
RC23362 (W0410-026) October 4, 2004
Mathematics

IBM Research Report

A Grid-Based Approach for Enterprise-Scale Data Mining

Ramesh Natarajan, Radu Sion*, Chid Apte, Inderpal S. Narang*
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

*IBM Reearch Division
Almaden Research Center

650 Harry Road
San Jose, CA 95120-6099

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

 1

Abstract— We describe a grid-based approach for enterprise-

scale data mining that leverages database technology for I/O
parallelism, and on-demand compute servers for compute
parallelism in the statistical computations. By enterprise-scale,
we mean the highly-automated use of data mining in vertical
business applications, where the data is stored on one or more
relational database systems, and where a distributed architecture
comprising of high-performance compute servers or a network of
low-cost, commodity processors is used to improve application
performance and provide the application deployment flexibility
for overall workload management.

The approach relies on an algorithmic decomposition of the
data mining kernel on the data and compute grids, which makes
it possible to exploit the parallelism on the respective grids in a
simple way, while minimizing the data transfer between them.
The overall approach is compatible with existing database
standards for data mining task specification and results
reporting, and hence external applications using these standards-
based interfaces do not have to be modified in order to realize the
benefits of this grid-based approach.

Index Terms—Data mining, Grid computing, Predictive
modeling, Parallel databases.

Data-mining technologies that automate the generation and
application of statistical models from data are of interest in a
variety of applications cutting across industry sectors. These
applications include, for example, customer relationship
management (Retail, Banking and Finance, Telecom), fraud
detection (Banking and Finance, Telecom), lead generation
for marketing and sales (Insurance, Retail), clinical data
analysis (Health Care), risk modeling and management
(Banking and Finance, Insurance), process modeling and
quality control (Manufacturing), genomic data and micro-
array analysis (Life Sciences), yield management and logistics
(Travel and Transportation), text classification and
categorization (cross-Industry) among others. Further details,
including specific case-studies for some of these applications
can be found in [1]. In general, the underlying statistical

R. Natarajan is with the IBM Thomas J. Watson Research Center, P.O. Box

218, Yorktown Heights, N.Y. USA (phone: 914-769-9134, e-mail: nramesh@
us.ibm.com).

R. Sion is with the IBM Almaden Research Center, 650 Harry Rd., San
Jose, CA 95120(e-mail: rsion@us.ibm.com).

C. V. Apte is with the IBM Thomas J. Watson Research Center, P.O. Box
218, Yorktown Heights, N.Y. USA (e-mail: apte@ us.ibm.com).

 I. S. Narang is with the IBM Almaden Research Center, 650 Harry Rd.,
San Jose, CA 95120(e-mail: narang@almaden.ibm.com).

analysis (for predictive modeling, forecasting, optimization, or
exploratory multivariate data analysis) in these business
applications is very computationally intensive.

Our grid-based approach is motivated by some of the
requirements and challenges for developing enterprise-scale
data mining solutions for these applications. By enterprise-
scale, we mean the use of data mining as a tightly integrated
component in the workflow of vertical business applications,
with the relevant data being stored on highly-available, secure,
commercial relational database systems. These two aspects of
the present problem differentiate the present work from other
data-intensive problems studied in the data grid and scientific
computing literature (e.g., [2], [3]).

The outline of the remainder of the paper is as follows.
Section I considers the current state of database-integrated
data mining kernels, and the need for a future evolution
towards a grid-based mining architecture. Section II describes
the rationale for the algorithmic decomposition of data mining
kernels between the data and compute grids, along with a
review of related approaches in the literature. Section III
illustrates a class of segmentation-based data mining
algorithms for which this proposed decomposition will have
significant performance benefits. Section IV gives a
schematic of the grid architecture, and describes the various
components, including the scheduling interface between the
data and compute grids. Section V provides the summary and
conclusions.

I. INTRODUCTION

A. Overview
The traditional statistical data mining approach consists of

two steps. The first step, referred to as modeling, takes a
training data set containing the problem features of interest
and uses techniques from multivariate statistics and machine
learning to construct models from this training data set, which
can be used for variety of application including predictive
modeling, exploratory data analysis, and summarization of the
data. Once a suitable model has been obtained and validated,
the second step, referred to as scoring, uses the resulting
models for prediction, classification or categorization. In this
paper, we are primarily concerned with the modeling step
above, although some of the considerations will apply to the
highly data-parallel scoring step as well.

We now consider the implications and evolution of this data
mining approach from the perspectives of the business
application, the data management and the computational
requirements respectively.

A Grid-based Approach for Enterprise-Scale
Data Mining

Ramesh Natarajan, Radu Sion, Chid Apte, and Inderpal S. Narang

 2

From the business application perspective, the modeling
step involves specifying the relevant data variables for the
business problem of interest, marshalling the training data for
these features from a large number of historical cases, and
finally invoking the data mining kernel. The scoring step
requires collecting the data for the model input features for an
individual case (typically the model input features used in
scoring are a smaller subset of those in the original training
data, as the modeling step will have excluded the irrelevant
features from further consideration), and generating model-
based predictions or expectations based on these inputs. The
results from the scoring step are then used for triggering
business actions that optimize the relevant business objectives.

This approach may be illustrated by the following example
scenario. An airline company designing a new loyalty
program uses its historical customer purchase and behavioral
data from previous promotions to build a response model for
the new promotion. This response model is used in
conjunction with a profitability model to score and rank
customers. This ranking is used to select a group of preferred
customers, and to decide on the specific details of the
promotion. In this application, the modeling and scoring steps
would be typically performed in batch mode (e.g., once a year
if the promotion is offered annually). However, evolving
business objectives, competitive pressures and technological
capabilities might change this scenario. For example, the
modeling step may be performed more frequently to
accommodate new data or new data features as they become
available, particularly if the current model rankings and
predictions are likely to significantly change due to changes in
the input data distributions or in the modeling assumptions.
In addition, the scoring step can even be performed
interactively (e.g., the customer may be rescored in response
to a transaction event that can potential trigger a profile
change, leading to an immediate loyalty program offer at the
customer point-of-contact).

Turning to the data perspective, the business may use a
central data warehouse for storing the relevant data and
schema in a form suitable for mining. This data warehouse,
which is loaded with data from other transactional systems or
external data sources after various data cleansing,
transformation, aggregation and merging operations, is
typically implemented on a parallel database system to obtain
scalable storage and query performance for the large data
tables. For example, many databases support multi-threaded,
shared-memory or distributed, shared-nothing modes of
parallelism or both (for example, [4], where these two modes
are termed as INTRA and INTER PARALLEL respectively).
However, in evolving scenarios, the relevant data may also be
distributed in multiple, multi-vendor data warehouses across
various organizational dimensions, departments and
geographies, and across supplier, process and customer
databases. In addition, external databases containing
frequently-changing industry or economic data, market
intelligence, demographics, and psychographics may also be
incorporated into the training data for data mining in specific
application scenarios. Finally, we consider the scenario
where independent entities may collaborate to “virtually”
share their data for modeling purposes, without explicitly

exporting or exchanging raw data across their organizational
boundaries (e.g., a set of hospitals may pool their radiology
data to improve the robustness of diagnostic modeling
algorithms). The use of federated and data grid technologies,
such as [5] which hide the complexity and access permission
details of these multiple, multi-vendor databases from the
application developer, and which can rely on the query
optimizer to minimize excessive data movement and other
distributed processing overheads, will also become important
for data mining.

From the computational perspective, many statistical
modeling techniques for forecasting and optimization are
unsuitable for massive data sets, and these techniques often
only use a smaller sampled fraction of the data, which
increases the variance of the resulting model parameter
estimates. Alternatively, they use a variety of heuristics to
reduce computational time which have a negative impact on
the quality of the model search and optimization. A further
limitation is that many data mining algorithms are
implemented as standalone or client applications that extract
database-resident data into their own memory workspace or
disk area for the computational processing. The use of client
programs external to the data server incurs high data transfer
and storage costs for large data sets. Furthermore, even for
smaller or sampled data sets it raises issues of managing
multiple data copies and schemas that cannot be easily
synchronized to the changing data specifications or content on
the database servers. In addition, a set of external processes
for data mining with its own proprietary API’s and
programming requirements cannot be easily integrated into the
SQL-based, data-centric framework of business applications.

B. Implications for Data Mining Architectures
The evolution of these data mining architectures for

modeling is summarized in Figure 1 (we assume that the result
of the modeling is an exportable model). In (a), the data
mining kernel is implemented as a client application, which
uses data that is extracted from the database into its own
workspace. In (b), the data mining is implemented as a
database-extender consisting of stored procedures and user
defined functions installed on the database server. Finally, (c)
shows a further evolution to a grid-based architecture with
external computational servers implementing high-level
mining constructs.

The client-based approach in (a) is useful for carrying out
data mining studies in a experimental mode, for preliminary
development of new algorithms, and for testing parallel or
high-performance implementations of various data mining
kernels.

In recent years, the commercial emphasis has been on the
approach in (b) where the model generation and scoring
algorithms for a set of robust, well-tested data mining kernels
are implemented as database extenders. All major database
vendors now support integrated mining capabilities on their
platforms. The use of accepted or de-facto standards such as
SQL/MM, which is a SQL-based API for task and data
specification [6], and PMML, which is a XML-based format

 3

for results reporting and model exchange [7] enables these
integrated mining kernels to be easily incorporated into the
production workflow of data-centric business applications.
Furthermore, (b) has the advantage over (a) that the data
modeling can be triggered based on the state of internal events
recorded in the database.

Figure 1: Evolution of Data Mining from Databases

.
The data mining architecture in (c) is a grid-based data

mining approach whose relevance and capabilities for
enterprise-scale data mining relative to (a) and (b) is
considered below.

First, we note that any client application in (a) can be recast
as a grid application, that can be invoked through the database
layer using the SQL/MM task and metadata specification (the
training data can be exported from the data server as part of
the grid task invocation, or a data connection reference can be
provided to enable the grid task to connect itself to the data
source). Except for the major issue of the data transfer
overheads, this approach combines all the remaining
advantages of (a) and (b) mentioned earlier.

 Second, most stored procedure implementations of
common mining kernels are straightforward adaptations of
existing client-based programs. Although the stored procedure
approach avoids the data transfer costs to external clients, and
can also take advantage of the better I/O throughput from the
parallel database subsystem to the stored procedure, it ignores
the more significant performance gains obtained by reducing
the traffic on the database subsystem network itself (for
partitioned databases), or by reducing thread synchronization
and serialization during the database I/O operations (for multi-
threaded databases). The memory and CPU requirements of
these stored procedure adaptations, particularly for long-
running data mining tasks, can also negatively impact the
performance of a multi-purpose, operational database server.

Third, is it difficult to directly adapt existing data-parallel
client data mining programs as stored procedures, because the
details of the data placement and I/O parallelism are managed
by the database administration and system policy, and by the
SQL query optimizer, and are not under the control of the
application.

Fourth, as data mining applications grow in importance,
they will have to compete for CPU cycles and memory on the
database server with the more traditional transaction

processing, decision support and database maintenance
workloads. Here, depending on the service-level requirements
for the individual components in this workload, it may be
necessary to offload data mining calculations in an efficient
way to other computational servers for peak workload
management

 Fifth, assuming that the associated distributed computing
overheads can be kept small, the outsourcing of the data
mining workloads to external compute servers is attractive as
a computational accelerator, and it provides opportunities to
improve the quality of data mining models, through
algorithms that perform more extensive model search and
optimization,.

II. ALGORITHMIC FORMULATION

A. Functional Decomposition of Mining Kernel
The grid-mining architecture described in this paper is

based on reformulating the data mining algorithm into two
separate functional phases, viz., a sufficient statistics
collection phase implemented in parallel on the data grid, and
a model selection and parameter estimation phase
implemented in parallel on a compute grid. Successive
iterations of these two phases may be used for model
refinement and convergence. This functional decomposition is
illustrated schematically in Figure 2, where the data grid may
be a parallel or federated database, and the compute grid may
be high-performance compute-server or a collection of low-
cost, commodity processors.
 The use of sufficient statistics for model parameter
estimation is a consequence of the Neyman-Fisher
factorization criterion [8], which states that under the
assumption that the data consists of an i.i.d sample

nXXX ,,, 21 Κ , drawn from a probability distribution
)|(θxf , where x is a multivariate random variable and θ is

a vector of parameters, then the set of functions
),,,(,),,,,(21211 nkn XXXSXXXS ΚΚΚ of the data are

sufficient statistics for θ , if and only if the likelihood
function defined as

)|()|()|(),,,(2121 θθθ nn XfXfXfXXXL ΚΚ = ,

can be factorized in the form,

),,,(),,,(),,,(1221121 θknn SSgXXXgXXXL ΚΚΚ = ,

where 1g is independent of θ , and 2g depends on the data
only through the sufficient statistics. A similar argument
holds for conditional probability distributions),|(θxyf ,
where),(yx are joint multi-variate random variable (the
conditional probability formulation is required for
classification and regression applications with y denoting the
response variable). The cases for which the Neyman-Fisher
factorization criterion holds with small values of k are

 4

interesting, since the sufficient statistics
kSSS ,,2,1 Κ , not

only gives a compressed representation of the information in
the data needed to optimally estimate the model parameters
θ using maximum likelihood, but they can also be used to
provide a likelihood score for a (hold-out) data set for any
given values of the parameters θ (the function 1g is a
multiplicative constant for a given data set that can be ignored
for comparing scores). This means that both model parameter
estimation and validation can be performed without referring
to the original training and validation data.

Figure 2: Functional decomposition of data mining algorithm

In summary, the functional decomposition of the mining
kernel can be shown to have several advantages for a grid-
based implementation.

First, many interesting data mining kernels can be adapted
to take advantage of this algorithmic reformulation for grid
computing, which is a consequence of the fact that there is a
large class of distributions for which the Neyman-Pearson
factorization criterion holds with a compact set of sufficient
statistics (for example, these include many of the distributions
in the exponential family such as Normal, Poisson, Log-
Normal, Gamma, etc.).

Second, for these many of these kernels, the size of the
sufficient statistics is not only significantly smaller than the
entire data set which reduces the data transfer between the
data and compute grids, but the sufficient statistics can also be
computed efficiently in parallel with minimal communication
overheads on the data-grid subsystem.

Third, the benefits of parallelism for these new algorithms
can be obtained without any specialized parallel libraries on
either the data or compute grid (e.g., message passing or
synchronization libraries). In most cases, the parallelism is
obtained by leveraging the existing data partitioning and query
optimizer on the data grid, and by using straightforward, non-
interacting parallel tasks on the compute grid.

B. Related Work
The proposed algorithmic decomposition described above

can accommodate many of the data mining formulations in the
literature as special cases. For example, as a trivial case the
entire data set is a sufficient statistic for any modeling
algorithm (although not a very useful one from the data
compression point of view), and therefore, sending the entire
data set is analogous to the usual grid-service enabled client
application on the compute grid. Another example is
obtained by matching each partition of a row-partitioned
database table to a compute node on a one-to-one basis, which
leads to distributed algorithms where the individual models
computed from each separate data partitions are combined
using weighted ensemble averaging to get the final model [9].
Yet another example is bagging [10], where copies of the
original data set obtained by random sampling with
replacement from the full data set, are used by distinct nodes
on the compute grid to construct independent models which
are then averaged to obtain the final model. The use of
competitive mining algorithms provides another example, in
which identical copies of the entire data set are used on each
compute node to perform parallel independent searches for the
best model in a large model search space [11]. All these
algorithms fit into the present framework, and are efficient if
the sufficient statistics can be passed instead of the full data.

There is also a considerable literature on the
implementation of well-known mining algorithms such as
association rules, K-means clustering and decision trees
directly with database resident data. Some of these
algorithms are client application or stored procedures that are
structured so that rather than copying over the full data or
using a cursor interface to the data, they directly issue
database queries to obtain the relevant sufficient statistics.
For example, [12] considers a decision tree algorithm in which
for each step in the decision tree refinement, a database query
is used to return the relevant sufficient statistics required for
that step (these sufficient statistics are of the set of all bi-
variate contingency tables involving the target feature at each
node of the current decision tree). They show how this query
can be formulated so that the desired results can be obtained
in a single database scan. Also, [13] considers the same issue
of obtaining the sufficient statistics for decision tree
refinement, in the distributed case when the data tables are
partitioned by rows and by columns respectively. These
approaches do not focus on the computational requirements in
the stored procedure, which are relatively quite small for
decision tree refinement, and offer little scope for the use of
computational parallelism

 There has been some related work on pre-computation or
caching of the sufficient statistics from data tables for eventual
amortized use in data mining. For example, [14] describe a
sparse data structure for compactly storing and retrieving all
possible contingency tables that can be constructed from a
database table, and they show that this data structure can be
used by many statistical algorithms, including log-linear
response modeling. A related method is squashing [15],

 5

where a small number of pseudo data points and
corresponding weights are obtained, so that the low-order
multivariate moments of the pseudo data set and the original
large data set are equivalent; many modeling algorithms such
as logistic regression can use these weighted pseudo data
points, which can be regarded as an approximation to the
sufficient statistics of the original large data set, as a
computationally-efficient substitute for modeling purposes.
The idea of using approximate rather than exact sufficient
statistics to reduce the computational and data access costs of
modeling algorithms has also been considered for feature
selection in linear models [16], and for structure identification
in Bayesian networks [17].

III. SEGMENTATION BASED MODELING

A. Motivation
In commercial applications of data mining, the primary

interest is often in extending, automating and scaling up the
existing and traditional predictive modeling methodology.
One difficulty that is frequently encountered with this
approach is the need to deal with heterogeneous data
populations (i.e., data that is drawn from a mixture of
distributions), each of which exhibits the same general model
characteristics but with different values for the model
parameters. A general class of methods that is very useful in
this context is segmentation-based predictive modeling [18].
Here the space of the explanatory variables in the training data
is partitioned into mutually-exclusive, non-overlapping
segments, and individual predictive models are constructed for
each segment using multi-variate probability models that are
standard practice in the relevant application domain.

 The overall model naturally takes the form of “if-then”
rules, where the “if” part defines the condition for segment
membership, and the “then” part defines the corresponding
segment predictive model. The segment definitions are
Boolean combinations of univariate tests on each explanatory
variable, including range membership tests for continuous
variables, and subset membership tests for nominal variables
(note that these segment definitions can be easily translated
into the where-clause of an SQL query for retrieving all the
data records in the corresponding segment from the database).

The determination of the appropriate segments and the
estimation of the model parameters in the corresponding
segment models can be carried out by jointly optimizing the
likelihood function of the overall model for the training data,
with validation or hold-out data being used to prevent model
overfitting. This is a complex optimization problem involving
search and numerical computation, and a variety of heuristics
including top-down segment partitioning, bottom-up segment
agglomeration, and combinations of these two approaches are
used in order to determine the best segmentation/segment-
model combination. The segment models that have been
studied include a bi-variate Poisson-Lognormal model for
insurance risk modeling [19], and multivariate linear and
logistic regression models for retail response modeling [20].
These algorithms have also been used to generate feature
transformations for other predictive modeling methods [21],

and they are closely related to model-based clustering
techniques (e.g., [22]).

B. Representative Performance Analysis
The potential benefits of the proposed formulation for

segmentation-based modeling can be examined using the
following architectural model. The data grid and compute
grids are assumed to consist of 1P and 2P processors
respectively, with the corresponding time for 1 floating point
operation (flop) on each node being denoted by 1α and 2α
respectively, and the time for accessing a single data field on
the data node being denoted by

1β . Similarly, the cost of
invoking a remote method on a compute grid node is denoted
by w21 γγ + , where 1γ is the latency for remote method
invocation, 2γ is the cost per word for moving data over the
network, and w is the size (in words) of the data parameters
that are transmitted. Finally, we assume that the database
table used for the segmentation-based modeling consists of n
rows and m columns, and is perfectly row-partitioned so
that each data grid partition has 1/ Pn rows (we ignore the
small effects when n is not perfectly divisible by 1P).

Using this model, we consider one pass of a multi-pass a
segmented predictive model evaluation, in which a linear
regression model with feature selection is computed in each
segment (e.g., using the algorithms described for evaluating
the sufficient statistics as described in [20]). Since several
potential segmentations can be evaluated in parallel, we
assume that there are N segments, which may be non-
overlapping or overlapping (with 21, PPN >> in general).
The sufficient statistics for each potential segment are a pair
of covariance matrices (training + evaluation) for the data in
each segment, which can evaluated for all N segments in a
single parallel scan over the data table. The overall time for
this aggregation step DT , which can be shown to be given

by
2

111
2

11 /)5.0(mNPPknmnm ααβ ++ . Here
Nk < is an overlap factor which denotes the number of

segments that each data record on average contributes to, with
1=k in the case of non-overlapping segments. The three

terms in DT respectively correspond to the time for reading
the data from the database, the time for updating the
covariance matrices locally, and the time for aggregating the
local covariance matrix contributions for each segment at the
end of a data scan. These aggregates are then dispatched to a
compute node, for which the scheduling time ST can be

estimated as 2
2

21 / PNmγγ + (where we assume that these
independent scheduling tasks can be performed in parallel
using a multi-threaded scheduler). On the compute nodes, the
algorithm used to perform stepwise feature selection proceeds
by successively adding features to the regression model, based
on first computing the regression model parameters from the
training data sufficient statistics, and then examining the
degree-of-fit of these models using the evaluation data

sufficient statistics. The time CT for the parameter

 6

computation and model selection step can be estimated as

2
4

212
1 / PNmα , where only leading order terms for large m

have been retained. We note that the usual algorithms for the
solution of the normal equations by the Choleski factorization
algorithm are)(3mO (e.g., as described in [20]), but
incorporating the more rigorous feature selection algorithm
based on the degree-of-fit with the evaluation data as
proposed above, raises the algorithm complexity to)(4mO .
The total time T is thus given by

.//

/)5.0(

2
4

212
1

2
2

21

2
111

2
11

PNmPNm

mNPPknmnm

TTTT CSD

αγγ

ααβ

+++

++=

++=

.

We consider some data sets that are representative of retail
customer applications, with 510=n , 500=m and take the
nominal values 15=k , 500=N for the algorithm
parameters. For the architectural parameters we set

sec102 8
21

−×== αα , wordsec/105 6
1

−×=β ,

sec104 2
1

−×=γ and wordsec/102 5
2 ×=γ .

 For the case 0,1 21 == PP , when all the computation
must be performed on the data server itself (this is then
equivalent to the case (b) described in Figure 1), the overall
execution time is T = 7.8 hours (we note that in this case there
is no scheduling cost as all the computation is performed on
the data server itself). For the case, 1,1 21 == PP , the
execution time increases to 91.8=T hours (which consists
of 57.0=DT hours, 11.1=ST hours and

23.7=CT hours), which is an overhead of 14% over the
serial case, although with 80% of the overall time being off-
loaded from the data server. However, by increasing the
number of processors on the data and compute grids
to 128,16 21 == PP , the execution time comes down to

106.0=T hours (which consists of 041.0=DT hours,

009.0=ST hours and 057.0=CT hours), and this
represents a speedup of about 74 over the base case when all
the computation is performed on the data server itself.

We have intentionally used modest values for mn, in the
analysis given above, and many retail data sets can have
millions of customer records, and the number of features can
increase dramatically if interaction terms involving the
primary features that are incorporated in the segment models.
For example, quadratic and even higher-order interaction
terms in the segment regression models in order to have a final
predictive model with fewer overall segments, but with more
complicated nonlinear models within each segment). The
analysis suggests that an increasing the number of segment
modeling features makes the use of a separate compute grid
even more compelling for this application.

We believe that segmentation-based predictive data
modeling problems are ideally suited for the proposed grid
architecture, with significant costs requiring parallelism in the

data access and sufficient statistics computations on the data
grid, as well as in the model computation and search on the
compute grid. These modeling runs are estimated to require
several hours of computational time running serially on
current data mining architectures for typical data sets.

Figure 3: Execution time for varying numbers of compute and
data nodes

IV. GRID ARCHITECTURE SCHEMATIC

A. Overall Schematic
The overall schematic for grid-based data mining is shown

in Figure 4. It consists of a parallel or federated database, a
web service engine for task scheduling and monitoring, and a
compute grid. A functional schematic describing the various
components is shown in Figure 5.

Figure 4: Grid data mining architecture schematic

B. Detailed Description of Individual Components
Our description for the data grid layer will refer to the DB2

family of products [4], although the details are quite generic
and can be ported to other relational databases as well. The
data grid layer implements the SQL/MM interface for data
mining task specification and submission. A stored procedure
performs various control-flow and book-keeping tasks, such
as for example, issuing parallel queries for sufficient statistics
collection, invoking the web service scheduler for parallel task
assignment to the compute grid, aggregating and processing
the results from the compute grid, managing the control flow
for model refinement, and exporting the final model.

 7

Figure 5: Functional schematic of data mining components

Many parallel databases provide built-in parallel column
functions like MAX, MIN, AVG, SUM and other common
associative-commutative functions, but do not yet provide an
API for application programmers to implement general-
purpose multi-column parallel aggregation operators [23].
Nevertheless, these parallel data aggregation operators for
accumulating the sufficient statistics can be implemented
using scratchpad user defined functions, which on parallel
databases leverage the parallelism in the SQL query processor
(for both INTRA and INTER parallel modes) by using
independent scratchpads for each partition or thread. The
results in the scratchpads are then aggregated at the end of the
data scan using the shared memory or shared disk regions for
communication.

For federated databases, these data aggregation operators
would be based on the federated data view, but would
leverage the technologies developed for the underlying
federated query processor and its cost model in order to
optimize the trade-offs between function shipping, data
copying, materialization of intermediate views, and work
scheduling and synchronization on the components of the
federated view to compute the sufficient statistics in the most
efficient way ([24], [25], [26]).

The task scheduler, which is implemented as a web service
for full generality, can be invoked from SQL queries issued
from the database stored procedure (in the case of DB2, using
the SOAP messaging capabilities provided by a set of user
defined functions for invoking remote web services with
database objects as parameters, as provided in the XML
extender [27]). This invocation of the scheduler is
asynchronous, and the parameters that are passed to the
scheduler include the task metadata and the relevant task data
aggregate. It also includes a runtime estimate for the task,
parameterized by CPU speed and memory requirements. In
the special case when the compute grid is co-located within
the same administrative domain as the data grid, rather than
passing the data aggregate as an in-line task parameter, a
connection reference to this data is instead passed to the
scheduler. This connection reference is used by the
corresponding remote task on the compute grid to retrieve the
relevant data aggregate, thereby avoiding the small but serial
overhead of processing a large in-line parameter in the

invocation of the scheduler.
The task scheduler, which shields the data layer from the

details of the compute grid, has modules for automatic
discovery of compute resources with the relevant compute
task libraries, built-in scheduling algorithms for load
balancing, task-to-hardware matching based on the processor
and memory requirements, polling mechanisms for monitoring
task processes, and task life-cycle management including
mechanisms for resubmitting incomplete tasks. The
parameterized runtime estimates for the tasks are combined
with the server performance statistics for task matching, load
balancing and task cycle management (which includes the
diagnosis of task failures or improper execution on the
compute grid). The scheduler can also implement various
back-end optimizations to reduce task dispatching overheads
on trusted compute-grid resources. Our experiments on a 4
node Linux cluster located on the same LAN as the data
server, shows an average task scheduling overhead of about
40 milliseconds through the web-service scheduler, suggesting
that the granularity of the scheduled tasks must be somewhat
larger in order for the linear speedup regime to apply on the
compute grid.

The compute grid layer contains the code base for high-
level mining services including numerically-robust algorithms
for parameter estimation and feature selection from the input
data or from the sufficient statistics of the data where
applicable. The compute grid nodes also contain the resource
discovery and resource monitoring components of the task
scheduler, which are used for task matching by the scheduler
as described above. We are currently experimenting with a
range of hardware platforms for the compute grid including
commodity processors and high-performance compute servers
on a LAN, as well as multi-site remote compute servers.

V. SUMMARY
As business applications of data mining become

widespread, it will be necessary to improve the performance
and quality of the embedded data mining kernels, as well as
minimize their impact on other aspects of the data processing
operational workload.

The approach to enterprise-scale data-mining described in
this paper is an evolutionary approach that will meet these
requirements. It is based on a functional decomposition of the
data mining kernel to exploit the parallelism on data and
compute grids with minimal use of explicit parallel
programming software constructs, and with minimal inter-grid
communication. It leverages existing or evolving data mining
standards such as SQL/MM for job specification and
submission, and PMML for model specification and export. It
can provide better scalable performance or an improved data
mining model quality by using parallelism, when compared to
existing implementations of database-integrated mining
kernels. Finally, the present approach can lead to greater
flexibility in the deployment of a data mining application,
leading to better overall workload management on enterprise

 8

data servers that support a complex mix of transactional,
decision support, data management and data mining
applications.

REFERENCES
[1] C. Apte, B. Liu, E. P. D. Pednault and P. Smyth, “Business Applications

of Data Mining,” Communications of the ACM, Vol. 45, No. 8, August
2002.

[2] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke,
”Towards an Architecture for the Distributed Management and Analysis
of Large Scientific Datasets,” Journal of Network and Computer
Application, Vol. 23. pp. 187-200, 2001.

[3] D. Arnold, S. Vadhiyar and J. Dongarra, “On the Convergence of
Computational and Data Grids,” Parallel Processing Letters, Vol. 11, pp
187-202, 2001.

[4] The IBM DB2 Universal Database V8.1,
http://www.ibm.com/software/data/db2, 2004.

[5] The IBM DB2 Information Integrator,
http://www.ibm.com/software/integration, 2004.

[6] ISO/IEC 13249 Final Committee Draft. Information Technology –
Database Languages –SQL Multimedia and Application Packages.
http://www.iso.org, 2002

[7] Predictive Modeling Markup Language, http://www.dmg.org, 2002.
[8] M. H. DeGroot and M. J. Schervish, Probability and Statistics, Third

Edition, Addison Wesley, 2002.
[9] A. Prodromides, P. Chan and S. Stolfo, “Meta learning in distributed

data systems – Issues and Approaches,” Advances in Distributed Data
Mining, (eds. H. Kargupta and P. Chan), AAAI Press, 2000.

[10] L. Breiman, “Bagging Predictors,” Machine Learning, Vol. 24, No. 2,
pp. 123-140, 1996.

[11] P. Giudici and R. Castelo, “Improving Markov Chain Monte Carlo
Model Search for Data Mining,” Machine Learning, Vol. 50, pp 127-
158, 2003.

[12] Graefe, G.; U. Fayyad and S. Chaudhuri, "On the efficient gathering of
sufficient statistics for classification from large SQL databases,"
Proceedings Fourth International Conference on Knowledge Discovery
and Data Mining," AAAI Press, Menlo Park, pp.204-208, 1998.

[13] D. Caragea, A. Silvescu and V. Honavar, “A Framework for Learning
from Distributed Data Using Sufficient Statistics and its Application to
Learning Decision Trees,” Int. J. Hybrid Intell. Syst., Vol. 1, pp. 80-89,
2004.

[14] A. Moore and Mary Soon Lee, “Cached Sufficient Statistics for Efficient
Machine Learning with Massive DataSets,” Journal of Artificial
Intelligence Research, Vol. 8, pp. 67-91, 1998.

[15] W. DuMouchel, C. Volinsky, T. Johnson, C. Cortes and D. Pregibon,
“Squashing Flat Files Flatter,” Proceedings of the Fifth International
Conference on Knowledge Discovery and Data Mining, pp. 6-15, 1999.

[16] R. Natarajan and E. P. D. Pednault, “Using Simulated Pseudo Data to
Speed Up Statistical Predictive Modeling from Large Data Sets,” Proc.
First SIAM Conference on Data Mining, Chicago IL, 2000.

[17] N. Friedman and L. Getoor,, “Efficient learning using constrained
sufficient statistics,” Proceedings of the 7th International Workshop on
Artificial Intelligence and Statistic, 1999.

[18] C. Apte, R. Natarajan, E. Pednault, F. Tipu, A Probabilistic Framework
for Predictive Modeling Analytics, IBM Systems Journal, V. 41(3),
2002.

[19] C. Apte, E. Grossman, E. Pednault, B. Rosen, F. Tipu, and B. White,
“Probabilistic Estimation Based Data Mining for Discovering Insurance
Risks ,“ IEEE Intelligent Systems, Vol. 14(6), 1999.

[20] R. Natarajan and E. P. D. Pednault, “Segmented Regression Estimators
for Massive Data Sets,” Proc. Second SIAM Conference on Data
Mining, Crystal City VA, 2002.

[21] E. Pednault, “Transform Regression and the Kolmogorov Superposition
Theorem,” IBM Research Report RC 23227, IBM Research Division,
Yorktown Heights, NY 10598, 2004.

[22] C. Fraley, “Algorithms for Model-Based Gaussian Hierarchical
Clustering,” SIAM J. Sci. Comput., V. 20, No. 1, pp. 270-281 1988.

[23] M. Jaedicke and B. Mitschang, “On Parallel Processing of Aggregate
and Scalar Function in Object-Relational DBMS,” Proc. ACM SIGMOD
Int. Conf. on Management of Data, Seattle WA, 1998.

[24] M. Atkinson, A. L. Chervenak, P. Kunszt, I. Narang, N. W. Paton, D.
Pearson, A. Shoshani, and P. Wilson, “Data Access, Integration and
Management,” Chapter 22, The Grid: Blueprint for a New Computing
Infrastructure, Second Edition” (eds., I. Foster and C. Kesselman),
Morgan Kaufman, 2003.

[25] M. Rodriguez-Martinez and N. Roussopoulos, “MOCHA : A Self-
Extensible Database Middleware System for Distributed Data Sources,”
Proc.s ACM SIGMOD International Conference for Distributed Data
Sources, Dallas TX, pp. 213-224, 2000.

[26] D. Kossmann, Franklin, M. J. and Drasch G., "Cache investment:
integrating query optimization and distributed data placement,” ACM
Transactions on Database Systems, Vol. 25, pp. 517-558, 2000.

[27] The IBM DB2 XML Extender,
http://www.ibm.com/software/data/db2/extender/xmlext, 2004.

