
RC23362 (W0410-026) October 4, 2004
Mathematics

IBM Research Report

A Grid-Based Approach for Enterprise-Scale Data Mining

Ramesh Natarajan, Radu Sion*, Chid Apte, Inderpal S. Narang*
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

*IBM Reearch Division
Almaden Research Center

650 Harry Road
San Jose, CA  95120-6099

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It  has been issued as a Research
Report for early dissemination of its contents.  In view of the transfer of copyright to the outside publisher, its distribution  outside of IBM prior to publication should be limited to peer communications and specific
requests.  After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties).  Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598  USA  (email:  reports@us.ibm.com).  Some reports are available on the internet at  http://domino.watson.ibm.com/library/CyberDig.nsf/home .



 1

  
Abstract— We describe a grid-based approach for enterprise-

scale data mining that leverages database technology for I/O 
parallelism, and on-demand compute servers for compute 
parallelism in the statistical computations.  By enterprise-scale, 
we mean the highly-automated use of data mining in vertical 
business applications, where the data is stored on one or more 
relational database systems, and where a distributed architecture 
comprising of high-performance compute servers or a network of 
low-cost, commodity processors is used to improve application 
performance and provide the application deployment flexibility 
for overall workload management.      

The approach relies on an algorithmic decomposition of the 
data mining kernel on the data and compute grids, which makes 
it possible to exploit the parallelism on the respective grids in a 
simple way, while minimizing the data transfer between them.  
The overall approach is compatible with existing database 
standards for data mining task specification and results 
reporting, and hence external applications using these standards-
based interfaces do not have to be modified in order to realize the 
benefits of this grid-based approach.     
 

Index Terms—Data mining, Grid computing, Predictive 
modeling, Parallel databases. 

Data-mining technologies that automate the generation and 
application of statistical models from data are of interest in a 
variety of applications cutting across industry sectors. These 
applications include, for example, customer relationship 
management (Retail, Banking and Finance, Telecom), fraud 
detection (Banking and Finance, Telecom), lead generation 
for marketing and sales (Insurance, Retail), clinical data 
analysis (Health Care), risk modeling and management 
(Banking and Finance, Insurance), process modeling and 
quality control (Manufacturing), genomic data and micro-
array analysis (Life Sciences), yield management and logistics 
(Travel and Transportation), text classification and 
categorization (cross-Industry) among others.  Further details, 
including specific case-studies for some of these applications 
can be found in [1]. In general, the underlying statistical 
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analysis (for predictive modeling, forecasting, optimization, or 
exploratory multivariate data analysis) in these business 
applications is very computationally intensive.  

Our grid-based approach is motivated by some of the 
requirements and challenges for developing enterprise-scale 
data mining solutions for these applications.  By enterprise-
scale, we mean the use of data mining as a tightly integrated 
component in the workflow of vertical business applications, 
with the relevant data being stored on highly-available, secure, 
commercial relational database systems.  These two aspects of 
the present problem differentiate the present work from other 
data-intensive problems studied in the data grid and scientific 
computing literature (e.g., [2], [3]).   

The outline of the remainder of the paper is as follows.  
Section I considers the current state of database-integrated 
data mining kernels, and the need for a future evolution 
towards a grid-based mining architecture.  Section II describes 
the rationale for the algorithmic decomposition of data mining 
kernels between the data and compute grids, along with a 
review of related approaches in the literature.  Section III 
illustrates a class of segmentation-based data mining 
algorithms for which this proposed decomposition will have 
significant performance benefits.   Section IV gives a 
schematic of the grid architecture, and describes the various 
components, including the scheduling interface between the 
data and compute grids.  Section V provides the summary and 
conclusions.    

I. INTRODUCTION 

A. Overview 
The traditional statistical data mining approach consists of 

two steps.  The first step, referred to as modeling, takes a 
training data set containing the problem features of interest 
and uses techniques from multivariate statistics and machine 
learning to construct models from this training data set, which 
can be used for variety of application including predictive 
modeling, exploratory data analysis, and summarization of the 
data.  Once a suitable model has been obtained and validated, 
the second step, referred to as scoring, uses the resulting 
models for prediction, classification or categorization.  In this 
paper, we are primarily concerned with the modeling step 
above, although some of the considerations will apply to the 
highly data-parallel scoring step as well.   

We now consider the implications and evolution of this data 
mining approach from the perspectives of the business 
application, the data management and the computational 
requirements respectively.    
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From the business application perspective, the modeling 
step involves specifying the relevant data variables for the 
business problem of interest, marshalling the training data for 
these features from a large number of historical cases, and 
finally invoking the data mining kernel.  The scoring step 
requires collecting the data for the model input features for an 
individual case (typically the model input features used in 
scoring are a smaller subset of those in the original training 
data, as the modeling step will have excluded the irrelevant 
features from further consideration), and generating model-
based predictions or expectations based on these inputs.   The 
results from the scoring step are then used for triggering 
business actions that optimize the relevant business objectives.       

This approach may be illustrated by the following example 
scenario.   An airline company designing a new loyalty 
program uses its historical customer purchase and behavioral 
data from previous promotions to build a response model for 
the new promotion.  This response model is used in 
conjunction with a profitability model to score and rank 
customers.  This ranking is used to select a group of preferred 
customers, and to decide on the specific details of the 
promotion.  In this application, the modeling and scoring steps 
would be typically performed in batch mode (e.g., once a year 
if the promotion is offered annually).  However, evolving 
business objectives, competitive pressures and technological 
capabilities might change this scenario.   For example, the 
modeling step may be performed more frequently to 
accommodate new data or new data features as they become 
available, particularly if the current model rankings and 
predictions are likely to significantly change due to changes in 
the input data distributions or in the modeling assumptions.   
In addition, the scoring step can even be performed 
interactively (e.g., the customer may be rescored in response 
to a transaction event that can potential trigger a profile 
change, leading to an immediate loyalty program offer at the 
customer point-of-contact).  

Turning to the data perspective, the business may use a 
central data warehouse for storing the relevant data and 
schema in a form suitable for mining.  This data warehouse, 
which is loaded with data from other transactional systems or 
external data sources after various data cleansing, 
transformation, aggregation and merging operations, is 
typically implemented on a parallel database system to obtain 
scalable storage and query performance for the large data 
tables. For example, many databases support multi-threaded, 
shared-memory or distributed, shared-nothing modes of 
parallelism or both (for example, [4], where these two modes 
are termed as INTRA and INTER PARALLEL respectively). 
However, in evolving scenarios, the relevant data may also be 
distributed in multiple, multi-vendor data warehouses across 
various organizational dimensions, departments and 
geographies, and across supplier, process and customer 
databases.  In addition, external databases containing 
frequently-changing industry or economic data, market 
intelligence, demographics, and psychographics may also be 
incorporated into the training data for data mining in specific 
application scenarios.   Finally, we consider the scenario 
where independent entities may collaborate to  “virtually” 
share their data for modeling purposes, without explicitly 

exporting or exchanging raw data across their organizational 
boundaries (e.g., a set of hospitals may pool their radiology 
data to improve the robustness of diagnostic modeling 
algorithms).   The use of federated and data grid technologies, 
such as [5] which hide the complexity and access permission 
details of these  multiple, multi-vendor databases from the 
application developer, and which can rely on the query 
optimizer to minimize excessive data movement and other 
distributed processing overheads, will also become important 
for data mining.    

From the computational perspective, many statistical 
modeling techniques for forecasting and optimization are 
unsuitable for massive data sets, and these techniques often 
only use a smaller sampled fraction of the data, which 
increases the variance of the resulting model parameter 
estimates.  Alternatively, they use a variety of heuristics to 
reduce computational time which have a negative impact on 
the quality of the model search and optimization.   A further 
limitation is that many data mining algorithms are 
implemented as standalone or client applications that extract 
database-resident data into their own memory workspace or 
disk area for the computational processing.  The use of client 
programs external to the data server incurs high data transfer 
and storage costs for large data sets.  Furthermore, even for 
smaller or sampled data sets it raises issues of managing 
multiple data copies and schemas that cannot be easily 
synchronized to the changing data specifications or content on 
the database servers.  In addition, a set of external processes 
for data mining with its own proprietary API’s and 
programming requirements cannot be easily integrated into the 
SQL-based, data-centric framework of business applications. 

 

B. Implications for Data Mining Architectures 
The evolution of these data mining architectures for 

modeling is summarized in Figure 1 (we assume that the result 
of the modeling is an exportable model).  In (a), the data 
mining kernel is implemented as a client application, which 
uses data that is extracted from the database into its own 
workspace. In (b), the data mining is implemented as a 
database-extender consisting of stored procedures and user 
defined functions installed on the database server.  Finally, (c) 
shows a further evolution to a grid-based architecture with 
external computational servers implementing high-level 
mining constructs.  

The client-based approach in (a) is useful for carrying out 
data mining studies in a experimental mode, for preliminary 
development of new algorithms, and for testing parallel or 
high-performance implementations of various data mining 
kernels.  

In recent years, the commercial emphasis has been on the 
approach in (b) where the model generation and scoring 
algorithms for a set of robust, well-tested data mining kernels 
are implemented as database extenders.  All major database 
vendors now support integrated mining capabilities on their 
platforms.  The use of accepted or de-facto standards such as 
SQL/MM, which is a SQL-based API for task and data 
specification [6],  and PMML, which is a XML-based format 
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for results reporting and model exchange [7] enables these 
integrated mining kernels to be easily incorporated into the 
production workflow of data-centric business applications.  
Furthermore, (b) has the advantage over (a) that the data 
modeling can be triggered based on the state of internal events 
recorded in the database.   

 

 
Figure 1:   Evolution of Data Mining from Databases 

.  
The data mining architecture in (c) is a grid-based data 

mining approach whose relevance and capabilities for 
enterprise-scale data mining relative to (a) and (b) is 
considered below.  

First, we note that any client application in (a) can be recast 
as a grid application, that can be invoked through the database 
layer using the SQL/MM task and metadata specification (the 
training data can be exported from the data server as part of 
the grid task invocation, or a data connection reference can be 
provided to enable the grid task to connect itself to the data 
source).  Except for the major issue of the data transfer 
overheads, this approach combines all the remaining 
advantages of (a) and (b) mentioned earlier. 

 Second, most stored procedure implementations of 
common mining kernels are   straightforward adaptations of 
existing client-based programs. Although the stored procedure 
approach avoids the data transfer costs to external clients, and 
can also take advantage of the better I/O throughput from the 
parallel database subsystem to the stored procedure, it ignores 
the more significant performance gains obtained by reducing 
the traffic on the database subsystem network itself (for 
partitioned databases), or by reducing thread synchronization 
and serialization during the database I/O operations (for multi-
threaded databases).   The memory and CPU requirements of 
these stored procedure adaptations, particularly for long-
running data mining tasks, can also negatively impact the 
performance of a multi-purpose, operational database server.   

Third, is it difficult to directly adapt existing data-parallel 
client data mining programs as stored procedures, because the 
details of the data placement and I/O parallelism are managed 
by the database administration and system policy, and by the 
SQL query optimizer, and are not under the control of the 
application.  

Fourth, as data mining applications grow in importance, 
they will have to compete for CPU cycles and memory on the 
database server with the more traditional transaction 

processing, decision support and database maintenance 
workloads.  Here, depending on the service-level requirements 
for the individual components in this workload, it may be 
necessary to offload data mining calculations in an efficient 
way to other computational servers for peak workload 
management  

   Fifth, assuming that the associated distributed computing 
overheads can be kept small, the outsourcing of the data 
mining workloads to external compute servers is attractive as 
a computational accelerator, and it provides opportunities to 
improve the quality of data mining models, through 
algorithms that perform more extensive model search and 
optimization,.  

II. ALGORITHMIC FORMULATION 

A. Functional Decomposition of Mining Kernel 
The grid-mining architecture described in this paper is 

based on reformulating the data mining algorithm into two 
separate functional phases, viz., a sufficient statistics 
collection phase implemented in parallel on the data grid, and 
a model selection and parameter estimation phase 
implemented in parallel on a compute grid.  Successive 
iterations of these two phases may be used for model 
refinement and convergence. This functional decomposition is 
illustrated schematically in Figure 2, where the data grid may 
be a parallel or federated database, and the compute grid may 
be high-performance compute-server or a collection of low-
cost, commodity processors.  
 The use of sufficient statistics for model parameter 
estimation is a consequence of the Neyman-Fisher 
factorization criterion [8], which states that under the 
assumption that the data consists of an i.i.d sample  

nXXX ,,, 21 Κ , drawn from a probability distribution 
)|( θxf , where x  is a multivariate random variable and θ  is 

a vector of parameters, then the set of functions 
),,,(,),,,,( 21211 nkn XXXSXXXS ΚΚΚ  of the data are 

sufficient statistics for θ , if and only if  the likelihood 
function defined as 
 

)|()|()|(),,,( 2121 θθθ nn XfXfXfXXXL ΚΚ = , 
 
can be factorized in the form, 
  

),,,(),,,(),,,( 1221121 θknn SSgXXXgXXXL ΚΚΚ = , 
 
where 1g  is independent of θ , and 2g  depends on the data 
only through the sufficient statistics.   A similar argument 
holds for conditional probability distributions ),|( θxyf , 
where ),( yx  are joint multi-variate random variable (the 
conditional probability formulation is required for 
classification and regression applications with y  denoting the 
response variable).   The cases for which the Neyman-Fisher 
factorization criterion holds with small values of k  are 
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interesting, since the  sufficient statistics  
kSSS ,,2,1 Κ ,  not 

only gives a compressed representation of the information in 
the data needed to optimally estimate the model parameters  
θ  using maximum likelihood,  but they can also be used to 
provide a likelihood score for a (hold-out) data set for any 
given values of the parameters θ  (the function 1g  is a 
multiplicative constant for a given data set that can be ignored 
for comparing scores).  This means that both model parameter 
estimation and validation can be performed without referring 
to the original training and validation data. 
   

 

 
Figure 2: Functional decomposition of data mining algorithm 

 
In summary, the functional decomposition of the mining 
kernel can be shown to have several advantages for a grid-
based implementation.   

First, many interesting data mining kernels can be adapted 
to take advantage of this algorithmic reformulation for grid 
computing, which is a consequence of the fact that there is a 
large class of distributions for which the Neyman-Pearson 
factorization criterion holds with a compact set of sufficient 
statistics (for example, these include many of the distributions 
in the exponential family such as Normal, Poisson, Log-
Normal, Gamma, etc.). 

Second, for these many of these kernels, the size of the 
sufficient statistics is not only significantly smaller than the 
entire data set which reduces the data transfer between the 
data and compute grids, but the sufficient statistics can also be 
computed efficiently in parallel with minimal communication 
overheads on the data-grid subsystem.   

Third, the benefits of parallelism for these new algorithms 
can be obtained without any specialized parallel libraries on 
either the data or compute grid (e.g., message passing or 
synchronization libraries).  In most cases, the parallelism is 
obtained by leveraging the existing data partitioning and query 
optimizer on the data grid, and by using straightforward, non-
interacting parallel tasks on the compute grid.    

B. Related Work 
The proposed algorithmic decomposition described above 

can accommodate many of the data mining formulations in the 
literature as special cases.  For example, as a trivial case the 
entire data set is a sufficient statistic for any modeling 
algorithm (although not a very useful one from the data 
compression point of view), and therefore, sending the entire 
data set is analogous to the usual grid-service enabled client 
application on the compute grid.   Another example is 
obtained by matching each partition of a row-partitioned 
database table to a compute node on a one-to-one basis, which 
leads to distributed algorithms where the individual models 
computed from each separate data partitions are combined 
using weighted ensemble averaging to get the final model [9].  
Yet another example is bagging [10], where copies of the 
original data set obtained by random sampling with 
replacement from the full data set, are used by distinct nodes 
on the compute grid to construct independent models which 
are then averaged to obtain the final model.  The use of 
competitive mining algorithms provides another example, in 
which identical copies of the entire data set are used on each 
compute node to perform parallel independent searches for the 
best model in a large model search space [11].    All these 
algorithms fit into the present framework, and are efficient if 
the sufficient statistics can be passed instead of the full data.            

There is also a considerable literature on the 
implementation of well-known mining algorithms such as 
association rules, K-means clustering and decision trees 
directly with database resident data.   Some of these 
algorithms are client application or stored procedures that are 
structured so that rather than copying over the full data or 
using a cursor interface to the data, they directly issue 
database queries to obtain the relevant sufficient statistics.  
For example, [12] considers a decision tree algorithm in which 
for each step in the decision tree refinement, a database query 
is used to return the relevant sufficient statistics required for 
that step (these sufficient statistics are of the set of all bi-
variate contingency tables involving the target feature at each 
node of the current decision tree).  They show how this query 
can be formulated so that the desired results can be obtained 
in a single database scan. Also, [13] considers the same issue 
of obtaining the sufficient statistics for decision tree 
refinement, in the distributed case when the data tables are 
partitioned by rows and by columns respectively. These 
approaches do not focus on the computational requirements in 
the stored procedure, which are relatively quite small for 
decision tree refinement, and offer little scope for the use of 
computational parallelism  

 There has been some related work on pre-computation or 
caching of the sufficient statistics from data tables for eventual 
amortized use in data mining.  For example, [14] describe a 
sparse data structure for compactly storing and retrieving all 
possible contingency tables that can be constructed from a 
database table, and they show that this data structure can be 
used by many statistical algorithms, including log-linear 
response modeling.  A related method is squashing [15], 
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where a small number of pseudo data points and 
corresponding weights are obtained, so that the low-order 
multivariate moments of the pseudo data set and the original 
large data set are equivalent; many modeling algorithms such 
as logistic regression can use these weighted pseudo data 
points, which can be regarded as an approximation to the 
sufficient statistics of the original large data set, as a 
computationally-efficient substitute for modeling purposes.  
The idea of using approximate rather than exact sufficient 
statistics to reduce the computational and data access costs of 
modeling algorithms has also been considered for feature 
selection in linear models [16], and for structure identification 
in Bayesian networks [17].  

III. SEGMENTATION BASED MODELING 

A. Motivation 
In commercial applications of data mining, the primary 

interest is often in extending, automating and scaling up the 
existing and traditional predictive modeling methodology.   
One difficulty that is frequently encountered with this 
approach is the need to deal with heterogeneous data 
populations (i.e., data that is drawn from a mixture of 
distributions), each of which exhibits the same general model 
characteristics but with different values for the model 
parameters.  A general class of methods that is very useful in 
this context is segmentation-based predictive modeling [18].  
Here the space of the explanatory variables in the training data 
is partitioned into mutually-exclusive, non-overlapping 
segments, and individual predictive models are constructed for 
each segment using multi-variate probability models that are 
standard practice in the relevant application domain.  

 The overall model naturally takes the form of “if-then” 
rules, where the “if” part defines the condition for segment 
membership, and the “then” part defines the corresponding 
segment predictive model.  The segment definitions are 
Boolean combinations of univariate tests on each explanatory 
variable, including range membership tests for continuous 
variables, and subset membership tests for nominal variables 
(note that these segment definitions can be easily translated 
into the where-clause of an SQL query for retrieving all the 
data records in the corresponding segment from the database). 

The determination of the appropriate segments and the 
estimation of the model parameters in the corresponding 
segment models can be carried out by jointly optimizing the 
likelihood function of the overall model for the training data, 
with validation or hold-out data being used to prevent model 
overfitting. This is a complex optimization problem involving 
search and numerical computation, and a variety of heuristics 
including top-down segment partitioning, bottom-up segment 
agglomeration, and combinations of these two approaches are 
used in order to determine the best segmentation/segment-
model combination.   The segment models that have been 
studied include a bi-variate Poisson-Lognormal model for 
insurance risk modeling [19], and multivariate linear and 
logistic regression models for retail response modeling [20].   
These algorithms have also been used to generate feature 
transformations for other predictive modeling methods [21], 

and they are closely related to model-based clustering 
techniques (e.g., [22]). 

 

B. Representative Performance Analysis 
The potential benefits of the proposed formulation for 

segmentation-based modeling can be examined using the 
following architectural model.  The data grid and compute 
grids are assumed to consist of  1P   and 2P  processors 
respectively, with the corresponding time for 1 floating point 
operation (flop) on each node being denoted by 1α  and  2α  
respectively, and the time for accessing a single data field on 
the data node being denoted by

1β .   Similarly,  the cost of 
invoking a remote method on a compute grid node is denoted 
by w21 γγ + , where  1γ  is the latency for remote method 
invocation,  2γ  is the cost per word for moving data over the 
network, and  w  is the size (in words) of the data parameters 
that are transmitted.  Finally, we assume that the database 
table used for the segmentation-based modeling consists of n  
rows and m   columns, and is perfectly row-partitioned so 
that each data grid partition has 1/ Pn  rows (we ignore the 
small effects when n  is not perfectly divisible by 1P ).    

Using this model, we consider one pass of a multi-pass a 
segmented predictive model evaluation, in which a linear 
regression model with feature selection is computed in each 
segment (e.g., using the algorithms described for evaluating 
the sufficient statistics as described in [20]).  Since several 
potential segmentations can be evaluated in parallel, we 
assume that there are  N  segments, which may be non-
overlapping or overlapping (with 21, PPN >>  in general).  
The sufficient statistics for each potential segment are a pair 
of covariance matrices (training + evaluation) for the data in 
each segment, which can evaluated for all  N  segments in a 
single parallel scan over the data table.  The overall time for 
this aggregation step DT , which can be shown to be given 

by
2

111
2

11 /)5.0( mNPPknmnm ααβ ++ . Here  
Nk <  is an overlap factor which denotes the number of 

segments that each data record on average contributes to, with  
1=k  in the case of non-overlapping segments.  The three 

terms in DT  respectively correspond to the time for reading 
the data from the database, the time for updating the 
covariance matrices locally, and the time for aggregating the 
local covariance matrix contributions for each segment at the 
end of a data scan.  These aggregates are then dispatched to a 
compute node, for which the scheduling time ST   can be 

estimated as 2
2

21 / PNmγγ +  (where we assume that these 
independent scheduling tasks can be performed in parallel 
using a multi-threaded scheduler). On the compute nodes, the 
algorithm used to perform stepwise feature selection proceeds 
by successively adding features to the regression model, based 
on first computing the regression model parameters from the 
training data sufficient statistics, and then examining the 
degree-of-fit of these models using the evaluation data 

sufficient statistics.   The time CT for the parameter 
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computation and model selection step can be estimated as   

2
4

212
1 / PNmα , where only leading order terms for large m  

have been retained.  We note that the usual algorithms for the 
solution of the normal equations by the Choleski factorization 
algorithm are )( 3mO (e.g., as described in [20]),  but  
incorporating the more rigorous feature selection algorithm 
based on the degree-of-fit with the evaluation data as 
proposed above, raises the algorithm complexity to )( 4mO .    
The total time T is thus given by 

.//

/)5.0(

2
4

212
1

2
2

21

2
111

2
11

PNmPNm

mNPPknmnm

TTTT CSD

αγγ

ααβ

+++

++=

++=

. 

We consider some data sets that are representative of retail 
customer applications, with 510=n , 500=m   and take the 
nominal values 15=k , 500=N  for the algorithm 
parameters. For the architectural parameters we set   

sec102 8
21

−×== αα , wordsec/105 6
1

−×=β ,

sec104 2
1

−×=γ  and wordsec/102 5
2 ×=γ . 

 For the case 0,1 21 == PP , when all the computation 
must be performed on the data server itself (this is then  
equivalent to the case (b) described in Figure 1),  the overall 
execution time is T = 7.8 hours (we note that in this case there 
is no scheduling cost as all the computation is performed on 
the data server itself).  For the case, 1,1 21 == PP , the 
execution time increases to 91.8=T  hours (which consists 
of 57.0=DT hours, 11.1=ST  hours and 

23.7=CT hours), which is an overhead of 14% over the 
serial case, although with 80% of the overall time being off-
loaded from the data server.   However, by increasing the 
number of processors on the data and compute grids 
to 128,16 21 == PP , the execution time comes down to 

106.0=T hours (which consists of 041.0=DT hours, 

009.0=ST hours and 057.0=CT hours), and this 
represents a speedup of about 74 over the base case when all 
the computation is performed on the data server itself.  

We have intentionally used modest values for mn,  in the 
analysis given above, and many retail data sets can have 
millions of customer records, and the number of features can 
increase dramatically if interaction terms involving the 
primary features that are incorporated in the segment models.  
For example, quadratic and even higher-order interaction 
terms in the segment regression models in order to have a final 
predictive model with fewer overall segments, but with more 
complicated nonlinear models within each segment).  The 
analysis suggests that an increasing the number of segment 
modeling features makes the use of a separate compute grid 
even more compelling for this application.    

We believe that segmentation-based predictive data 
modeling problems are ideally suited for the proposed grid 
architecture, with significant costs requiring parallelism in the 

data access and sufficient statistics computations on the data 
grid, as well as in the model computation and search on the 
compute grid.  These modeling runs are estimated to require 
several hours of computational time running serially on 
current data mining architectures for typical data sets.    

 

 
Figure 3: Execution time for varying numbers of compute and 
data nodes 

IV. GRID ARCHITECTURE SCHEMATIC 

A. Overall Schematic 
The overall schematic for grid-based data mining is shown 

in Figure 4.  It consists of a parallel or federated database, a 
web service engine for task scheduling and monitoring, and a 
compute grid.  A functional schematic describing the various 
components is shown in Figure 5.     

  
 

 
Figure 4: Grid data mining architecture schematic 

 

B. Detailed Description of Individual Components 
Our description for the data grid layer will refer to the DB2 

family of products [4], although the details are quite generic 
and can be ported to other relational databases as well.  The 
data grid layer implements the SQL/MM interface for data 
mining task specification and submission.  A stored procedure 
performs various control-flow and book-keeping tasks, such 
as for example, issuing parallel queries for sufficient statistics 
collection, invoking the web service scheduler for parallel task 
assignment to the compute grid, aggregating and processing 
the results from the compute grid, managing the control flow 
for model refinement, and exporting the final model.   
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Figure 5: Functional schematic of data mining components 

Many parallel databases provide built-in parallel column 
functions like MAX, MIN, AVG, SUM and other common 
associative-commutative functions, but do not yet provide an 
API for application programmers to implement general-
purpose multi-column parallel aggregation operators [23].  
Nevertheless, these parallel data aggregation operators for 
accumulating the sufficient statistics can be implemented 
using scratchpad user defined functions, which on parallel 
databases leverage the parallelism in the SQL query processor 
(for both INTRA and INTER parallel modes) by using 
independent scratchpads for each partition or thread.  The 
results in the scratchpads are then aggregated at the end of the 
data scan using the shared memory or shared disk regions for 
communication.  

For federated databases, these data aggregation operators 
would be based on the federated data view, but would 
leverage the technologies developed for the underlying 
federated query processor and its cost model in order to 
optimize the trade-offs between function shipping, data 
copying, materialization of intermediate views, and work 
scheduling and synchronization on the components of the 
federated view to compute the sufficient statistics in the most 
efficient way ([24], [25],  [26]).   

The task scheduler, which is implemented as a web service 
for full generality, can be invoked from SQL queries issued 
from the database stored procedure (in the case of DB2, using 
the SOAP messaging capabilities provided by a set of user 
defined functions for invoking remote web services with 
database objects as parameters, as provided in the XML 
extender [27]).   This invocation of the scheduler is 
asynchronous, and the parameters that are passed to the 
scheduler include the task metadata and the relevant task data 
aggregate.  It also includes a runtime estimate for the task, 
parameterized by CPU speed and memory requirements.    In 
the special case when the compute grid is co-located within 
the same administrative domain as the data grid, rather than 
passing the data aggregate as an in-line task parameter, a 
connection reference to this data is instead passed to the 
scheduler.  This connection reference is used by the 
corresponding remote task on the compute grid to retrieve the 
relevant data aggregate, thereby avoiding the small but serial 
overhead of processing a large in-line parameter in the 

invocation of the scheduler.  
The task scheduler, which shields the data layer from the 

details of the compute grid, has modules for automatic 
discovery of compute resources with the relevant compute 
task libraries, built-in scheduling algorithms for load 
balancing, task-to-hardware matching based on the processor 
and memory requirements, polling mechanisms for monitoring 
task processes, and task life-cycle management including 
mechanisms for resubmitting incomplete tasks. The 
parameterized runtime estimates for the tasks are combined 
with the server performance statistics for task matching, load 
balancing and task cycle management (which includes the 
diagnosis of task failures or improper execution on the 
compute grid).   The scheduler can also implement various 
back-end optimizations to reduce task dispatching overheads 
on trusted compute-grid resources.  Our experiments on a 4 
node Linux cluster located on the same LAN as the data 
server, shows an average task scheduling overhead of about 
40 milliseconds through the web-service scheduler, suggesting 
that the granularity of the scheduled tasks must be somewhat 
larger in order for the linear speedup regime to apply on the 
compute grid.  

The compute grid layer contains the code base for high-
level mining services including numerically-robust algorithms 
for parameter estimation and feature selection from the input 
data or from the sufficient statistics of the data where 
applicable.  The compute grid nodes also contain the resource 
discovery and resource monitoring components of the task 
scheduler, which are used for task matching by the scheduler 
as described above.  We are currently experimenting with a 
range of hardware platforms for the compute grid including 
commodity processors and high-performance compute servers 
on a LAN, as well as multi-site remote compute servers.    

V. SUMMARY 
As business applications of data mining become 

widespread, it will be necessary to improve the performance 
and quality of the embedded data mining kernels, as well as 
minimize their impact on other aspects of the data processing 
operational workload. 

The approach to enterprise-scale data-mining described in 
this paper is an evolutionary approach that will meet these 
requirements. It is based on a functional decomposition of the 
data mining kernel to exploit the parallelism on data and 
compute grids with minimal use of explicit parallel 
programming software constructs, and with minimal inter-grid 
communication.  It leverages existing or evolving data mining 
standards such as SQL/MM for job specification and 
submission, and PMML for model specification and export. It 
can provide better scalable performance or an improved data 
mining model quality by using parallelism, when compared to 
existing implementations of database-integrated mining 
kernels.  Finally, the present approach can lead to greater 
flexibility in the deployment of a data mining application, 
leading to better overall workload management on enterprise 
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data servers that support a complex mix of transactional, 
decision support, data management and data mining 
applications.    
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