
RC23363 (W0410-029) October 6, 2004
Computer Science

IBM Research Report

The Role of TPM in Enterprise Security

Reiner Sailer, Leendert Van Doorn, James P. Ward
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Schwerpunkt

The Role of TPM in Enterprise Security
Reiner Sailer, Leendert van Doorn, James P. Ward

Establishing trust in a remote computer
system is an essential building block for
distributed systems. Unfortunately trust
is a hard property to achieve without
appropriate hardware support. In this
article we describe our trusted comput-
ing platform where we extend the
hardware rooted trust guarantees of
TCG technology to the (Linux) operat-
ing system and all its applications and
allow remote parties to verify these
trust guarantees.

Reiner Sailer

Research Staff Member
IBM Research

Secure Systems

E-Mail: [sailer@watson.ibm.com]

Leendert van Doorn

Senior Manager
IBM Research

Secure Systems

E-Mail: [leendert@watson.ibm.com]

James P. Ward

President Trusted
Computing Group

Senior Technical

Staff Member, IBM
Software Group

E-Mail: [jpward@us.ibm.com]

 Introduction
Establishing trust between entities is be-
coming an increasingly important require-
ment in today's highly connected and dis-
tributed Enterprise business environment.
Business critical capabilities such as remote
access, distributed workforce, dynamic out-
sourcing, and business portals all implicitly
depend on mechanisms for verifiably estab-
lishing the authenticity and integrity of the
connected devices, processes, and services.
Emerging business models and architectures
such as GRID, On Demand, and Utility
Computing will further emphasize the need
for determining these trust attributes in a
standardized and interoperable manner.

The Trusted Computing Group (TCG,
[1]) specifications are intended to provide
an open set of security related building
blocks for enhancing the trust associated
with a computing platform. These common
building blocks are developed to be plat-
form and vendor agnostic such that they can
be applied into any device type (i.e. PCs,
servers, mobile phones, embedded devices),
operating system (e.g., Linux, Windows,
UNIX, Solaris), or solution framework
(Web Services, etc). The TCG trust model is
based on establishing a common assurance
root and function definition for these trust
characteristics. The TCG Trusted Platform
Module, or TPM, serves as the starting
point, or root, for this transitive trust model.
The TPM as core root of Trust for meas-
urement, or CRTM, can measure additional
system attributes and then later verifiably
report them as a basis for determining the
overall trustworthiness of a platform. The
TPM must be and is designed to be initially
trusted because it represents the start of the
trust chain. The measure, record, and report
process is cumulatively referred to as at-
testation. The TCG function does not quali-
tatively assess what the information means
in terms of trustworthiness. Rather, infor-
mation reported via the TCG building
blocks can be considered trustworthy. The
manner this information is used to deter-

mine trust is a function of policy outside of
the existing TCG standards.

The TCG standardizes the measurement
and reporting of attributes covering trust es-
tablishment into the boot process of a sys-
tem. However, this does not yield informa-
tion about the trustworthiness of the runtime
environment built on top of it. We solve this
problem by extending the measurement
from the static boot sequence into the dy-
namic runtime of the operating system (OS)
and enabling the attestation of properties of
a system’s runtime.

The remaining of the paper is organized
as follows: in Section 1, we introduce at-
testation based on TPM hardware; in Sec-
tion 2, we present our architecture in detail
and explain how we extend attestation into
the system runtime. Section 3 describes the
major results and shows at an example how
we can detect a compromised system run-
time using attestation. We conclude in Sec-
tion 4 describing future work in this area.

 1 TPM-based
Attestation

The TPM represents a separate trusted co-
processor, whose state cannot be compro-
mised by potentially malicious host system
software. TPM-based attestation represents
a powerful tool for establishing the trust at-
tributes of a system. Attestation based in-
formation about the device hardware, firm-
ware, operating system, and applications
can all be dynamically assessed to deter-
mine if the system should be trusted prior to
granting a privilege (network / resource ac-
cess, service, etc).

Unlike secure boot, which loads only
signed and verified software, the TCG
trusted boot process only takes measure-
ments up to the bootstrap loader and leaves
it up to the remote party to determine the
system's trustworthiness. Thus, when the
system is powered on it transfers control to
an immutable base. This base will measure
the next part of BIOS by computing a
SHA1 secure hash over its contents and

 1

Reiner Sailer, Leendert van Doorn, James P. Ward

protect the result by using the TPM. This
procedure is then applied recursively to the
next portion of code until the OS has been
bootstrapped.

We adjust the role of the TPM by using
it to protect the integrity of the in-kernel
measurement list rather than holding meas-
urements directly. To prove to a remote
party what software stack is loaded, the sys-
tem needs to present the TPM state using
the TCG attestation mechanisms and this
ordered list. The remote party can then de-
termine whether the ordered list has been
manipulated and, once the list is validated,
what kind of trust it associates with the
measurements. We have modified the Linux
kernel and the runtime system to take integ-
rity measurements as soon as executable
content is loaded into the system, before it
is executed [2]. We maintain the ordered list
of measurements inside the Linux kernel.

Unlike existing approaches, such as se-
cure boot or authenticated boot [3], where a
system is instrumented to boot only signed
and verified software, or secure coproces-
sors [4], which offer a closed environment
to run certified and signed software in a
protected environment, our approach is non-
intrusive and does not change the behavior
of the system that is being attested. It can be
used in open environments where a large
spectrum of software runs and changes
regularly.

 2 Mutual Attestation
In this Section, we demonstrate the power
of TPM-based remote attestation in the
process of making informed decisions about
trust for Web services, and help to clarify
how these concepts could be used in an
open environment. Mutual platform attesta-
tion is the process by which peers in a
transaction, with potentially no previous
knowledge of each other, can establish trust
based on the integrity of each other's com-
puting environment – e.g., that a peer is
truly running the service being offered in an
environment that is acceptable.

Prior to the actual transaction, peers ex-
change integrity measurements of each
other's environment – e.g., fingerprints of
all the software running on each system. As
trust decisions are then based on these
measurements, authenticity is a critical fac-
tor. Our architecture uses the Trusted Plat-
form Module (TPM) to protect and assure
the validity of the integrity measurement for
each executable that is loaded into the OS

runtime. Thus, coupled with the integrity
measurements of the boot process from sys-
tem firmware through OS program load
(which also uses TPM), remote parties are
assured the authenticity of the integrity
measurements since system boot and can
make appropriate trust decisions based on
service requirements. This approach is ap-
plicable in a host of other scenarios includ-
ing remote Systems Management and Ser-
vice Level Agreement or Quality of Service
verification on-demand.

Goal: Our goal is to measure what is
useful and necessary for a challenging party
to regenerate the software stack of an at-
tested system securely and to determine
trusted properties of the attested system. We
instrumented the Linux kernel to create and
store such measurements as well as protect
them against compromised systems by us-
ing the TPM hardware. Our approach is
non-intrusive in the sense that it will pre-
vent a system neither from becoming com-
promised nor from manipulating the kernel-
held measurements. However, we do pre-
vent such a system from posing as a non-
compromised system by allowing challeng-
ing parties to independently validate the at-
tested party’s integrity by means of the re-
ceived measurement list.

Assumptions: We assume that the TPM
works correctly and its operation is not ma-
nipulated using physical attacks (which it is
not designed to withstand at this time). We
also assume that the challenging party pos-
sesses a valid certificate to the signature key
used by the TPM of the attested system.

Limitations: As we measure data when
it is loaded, vulnerabilities propagated by
running software – e.g. through buffer-
overflow exploits – will not be represented
in the measurements. However, the known
potential of executables to become com-
promised during run-time is well repre-
sented in the measurements. Challenging
parties can derive the identity of the pro-
gram and its version from the measurement
and relate it to known vulnerabilities, e.g.,
using CERT [10] data bases when deciding
whether to trust this part of the software
stack.

 2.1 Experiment Setup
Figure 1 gives an overview of the process
followed in our experiment. We distinguish
two independent systems: the attested sys-
tem – the system whose software-stack is to
be validated – and the challenging party

system that is going to validate the soft-
ware-stack of the attested system.

The attested system is instrumented to
produce evidence (called measurements, see
Fig. 1, step 1) that allow challenging parties
to re-create its run-time safely. The attested
system contains a TPM security chip that
protects the integrity of the created evidence
even if the attested system should become
compromised later on. In response to the
demand of an authorized challenging party,
the attested system returns its evidence and
also provides related contents of the secu-
rity chip that allows the challenging party to
validate the integrity of the provided evi-
dence (i.e., the measurements).

The challenging system requests from
the attested system the actual measurement
list as well as the integrity value over the
list, which is stored inside the TPM, vali-
dates the integrity of the list (step 2), evalu-
ates the individual measurement, and finally
reconstructs an image of the attested sys-
tem’s software stack (step 3). Based on this
image, the challenging system concludes
about properties of the attested system’s
runtime (step 4). Exchanging the roles of at-
tested and challenging system then imple-
ments mutual attestation.

The following subsections describe the
instrumentation of the attested system to
produce and protect evidence about the
loaded software stack since reboot (2.2), the
establishment of trust into the evidence of a
system (2.3), and the interpretation of evi-
dence to conclude properties of the software
stack of the attested system (2.4).

 2.2 System
Instrumentation

We have instrumented the Linux kernel [2]
of the attested system to produce measure-
ments of post-boot events that affect the
run-time of the system. Our measurements
are taken in a way that allows (remote) par-
ties to securely reconstruct what was actu-
ally loaded into the software stack of a sys-
tem and to determine if this system can be
trusted according to the local security pol-
icy. To establish trust into the instrumented
Linux kernel, preceding boot stages produce
measurements through the TPM hardware,
the BIOS, and the Grub boot loader stages,
each stage in turn gathering and storing in-
formation about the attested system’s next
boot stage up to the running kernel.

As opposed to other approaches, e.g.,
terra [8] measuring whole partition contents

2

The Role of TPM in Enterprise Security

of virtual machines, we aim at representa-
tive measurements of software stack com-
ponents that are rich in semantic value and
allow challenging parties to reconstruct
functional properties of the actual software
stack. Therefore, we instrumented the Linux
kernel running on the attested system to
create such evidence based on which the
software stack can be reconstructed.

What we measure: The goal is to create
representative evidence that can be inter-
preted by a challenging party in order to de-
cide whether loading the represented data
maintains or breaks the trust into the overall
software stack of a system.

We consider the following information
about loading data into the run-time as be-
ing representative evidence:

 Kernel modules – they potentially affect
the measurement architecture in the ker-
nel

 Executables and shared libraries – they
don’t change often and can be related to
functionality as well as known vulner-
abilities

 Configuration files – they don’t change
often once the system is correctly con-
figured. Additionally, configurations can
be decisive for the trustworthiness of the
program consuming and interpreting
them.

 Other important input files that affect
trust into run-time software stack, e.g.,
Bash command files, Java Servlets, and
java libraries.

We don’t consider measuring dynamic input
data such as user input, web requests, and
remote commands because they would not
lead to representative semantic value. Vul-
nerabilities based on such data are better
addressed by operating system access con-
trol mechanisms (e.g., SELinux [11]),
which are represented in the kernel meas-
urement and available to attesting parties
for trust establishment.

How we measure: A measurement is
implemented as the computation of the
160bit result of a SHA1 hash function (fin-
gerprint) applied to the file that contains
data or executables loaded into the run-
time. The slightest difference in a data file
will generate a distinguished fingerprint
and, hence, variations in programs (e.g., due
to viruses or Trojan horses) are easily de-
tected by differing measurement values.

In order to prevent attested systems from
unnoticed cheating, we have integrated
functions of the TPM into the measurement
architecture:

 We use the TPM to maintain an integrity
value (stored in its protected hardware)
over the current measurement list that is
kept in the kernel. This protects the
measurement list from being manipu-
lated unnoticedly even if the system and
kernel become corrupted.

 We create measurements of files before
they are loaded and potentially affect the
system. Thus, once loaded data can cor-
rupt the measurement list, it is too late to
cover its own traces from the TPM.

Our TPM (Version 1.1) offers 16 platform
configuration registers (PCR) that allow ex-
tending 160 bit numbers (length of a SHA1
value) into them. These PCR are reset to 0
whenever the system is reset (e.g., reboot).
The first 8 PCRs (PCR0 – PCR7) are used
for attesting the booting steps, the remain-
ing 8 PCRs (PCR8 – PCR15) are allocated
for use by the booted system [9]. We use a
configurable PCR number greater than 7
(e.g., 10) to maintain an integrity value over
the current measurement list after system
boot. If a new measurement is added to the
measurement list, we also write its 160bit
measurement value into TPM PCR 10. The
TPM computes the new register content by
building a SHA1 over the current content
concatenated with the new 160bit number
written into the PCR. The cryptographic
properties of SHA1 (being collision-free)
guarantee protection against the adaptation
of a TPM PCR to match a manipulated
measurement list by compromised systems
later on.

We refer the interested reader to [2] for
further details of the integrity measurement

architecture and its implementation. Figure
2 shows a partial snapshot of a measure-
ment list for a Redhat Linux system includ-
ing executables, shared libraries, kernel
modules, bash command files (e.g., server
initialization scripts) and bash source files
(e.g., bash configuration files). We include
some additional information in our kernel-
held measurement list, such as the file name
of the measured file. Our Web-based project
description [5] includes a complete meas-
urement list including measurements col-
lected during system boot.

 # SHA1(160bit) File Type

000:D6DC…D3DB n/a [boot aggregate]
001:84AB…DA4F init [exec]
002:9ECF…BE3D ld-2.3.2.so [library]
003:3365…2342 libc-2.3.2.so [library]
004:A4DC…C12B bash [exec]
…
027:2AC8…980D clock [bash-src]
028:C0F7…9A3D hwclock [exec]
…
070:01B3…9A1E rc [bash-cmd]
071:CEBA…1AA4 runlevel [exec]
072:2998…8ED4 egrep [bash-cmd]
073:6846…B72D kudzu [bash-cmd]
…
080:147D…8168 parport [module]
081:F940…0115 parport_pc [module]
…
244:D312…DA7C rc.local [bash-cmd]
245:BB2C…AAB3 mingetty [exec]

Figure 2: Measurement List Example

The measurement list is always initialized
with the boot aggregate representing the
measurements of the boot stages up to and
including the running kernel. The actual
measurements – aggregated into the boot
aggregate – are stored in the BIOS as the
kernel is not yet running. They are protected

Analyze
(2)

Client Image (3)

Programs
Config
Files

Boot
Process

SHA1(Boot Loader)
SHA1(Kernel)
SHA1(Modules)
SHA1(Programs)
SHA1(Libraries)
SHA1(Configuration)
SHA1(Data)

…

Measure
(1)

Signed TPM Aggregate

Client System

external
information

Static
kernel

Kernel
Module

Quote

Client Properties (4)

a) Attested System b) Challenging Party

Figure 1: Attestation Architecture Overview

DB of Known
Fingerprints

TPM

 3

Reiner Sailer, Leendert van Doorn, James P. Ward

by specific PCRs throughout boot-time [9],
aggregated and included into the measure-
ment list once the kernel is running, and can
thus be verified later throughout the attesta-
tion. Subsequently, the init program is
shown, which controls the rest of the system
boot. Every program or data file is meas-
ured and its evidence is added to the meas-
urement list if it wasn’t recorded before.

The measurement list of a Redhat Linux
system running an Apache web server and
Jakarta Tomcat Servlet machine or X win-
dows, and the Gnome desktop system col-
lects about 400-600 measurements.

 2.3 Measurement
Integrity Validation

The initial step of the trust establishment
process consists in the challenging party re-
trieving from the attested system the current
measurement list and the signed PCRs nec-
essary to validate the integrity of this list.
For this purpose, the challenging party
sends a random number RN to the attested
system.

The attested system first validates the au-
thorization of the challenger. Thus, the at-
testing system controls the release of its po-
tentially sensitive state-information. If the
challenging system is authorized, then the
attested system returns its current list of
measurements (in the order they where col-
lected) and a quote from its TPM including
the random number RN. The TPM will
quote its PCR registers by signing them
with a 2048bit RSA signature key that was
created inside the TPM and to which the
public key was securely certified as belong-
ing to this TPM [1]. This signature also in-
cludes RN and is done inside the TPM
hardware.

 The validation of the measurement list
by the challenging party consists of the fol-
lowing steps:

 Verify the signature of the TPM quote.
This determines i) whether the quoted
PCR values are tampered with or not,
and ii) whether the quoting TPM is actu-
ally the one on the attested system.

 Ensure that the signed random number
equals RN. This ensures that the quote is
not a replay attack by a compromised
system, as long as the chosen RN is un-
predictable by the attested system.

 Calculate the boot aggregate by comput-
ing SHA1(PCR0 || … || PCR7). Compare
it to the first measurement of the meas-
urement list, which is supposed to be ex-

actly this boot aggregate. If they don’t
match, the attestation fails. This step
links the boot measurements to the run-
time measurements.

 Recalculate virtually the PCR value for
the run-time measurements in the meas-
urement list. To do so, start with
virtPCR=0 and with the first (oldest)
measurement M0 of the list (here: boot-
aggregate). Calculate virtPCR :=
SHA1(virtPCR || M0); continue with the
next measurement until the measurement
list is consumed. The resulting value in
virtPCR must now match the value of
the signed TPM PCR that was used by
the attested system to protect the integ-
rity of the measurement list (in our case
PCR10). If the values don’t match, then
the measurement list must be assumed
tampered and the attestation fails. This
can happen if the attested system is
compromised and tries to cheat or if the
measurement instrumentation of the at-
tested system has recognized suspicious
system behavior and invalidated the
measurement PCR pessimistically (fail-
safe measurement-bypass protection).

Now that trust into the correctness of the
measurement list is established, every meas-
urement list entry must be validated to build
trust into the software-stack of the attested
system.

 2.4 Software Stack
Measurement Analysis

In order to establish a trust chain from the
TPM hardware root-of-trust into the current
run-time of a running system, we distin-
guish two parts of the chain. The first chain
extends from the TPM over the boot stages
to the running Linux kernel. The second
chain is maintained by the running kernel
and extends over the uptime of the attested
system starting with the first file loaded
(here: init). The two chains are securely
linked by the running kernel extending an
aggregate over the first part of the chain as
first measurement into the PCR that repre-
sents the aggregate of the second chain.

To establish the trust chain from the
TPM hardware to the running Linux kernel,
we need to keep track of all steps during the
system boot in order to ensure that the next
step will continue to measure the succeed-
ing step correctly. To jumpstart this process,
initial trust is necessary and placed into the
correct implementation and embedding of
the TPM hardware into the system platform.

Then, trust into the measurement represent-
ing the boot BIOS is necessary, including its
property to measure the succeeding boot
steps correctly (Master boot record). This
process continues to the boot loader (here:
Grub) and finally the kernel being measured
before it becomes active. All these meas-
urements are protected by Platform Con-
figuration Registers PCR0 – PCR7 as stan-
dardized for PC architectures in [9]. Validat-
ing the pre-kernel boot process means trust-
ing the code that was executed throughout
these stages based on the collected SHA1
fingerprints and resulting aggregates in
these PCRs.

Using this trust model, an attesting party
can establish trust into the kernel and its
(measurement) properties through the com-
pleteness and integrity of the measurement
chain from the root-of-trust (TPM) up to the
kernel. If any of the intermediate finger-
prints is not trusted, then the kernel cannot
be trusted because any measurements fol-
lowing the distrusted fingerprint cannot be
guaranteed to represent the following
loaded stage correctly. A measurement can
therefore only be trusted if its represented
code is known to correctly measure the ac-
tually loaded code taking over the next boot
stage and to protect the measurement in the
TPM PCR as specified in [9]. Unknown
fingerprints or fingerprints of known mali-
cious code break this trust chain. Only con-
figuration changes of the boot sequence and
rebooting the system (resetting the TPM
PCRs) can re-establish trust into a distrusted
measurement chain.

The aforementioned boot measurements
are pretty static (regarding order and finger-
print value). Thus, we can simply check the
boot PCRs 0–7 against a set of permitted
values. If they match, the first part of the
chain is trusted. If not, the boot sequence is
not trusted and the attested system fails the
test based on the challenger’s policy.

We focus in the following on attesting to
the much more dynamic software stack es-
tablished by the running system kernel to
extend the established chain of trust into the
run-time of the system. Here, the changing
order of measurements and the dynamic
program versions will lead to a very large
range of possible PCR values even for simi-
lar systems. Therefore, rather than attesting
to a predetermined aggregated PCR value,
every single measurement is validated and
evaluated as trusted or distrusted according
to the policy of the challenging party. The
overall attested client’s run-time image is

4

The Role of TPM in Enterprise Security

then build bottom up using these measure-
ments and known properties of the repre-
sented part of the software stack (e.g., pro-
gram or configuration file).

We trust a measurement if and only if the
following conditions hold:

 We know what it represents, e.g., execu-
table functionality or configuration file
and how it affects the run-time of the at-
tested system.

 The represented data loaded into the sys-
tem run-time does not compromise our
measurement instrumentation in a way
that prevents future correct and complete
measurements. If, for example, we ex-
pect all executed bash script files to be
measured, then we won’t trust a meas-
urement representing a loaded bash shell
that does not induce such measurements.
Another example is a loaded kernel
module that compromises the kernel in-
strumentation and prevents complete
measurements in the future. Even such a
kernel module – compromising and tak-
ing over the whole system software stack
– cannot eliminate its own measurement
without invalidating the integrity value
kept in the TPM PCR.

 The measured data is assumed to work
correctly after loading it into the run-
time even in the assumed presence of at-
tackers. This means that potentially
known vulnerabilities in the represented
data (e.g., local or remote exploits) are
considered acceptable by the policy.

The above evaluation is done by the attest-
ing party only once (unless policy changes)
for each program or configuration file and
stored together with its SHA1 value in a so-
called known-fingerprints data base. Thus,
when evaluating a measurement, the chal-
lenging party looks up the respective 160bit
fingerprint in its policy data base and ex-
tracts directly the information about the
trustworthiness of this fingerprint under the
active policy. More complex analysis could
also relate multiple measurements to each
other, e.g. to ensure that interdependent
programs are interoperable.

Any program or configuration, whose
fingerprint is unknown (potentially mali-
cious), could corrupt the system and prevent
future correct measurements. Thus, evalua-
tion can stop here because later measure-
ments and the protection thereof cannot be
trusted to represent the real software-stack
of the attested system. An example would
be a malicious kernel module corrupting the
kernel by intercepting measurement re-

quests and hiding malicious software being
loaded into the system. Malicious compo-
nents could then be loaded without meas-
urements being taken and thus without evi-
dence being produced.

In conclusion, the software stack valida-
tion is successful only if all individual
measurements taken on the attested system
are trusted by the challenging system.

Future work includes partitioning of the
measurement space and allowing for finer-
grained evaluation of measurement lists.
This could mean to allow unknown soft-
ware to be loaded on the attested system
(represented by measurements unknown to
the challenging party) as long as its impact
is controlled and does not affect the security
of other parts of the run-time that might be
of interest to the challenging party. Trust
into such strong isolation between system
parts can be justified by secure virtualiza-
tion or by mandatory security enforcement
in the kernel (e.g., SELinux [11]).

 3. Results
We implemented mutual attestation on two
Redhat Linux systems running our instru-
mented Linux 2.6.5-bk2-lsmtcg kernel [5]
and open-source TPM drivers [6,7]. The at-
testation service is implemented as a Web
service running in a Jakarta Tomcat Con-
tainer. The database of known fingerprints
is compiled for each system independently
by measuring existing executables and li-
braries and attaching trusted or distrusted
labels and comments. In our case, the data
base had about 20 000 entries, 5 of which
where fingerprints of known Linux Rootkit
exploits [12]. We have supplied both ma-
chines with valid certificates of TPM keys
that were created on the peer system for
validating the signed TPM PCRs.

We use a Java GUI (c.f. Figure 3) to ini-
tiate and control the mutual attestation of
the two systems named Tcg and Eserver2.
Tcg initiates the mutual attestation by call-
ing the attestation Web service on Eserver2,
providing a random number RN1.

Eserver2 answers with the current meas-
urement list and the signed TPM PCR val-
ues including RN1. Tcg validates the signa-
ture over the TPM PCRs, then validates the
included random number (nonce) and recal-
culates the assumed PCR aggregate using
the measurement list. If the computed ag-
gregate matches the value of the signed
TPM PCR10, then the measurement list is
successfully validated. Afterwards, Tcg runs

through the measurement list, looking up
the known fingerprint database for each
measurement value in turn.

Figure 3: Demo GUI showing successful
mutual attestation

If at any time, it does not find the measure-
ment value or if the data base tags the value
as distrusted, the validation fails. The at-
testation succeeds if all measurements are
found and trusted. Following this attestation
is the reverse attestation of Tcg against
Eserver2, which proceeds symmetrically.
Adapting the database of known finger-
prints, we can as well validate the meas-
urement list against service level agreement
policies.

 3.1 Detecting
Compromised Systems

We have successfully deployed our proto-
type for detecting Rootkit-exploits [12].

Figure 4: Demo GUI showing exploit

Figure 4 shows the main GUI window for
the case that a distrusted measurement is
found in the measurement list.

Figure 5 shows the details of the meas-
urement that was responsible for failing the
attestation: a Syslogd (audit program) that is
part of a Rootkit exploit; it replaces the
original Syslogd program and contains hid-
den code that covers traces of attackers. It is
safely distinguished from the non-
compromised Syslogd by its differing
SHA1 hash value. Along with this compro-
mised root kit program, there are usually
other programs installed that include hidden

 5

Reiner Sailer, Leendert van Doorn, James P. Ward

functionality and allow attackers to bypass
normal system access control.

Figure 5: Measurement indicating exploit

Although those specific programs are not
shown in the figure, they are detected as
well.

 3.2 Overhead
The instrumentation and measurement
overhead for creating and maintaining the
measurement list on the attested system is
negligible. A new measurement, which oc-
curs mostly throughout the booting of the
system, incurs overhead for computing the
SHA1 hash value over the file to be loaded
and additionally about 5ms overhead for ex-
tending the new measurement into the TPM
PCR. We measured a throughput of about
80 Megabyte/second for computing the
SHA1 hash value in the Linux kernel. Re-
measuring files that were measured before
is very efficient because we use dirty-
flagging and caching mechanisms that skip
computing the SHA1 value for files that
cannot have changed since the last time
they were measured. As a result, re-loading
a file that was already measured before in-
curs less than 1 microsecond overhead.

We experienced a latency of about 1
second for a single unidirectional attestation
and about 2-3 seconds for mutual attestation
via the non-optimized Demonstration GUI.
This includes the 2048bit TPM RSA signa-
tures of the PCRs, the communication of the
Web services exchanging the measure-
ments, as well as validating the measure-
ment list and comparing the measurement
list entries against the known fingerprint da-
tabase. In conclusion, the overhead intro-
duced by our technique is negligible for
most application scenarios.

 4. Outlook
The guiding principles for the system de-
scribed in this article were low-overhead

and the separation of measurements and
verification. The latter was important be-
cause we did not want to limit the remote
party in what programs it can execute.

The system presented here is an essential
first step in establishing a trusted platform.
However, it dose not consider the following
areas, which we are addressing in our future
work:

 Scalability. The list of individual finger-
prints of programs, libraries and scripts
do not scale very well. In an enterprise
setting this is less of an issue, typically
only few software configurations exists
and patches are applied centrally so it is
easier to maintain an enterprise wide da-
tabase of trusted programs.

 Trust. Trust is in the eye of the beholder.
While each recipient of attestation
statements could derive its own trust
level, it would probably delegate this to
trusted-third-parties and make the deci-
sion for it based on, for example, a com-
pany policy. On a world-wide scale this
is analogous to a PKI infrastructure
which has its own set of challenges.

 Privacy. The individual measurements
give potential attackers a wealth of in-
formation about the system at hand.
Clearly, this is undesirable.

 Isolated execution. The TPM, while an
excellent trust anchor, is passive. For
many applications, active trusted com-
ponents such as compliance checkers or
monitoring agents are needed. Trust into
such components can only be established
through strong isolation.

 Conclusion
We have shown one example of how the
TPM security chip can be used to establish
trust into previously unknown systems. In
addition to the here discussed role as Root
of Trust for Reporting, the TPM also im-
plements functions that make it suitable as a
Root of Trust for Storage, supporting the lo-
cal system to protect storage and to imple-
ment its own security mechanisms based on
trusted hardware functions.

TPM hardware –implementing open in-
terface specifications– has the potential
to become the foundation for many trust-
establishment processes needed in vital
emerging and established areas, such as
On-Demand environments, Autonomic
Computing, and Web Services. A crucial
role herein plays the TPM’s protection

against the system software, which
makes it suitable as a root-of-trust.

 Acknowledgments
The authors wish to thank Emily Ratliff and
Kylene Hall and their colleagues from the
IBM Linux Technology Center for their
support, Seiji Munetoh and his colleagues
from the IBM Tokyo Research Lab for their
boot-loader enhancements, and our col-
leagues Trent Jaeger, Xiaolan Zhang,
Ronald Perez, Anca Sailer, and Steve Bade
for their useful comments.

 Literature
[1] Trusted Computing Group: Trusted Plat-

form Module Main Specification Part 1:
Design Principles, Part 2: TPM Struc-
tures, Part 3: Commands. October 2003,
Version 1.2, Revision 62,
https://www.trustedcomputinggroup.org.

 [2] R. Sailer, X. Zhang, T. Jaeger, L. Van
Doorn: Design and Implementation of a
TCG-based Integrity Measurement Archi-
tecture, 13th Usenix Security Sympo-
sium, California, August 2004.

[3] W. A. Arbaugh, D. J. Farber, J. M. Smith:
A Secure and Reliable Bootstrap Archi-
tecture, in IEEE Computer Society Con-
ference on Security and Privacy, 1997.

[4] J. Dyer., M. Lindemann., R. Perez, R.
Sailer, S. W. Smith, L. van Doorn, S.
Weingart: The IBM Secure Coprocessor:
Overview and Retrospective, IEEE Com-
puter, October 2001.

[5] IBM Watson Research – Secure Systems
Department: tcgLinux – TPM-based
Linux Run-time Attestation, http://www.
research.ibm.com/ secure_systems
_department/projects/tcglinux.

 [6] David Safford, Jeff Kravitz and Leendert
van Doorn: Take Control of TCPA, Linux
Journal No. 112, August 2003.

[7] IBM Watson Research – Global Security
Analysis Lab: TCPA Resources,
http://www.research.ibm.com/gsal/tcpa.

 [8] T. Garfinkel, B. Pfaff, J. Chow, M.
Rosenblum, D. Boneh: Terra: A Virtual
Machine-Based Platform for Trusted
Computing, Proc. 9th ACM Symposium
on Operating System Principles, 2003.

[9] TCG PC Specific Implementation Speci-
fication, Version 1.1, August 2003.

[10] CERT Coordination Center,
http://www.cert.org/.

[11] National Security Agency. Security-
Enhanced Linux (SELinux).
http://www.nsa.gov/selinux, 2001.

[12] John Levine, Brian Culver, Henry Owen:
A Methodology of Detecting New Binary
Rootkit Exploits. Proceedings IEEE
SouthEastCon 2003, April 2003.

6

