical resource level R (rather than
the current resource level), and with the predicted demand
D�, rather than the current demand D.

With complex applications, it may be difficult for human
developers to determine an accurate performance model a
priori. To address this problem, the application manager can
have a modeler module that employs inference and learn-
ing algorithms to create, update, and revise the performance
model based on joint observations of �S�C�R t �D�.

6. Resource Allocation in a Prototype System

To demonstrate the power of our multi-agent system ar-
chitecture for self-optimization, we show an example of re-
source allocation based on utility functions in a prototype
system. In our example we have two Application Environ-
ments with different service-level utility functions based on
completely different metrics. The key is that most of the lo-
cal, detailed knowledge and control complexity is managed
by the individual Application Managers, while system-wide
optimal behavior emerges from communication of com-
mon resource-level utility functions to the Resource Arbiter.
Here, since S, D and R are all single-valued, we shall re-
place them with the scalar notation S, D, and R.

Our prototype system runs on a cluster of identical IBM
eServer x Series 335 machines running Redhat Enterprise
Linux Advanced Server 2.1. The system conforms to Fig-
ure 1 using Unity elements as described in Section 2. The
two Application Managers, responsible for managing the
two Environments, as well as the Arbiter, run on one of the
machines; three other machines are available as resources
to process workload.

Application Environment A1 handles a transac-
tional workload, running on top of WebSphere and DB2,
which provides a realistic simulation of an electronic trad-
ing platform. The service-level utility function for A1 is
based on the average response time S1 of the customer re-
quests. More precisely, its service-level utility function
U1�S1�D1� �U1�S1� is given by a decreasing sigmoid util-
ity function (roughly, a smoothed out step function) with a

maximum value of 1000 for fast response times and a min-
imum value of zero for slow response times.

Demand for the transactional workload D1 consists of re-
peated requests for a web page at a variable rate. To provide
for a realistic simulation of stochastic, periodic and bursty
web traffic, we use a time-series model developed by Squil-
lante et al. [11] to reset the demand every �5 seconds.

Given the service-level utility U1�S1�, A1 uses a sim-
ple system performance model S1�C�R1�D�� � S1�R1�D1�
for each possible number of servers R1 to estimate the
resource-level utility function U1�R1�. In these experiments,
server control parameters C are held constant and the de-
mand forecaster simply returns D. We obtained the perfor-
mance model by measuring average response time with de-
mand held constant at certain values, and performing linear
interpolation between the measured points.

Application Environment A2 handles a long-running
batch workload. The service level S2 is measured solely in
terms of the number of servers R2 allocated to A2 and the
the utility function U2�S2�D2� �U2�R� � Û2�R� is defined
as: �U2�0� � 0�U2�1� � 200�U2�2� � 300�U2�3� � 350�.

Results from a typical experiment with the two Applica-
tion Environments and three servers are shown in Figure 3.
The figure shows seven time-series plots over a period of
575 seconds. From top to bottom, they are: (1) Average de-
mand D1 on A1; (2) Average response time S1 in A1; (3)
Resource-level utility Û1�R1� for R1 � �1�2�3� servers for
A1; (4) Total utility from the two applications (solid plot)
and the utility U1�S1� obtained from A1 (dashed plot); (5)
Utility U2�R2� obtained from A2; (6) Number of servers R1

allocated to A1; and (7) Number of servers R2 allocated to
A2. Notable times are indicated by vertical dashed lines and
labeled by letters at the top.

Initially, we set U1�S1� so that it transitions relatively
sharply from 1000 to zero utility, centered at 30ms. The
D1 begins low, allowing A1 to get a low response time and
utility of nearly 1000 with one server. At time a, D1 rises,
and the manager of A1 changes Û�R� so that two or more
servers are needed to get a high utility. In response, the Ar-
biter reoptimizes the allocation to give two servers to A1.
Just after time c, the demand rises considerably, and even
three servers are not enough to reduce S1 enough to give A1
nonzero utility. Since no amount of the available servers can
help A1, they are all allocated to A2. The subsequent de-
crease in demand allows A1 to obtain low response times
with three or fewer servers, and the optimal allocation gives
some servers to A1. Note that the spikes in response time
for A1 at time b and just prior to 300 seconds, which are
too transitory to trigger reallocation, are not caused by an
increase in demand4.

4 Investigation reveals that they are due to Java garbage collection in
WebSphere.

 0

 1

 2

 3

 0 100 200 300 400 500

S
er

ve
rs

Time (Seconds)

A27

 0

 1

 2

 3

S
er

ve
rs

A16

 0

 100

 200

 300

U
til

ity

A2

5

 0

 500

 1000

U
til

ity

A1

Total

4

 0

 500

 1000

R
es

. U
til

.

A1

3 R=3

R=2R=1

 0

 50

 100

R
es

p.
 T

im
e A12

 0

 50

 100

D
em

an
d

Time

A11

a b c d e f

Figure 3. Times series plots of transactional
demand rate, attained utilities, and server al-
locations to each Application Environment,
during a sample Unity experiment.

At time f, we change U1�S� in the policy repository so
that it transitions more gradually, and is centered at 40ms.
A then determines that it can obtain high utility with fewer
servers. Even at the demand peak after time f, the Manager
of A1 computes Û1�R1� to reflect that three servers are suf-
ficient to give A1 positive utility.

7. Conclusions and Future Work

Many researchers in the MAS community have recog-
nized the advantages of an agent-based approach to building
deployable solutions in a number of application domains
comprising complex, distributed systems. In this paper we
put forth self-managing distributed computing systems as
a new and promising application domain for MAS ideas.
This area is not only natually well-suited to agent-based ap-
proaches, but it is also of immense interest and practical im-
portance throughout the entire IT industry.

Our decentralized and distributed approach to autonomic

computing provided the basic principles underlying the
development of our Unity software architecture. Through
development and experimentation within Unity, we have
found it to be a valuable platform for studying and testing
ideas about autonomic systems. In particular we found that
utility functions provide a powerful and flexible way to al-
low systems to manage themselves.

We intend to expand Unity to include a wider range of
functions and products, and to illuminate more of the large
and interesting space of self-managing systems. Also, our
prototype workload management system highlights many
important practical issues that will need to be addressed in
a deployed real-world system. While our implemented sys-
tem shows feasibility on a small scale, there is much work
remaining to be done in scaling the system to handle the
complexities encountered in real-world data centers.

In future work, many of Unity’s current features will be
generalized. For example, we plan to expand the number
of supported application environments, and learn what in-
terface extensions may be required. Likewise, self-healing
clusters will be expanded to other elements such as reg-
istries and arbiters. (This may require innovation to avoid
bootstrapping problems.) We are also developing synchro-
nization algorithms for cluster states that have transactional
integrity and are robust against race conditions. Addition-
ally, we are enhancing the user interface to include ad-
vanced policy and utility function tooling methods, to al-
low greater exploration within this rich space.

We plan to add flexibility to self-assembly so that the
parts can form different useful wholes, closer to the ultimate
dynamic vision of self-assembly. This will require standard
languages and taxonomies for services offered, dependen-
cies, registry queries, and so on. In complex environments,
it will be important to avoid deadlock and circular depen-
dencies during self-configuration. It would also be interest-
ing to develop ways to query the parts as to what the out-
come would be of a hypothetical self-assembly.

The use of utility functions will be expanded through-
out the Unity system. The self-assembly process, for in-
stance, could use utility functions to decide between various
alternate system configurations. System properties like the
sizes of self-healing clusters could be derived from higher-
level goals (in terms of estimated reliability, say), rather
than specified directly. Current hardcoded behaviors, such
as bringing up each member of a self-healing cluster on a
different host system, could instead be derived from higher-
level principles.

Finally, we are also investigating more sophisticated ap-
proaches to resource allocation. One particular focus is on
developing accurate models of switching costs that may be
incurred when reassigning a server, and incorporating such
costs in the optimization problem. We are also develop-
ing more complex and realistic systems models combin-

ing queuing theory, simulation, and novel machine learn-
ing methods that allow the models to be learned and refined
online, during the operation of the system.

References

[1] W. C. Arnold, D. W. Levine, and E. C. Snible. Auto-
nomic manager toolkit. http://dwdemos.dfw.ibm.
com/actk/common/wstkdoc/amts, 2003.

[2] D. E. Atkins, W. P. Birmingham, E. H. Durfee, E. J. Glover,
T. Mullen, E. A. Rudensteiner, E. Soloway, J. M. Vidal,
R. Wallace, and M. P. Wellman. Toward inquiry-based
education through interacting software agents. Computer,
29(5):69–77, May 1996.

[3] C. Boutilier, R. Das, J. O. Kephart, G. Tesauro, and W. E.
Walsh. Cooperative negotiation in autonomic systems us-
ing incremental utility elicitation. In Nineteenth Conference
on Uncertainty in Artificial Intelligence, pages 89–97, 2003.

[4] J. S. Chase, D. C. Anderson, P. N. Thakar, and A. M. Vahdat.
Managing energy and server resources in hosting centers. In
18th Symposium on Operating Systems Principles, 2001.

[5] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The phys-
iology of the Grid: An Open Grid Services Architecture for
distributed systems integration. Technical report, Open Grid
Services Architecture WG, Global Grid Forum, 2002.

[6] N. R. Jennings. On agent-based software engineering. Arti-
ficial Intelligence, 117:277–296, 2000.

[7] T. Kelly. Utility-directed allocation. In First Workshop
on Algorithms and Architectures for Self-Managing Systems,
2003.

[8] J. O. Kephart and D. M. Chess. The vision of autonomic
computing. Computer, 36(1):41–52, 2003.

[9] S. Lalis, C. Nikolaou, D. Papadakis, and M. Marazakis.
Market-driven service allocation in a QoS-capbable environ-
ment. In First International Conference on Information and
Computation Economies, 1998.

[10] R. Rajkumar, C. Lee, J. P. Lehoczky, and D. P. Siewiorek.
Practical solutions for QoS-based resource allocation prob-
lems. In IEEE Real-Time Systems Symposium, pages 296–
306, 1998.

[11] M. S. Squillante, D. D. Yao, and L. Zhang. Internet traf-
fic: Periodicity, tail behavior and performance implications.
In System Performance Evaluation: Methodologies and Ap-
plications, 1999.

[12] P. Thomas, D. Teneketzis, and J. K. MacKie-Mason. A
market-based approach to optimal resource alloctin in
integrated-services connection-oriented networks. Opera-
tions Research, 50(4), 2002.

[13] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham,
C. Kesselman, T. Maguire, T. Sandholm, P. Vanderbilt, and
D. Snelling. Open Grid Services Infrastructure (OGSI) ver-
sion 1.0. Technical report, Open Grid Services Infrastructure
WG, Global Grid Forum, 2002.

[14] H. Yamaki, M. P. Wellman, and T. Ishida. A market-based
approach to allocating QoS for multimediat applications. In
Second International Conference on Multi-Agent Systems,
pages 385–392, 1996.

