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Schwerpunkt 

The Role of TPM in Enterprise Security 
Reiner Sailer, Leendert van Doorn, James P. Ward 

Establishing trust in a remote computer 
system is an essential building block for 
distributed systems. Unfortunately trust 
is a hard property to achieve without 
appropriate hardware support. In this 
article we describe our trusted comput-
ing platform where we extend the 
hardware rooted trust guarantees of 
TCG technology to the (Linux) operat-
ing system and all its applications and 
allow remote parties to verify these 
trust guarantees.  
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 Introduction 
Establishing trust between entities is be-
coming an increasingly important require-
ment in today's highly connected and dis-
tributed Enterprise business environment. 
Business critical capabilities such as remote 
access, distributed workforce, dynamic out-
sourcing, and business portals all implicitly 
depend on mechanisms for verifiably estab-
lishing the authenticity and integrity of the 
connected devices, processes, and services. 
Emerging business models and architectures 
such as GRID, On Demand, and Utility 
Computing will further emphasize the need 
for determining these trust attributes in a 
standardized and interoperable manner.  

The Trusted Computing Group (TCG, 
[1]) specifications are intended to provide 
an open set of security related building 
blocks for enhancing the trust associated 
with a computing platform. These common 
building blocks are developed to be plat-
form and vendor agnostic such that they can 
be applied into any device type (i.e. PCs, 
servers, mobile phones, embedded devices), 
operating system (e.g., Linux, Windows, 
UNIX, Solaris), or solution framework 
(Web Services, etc). The TCG trust model is 
based on establishing a common assurance 
root and function definition for these trust 
characteristics. The TCG Trusted Platform 
Module, or TPM, serves as the starting 
point, or root, for this transitive trust model. 
The TPM as core root of Trust for meas-
urement, or CRTM, can measure additional 
system attributes and then later verifiably 
report them as a basis for determining the 
overall trustworthiness of a platform. The 
TPM must be and is designed to be initially 
trusted because it represents the start of the 
trust chain. The measure, record, and report 
process is cumulatively referred to as at-
testation. The TCG function does not quali-
tatively assess what the information means 
in terms of trustworthiness. Rather, infor-
mation reported via the TCG building 
blocks can be considered trustworthy. The 
manner this information is used to deter-

mine trust is a function of policy outside of 
the existing TCG standards. 

The TCG standardizes the measurement 
and reporting of attributes covering trust es-
tablishment into the boot process of a sys-
tem. However, this does not yield informa-
tion about the trustworthiness of the runtime 
environment built on top of it. We solve this 
problem by extending the measurement 
from the static boot sequence into the dy-
namic runtime of the operating system (OS) 
and enabling the attestation of properties of 
a system’s runtime. 

The remaining of the paper is organized 
as follows: in Section 1, we introduce at-
testation based on TPM hardware; in Sec-
tion 2, we present our architecture in detail 
and explain how we extend attestation into 
the system runtime. Section 3 describes the 
major results and shows at an example how 
we can detect a compromised system run-
time using attestation. We conclude in Sec-
tion 4 describing future work in this area. 

 1 TPM-based 
Attestation 

The TPM represents a separate trusted co-
processor, whose state cannot be compro-
mised by potentially malicious host system 
software. TPM-based attestation represents 
a powerful tool for establishing the trust at-
tributes of a system. Attestation based in-
formation about the device hardware, firm-
ware, operating system, and applications 
can all be dynamically assessed to deter-
mine if the system should be trusted prior to 
granting a privilege (network / resource ac-
cess, service, etc).  

Unlike secure boot, which loads only 
signed and verified software, the TCG 
trusted boot process only takes measure-
ments up to the bootstrap loader and leaves 
it up to the remote party to determine the 
system's trustworthiness. Thus, when the 
system is powered on it transfers control to 
an immutable base. This base will measure 
the next part of BIOS by computing a 
SHA1 secure hash over its contents and 
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protect the result by using the TPM. This 
procedure is then applied recursively to the 
next portion of code until the OS has been 
bootstrapped. 

We adjust the role of the TPM by using 
it to protect the integrity of the in-kernel 
measurement list rather than holding meas-
urements directly. To prove to a remote 
party what software stack is loaded, the sys-
tem needs to present the TPM state using 
the TCG attestation mechanisms and this 
ordered list. The remote party can then de-
termine whether the ordered list has been 
manipulated and, once the list is validated, 
what kind of trust it associates with the 
measurements. We have modified the Linux 
kernel and the runtime system to take integ-
rity measurements as soon as executable 
content is loaded into the system, before it 
is executed [2]. We maintain the ordered list 
of measurements inside the Linux kernel. 

Unlike existing approaches, such as se-
cure boot or authenticated boot [3], where a 
system is instrumented to boot only signed 
and verified software, or secure coproces-
sors [4], which offer a closed environment 
to run certified and signed software in a 
protected environment, our approach is non-
intrusive and does not change the behavior 
of the system that is being attested. It can be 
used in open environments where a large 
spectrum of software runs and changes 
regularly. 

 2 Mutual Attestation 
In this Section, we demonstrate the power 
of TPM-based remote attestation in the 
process of making informed decisions about 
trust for Web services, and help to clarify 
how these concepts could be used in an 
open environment. Mutual platform attesta-
tion is the process by which peers in a 
transaction, with potentially no previous 
knowledge of each other, can establish trust 
based on the integrity of each other's com-
puting environment – e.g., that a peer is 
truly running the service being offered in an 
environment that is acceptable.  

Prior to the actual transaction, peers ex-
change integrity measurements of each 
other's environment – e.g., fingerprints of 
all the software running on each system. As 
trust decisions are then based on these 
measurements, authenticity is a critical fac-
tor. Our architecture uses the Trusted Plat-
form Module (TPM) to protect and assure 
the validity of the integrity measurement for 
each executable that is loaded into the OS 

runtime. Thus, coupled with the integrity 
measurements of the boot process from sys-
tem firmware through OS program load 
(which also uses TPM), remote parties are 
assured the authenticity of the integrity 
measurements since system boot and can 
make appropriate trust decisions based on 
service requirements. This approach is ap-
plicable in a host of other scenarios includ-
ing remote Systems Management and Ser-
vice Level Agreement or Quality of Service 
verification on-demand. 

Goal: Our goal is to measure what is 
useful and necessary for a challenging party 
to regenerate the software stack of an at-
tested system securely and to determine 
trusted properties of the attested system. We 
instrumented the Linux kernel to create and 
store such measurements as well as protect 
them against compromised systems by us-
ing the TPM hardware. Our approach is 
non-intrusive in the sense that it will pre-
vent a system neither from becoming com-
promised nor from manipulating the kernel-
held measurements. However, we do pre-
vent such a system from posing as a non-
compromised system by allowing challeng-
ing parties to independently validate the at-
tested party’s integrity by means of the re-
ceived measurement list. 

Assumptions: We assume that the TPM 
works correctly and its operation is not ma-
nipulated using physical attacks (which it is 
not designed to withstand at this time). We 
also assume that the challenging party pos-
sesses a valid certificate to the signature key 
used by the TPM of the attested system. 

Limitations: As we measure data when 
it is loaded, vulnerabilities propagated by 
running software – e.g. through buffer-
overflow exploits – will not be represented 
in the measurements. However, the known 
potential of executables to become com-
promised during run-time is well repre-
sented in the measurements. Challenging 
parties can derive the identity of the pro-
gram and its version from the measurement 
and relate it to known vulnerabilities, e.g., 
using CERT [10] data bases when deciding 
whether to trust this part of the software 
stack. 

 2.1 Experiment Setup 
Figure 1 gives an overview of the process 
followed in our experiment. We distinguish 
two independent systems: the attested sys-
tem – the system whose software-stack is to 
be validated – and the challenging party 

system that is going to validate the soft-
ware-stack of the attested system. 

The attested system is instrumented to 
produce evidence (called measurements, see 
Fig. 1, step 1) that allow challenging parties 
to re-create its run-time safely. The attested 
system contains a TPM security chip that 
protects the integrity of the created evidence 
even if the attested system should become 
compromised later on. In response to the 
demand of an authorized challenging party, 
the attested system returns its evidence and 
also provides related contents of the secu-
rity chip that allows the challenging party to 
validate the integrity of the provided evi-
dence (i.e., the measurements). 

The challenging system requests from 
the attested system the actual measurement 
list as well as the integrity value over the 
list, which is stored inside the TPM, vali-
dates the integrity of the list (step 2), evalu-
ates the individual measurement, and finally 
reconstructs an image of the attested sys-
tem’s software stack (step 3). Based on this 
image, the challenging system concludes 
about properties of the attested system’s 
runtime (step 4). Exchanging the roles of at-
tested and challenging system then imple-
ments mutual attestation. 

The following subsections describe the 
instrumentation of the attested system to 
produce and protect evidence about the 
loaded software stack since reboot (2.2), the 
establishment of trust into the evidence of a 
system (2.3), and the interpretation of evi-
dence to conclude properties of the software 
stack of the attested system (2.4). 

 2.2 System 
Instrumentation 

We have instrumented the Linux kernel [2] 
of the attested system to produce measure-
ments of post-boot events that affect the 
run-time of the system. Our measurements 
are taken in a way that allows (remote) par-
ties to securely reconstruct what was actu-
ally loaded into the software stack of a sys-
tem and to determine if this system can be 
trusted according to the local security pol-
icy. To establish trust into the instrumented 
Linux kernel, preceding boot stages produce 
measurements through the TPM hardware, 
the BIOS, and the Grub boot loader stages, 
each stage in turn gathering and storing in-
formation about the attested system’s next 
boot stage up to the running kernel. 

As opposed to other approaches, e.g., 
terra [8] measuring whole partition contents 
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of virtual machines, we aim at representa-
tive measurements of software stack com-
ponents that are rich in semantic value and 
allow challenging parties to reconstruct 
functional properties of the actual software 
stack. Therefore, we instrumented the Linux 
kernel running on the attested system to 
create such evidence based on which the 
software stack can be reconstructed.  

What we measure: The goal is to create 
representative evidence that can be inter-
preted by a challenging party in order to de-
cide whether loading the represented data 
maintains or breaks the trust into the overall 
software stack of a system. 

We consider the following information 
about loading data into the run-time as be-
ing representative evidence: 

 Kernel modules – they potentially affect 
the measurement architecture in the ker-
nel 

 Executables and shared libraries – they 
don’t change often and can be related to 
functionality as well as known vulner-
abilities 

 Configuration files – they don’t change 
often once the system is correctly con-
figured. Additionally, configurations can 
be decisive for the trustworthiness of the 
program consuming and interpreting 
them. 

 Other important input files that affect 
trust into run-time software stack, e.g., 
Bash command files, Java Servlets, and 
java libraries. 

We don’t consider measuring dynamic input 
data such as user input, web requests, and 
remote commands because they would not 
lead to representative semantic value. Vul-
nerabilities based on such data are better 
addressed by operating system access con-
trol mechanisms (e.g., SELinux [11]), 
which are represented in the kernel meas-
urement and available to attesting parties 
for trust establishment. 

How we measure: A measurement is 
implemented as the computation of the 
160bit result of a SHA1 hash function (fin-
gerprint) applied to the file that contains 
data or executables loaded into the run-
time. The slightest difference in a data file 
will generate a distinguished fingerprint 
and, hence, variations in programs (e.g., due 
to viruses or Trojan horses) are easily de-
tected by differing measurement values. 

In order to prevent attested systems from 
unnoticed cheating, we have integrated 
functions of the TPM into the measurement 
architecture: 

 We use the TPM to maintain an integrity 
value (stored in its protected hardware) 
over the current measurement list that is 
kept in the kernel. This protects the 
measurement list from being manipu-
lated unnoticedly even if the system and 
kernel become corrupted. 

 We create measurements of files before 
they are loaded and potentially affect the 
system. Thus, once loaded data can cor-
rupt the measurement list, it is too late to 
cover its own traces from the TPM. 

Our TPM (Version 1.1) offers 16 platform 
configuration registers (PCR) that allow ex-
tending 160 bit numbers (length of a SHA1 
value) into them. These PCR are reset to 0 
whenever the system is reset (e.g., reboot). 
The first 8 PCRs (PCR0 – PCR7) are used 
for attesting the booting steps, the remain-
ing 8 PCRs (PCR8 – PCR15) are allocated 
for use by the booted system [9]. We use a 
configurable PCR number greater than 7 
(e.g., 10) to maintain an integrity value over 
the current measurement list after system 
boot. If a new measurement is added to the 
measurement list, we also write its 160bit 
measurement value into TPM PCR 10. The 
TPM computes the new register content by 
building a SHA1 over the current content 
concatenated with the new 160bit number 
written into the PCR. The cryptographic 
properties of SHA1 (being collision-free) 
guarantee protection against the adaptation 
of a TPM PCR to match a manipulated 
measurement list by compromised systems 
later on. 

We refer the interested reader to [2] for 
further details of the integrity measurement 

architecture and its implementation. Figure 
2 shows a partial snapshot of a measure-
ment list for a Redhat Linux system includ-
ing executables, shared libraries, kernel 
modules, bash command files (e.g., server 
initialization scripts) and bash source files 
(e.g., bash configuration files). We include 
some additional information in our kernel-
held measurement list, such as the file name 
of the measured file. Our Web-based project 
description [5] includes a complete meas-
urement list including measurements col-
lected during system boot. 

 

 # SHA1(160bit)  File        Type 

 

000:D6DC…D3DB n/a     [boot aggregate]
001:84AB…DA4F init          [exec] 
002:9ECF…BE3D ld-2.3.2.so   [library] 
003:3365…2342 libc-2.3.2.so [library] 
004:A4DC…C12B bash          [exec] 
… 
027:2AC8…980D clock         [bash-src]
028:C0F7…9A3D hwclock       [exec] 
… 
070:01B3…9A1E rc            [bash-cmd]
071:CEBA…1AA4 runlevel      [exec] 
072:2998…8ED4 egrep         [bash-cmd]
073:6846…B72D kudzu         [bash-cmd]
… 
080:147D…8168 parport       [module] 
081:F940…0115 parport_pc    [module] 
… 
244:D312…DA7C rc.local      [bash-cmd]
245:BB2C…AAB3 mingetty      [exec] 

Figure 2: Measurement List Example 
 
The measurement list is always initialized 
with the boot aggregate representing the 
measurements of the boot stages up to and 
including the running kernel. The actual 
measurements – aggregated into the boot 
aggregate – are stored in the BIOS as the 
kernel is not yet running. They are protected 
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by specific PCRs throughout boot-time [9], 
aggregated and included into the measure-
ment list once the kernel is running, and can 
thus be verified later throughout the attesta-
tion. Subsequently, the init program is 
shown, which controls the rest of the system 
boot. Every program or data file is meas-
ured and its evidence is added to the meas-
urement list if it wasn’t recorded before. 

The measurement list of a Redhat Linux 
system running an Apache web server and 
Jakarta Tomcat Servlet machine or X win-
dows, and the Gnome desktop system col-
lects about 400-600 measurements. 

 2.3 Measurement 
Integrity Validation 

The initial step of the trust establishment 
process consists in the challenging party re-
trieving from the attested system the current 
measurement list and the signed PCRs nec-
essary to validate the integrity of this list. 
For this purpose, the challenging party 
sends a random number RN to the attested 
system.  

The attested system first validates the au-
thorization of the challenger. Thus, the at-
testing system controls the release of its po-
tentially sensitive state-information. If the 
challenging system is authorized, then the 
attested system returns its current list of 
measurements (in the order they where col-
lected) and a quote from its TPM including 
the random number RN. The TPM will 
quote its PCR registers by signing them 
with a 2048bit RSA signature key that was 
created inside the TPM and to which the 
public key was securely certified as belong-
ing to this TPM [1]. This signature also in-
cludes RN and is done inside the TPM 
hardware. 

 The validation of the measurement list 
by the challenging party consists of the fol-
lowing steps: 

 Verify the signature of the TPM quote. 
This determines i) whether the quoted 
PCR values are tampered with or not, 
and ii) whether the quoting TPM is actu-
ally the one on the attested system.  

 Ensure that the signed random number 
equals RN. This ensures that the quote is 
not a replay attack by a compromised 
system, as long as the chosen RN is un-
predictable by the attested system. 

 Calculate the boot aggregate by comput-
ing SHA1(PCR0 || … || PCR7). Compare 
it to the first measurement of the meas-
urement list, which is supposed to be ex-

actly this boot aggregate. If they don’t 
match, the attestation fails. This step 
links the boot measurements to the run-
time measurements. 

 Recalculate virtually the PCR value for 
the run-time measurements in the meas-
urement list. To do so, start with 
virtPCR=0 and with the first (oldest) 
measurement M0 of the list (here: boot-
aggregate). Calculate virtPCR := 
SHA1(virtPCR || M0); continue with the 
next measurement until the measurement 
list is consumed. The resulting value in 
virtPCR must now match the value of 
the signed TPM PCR that was used by 
the attested system to protect the integ-
rity of the measurement list (in our case 
PCR10). If the values don’t match, then 
the measurement list must be assumed 
tampered and the attestation fails. This 
can happen if the attested system is 
compromised and tries to cheat or if the 
measurement instrumentation of the at-
tested system has recognized suspicious 
system behavior and invalidated the 
measurement PCR pessimistically (fail-
safe measurement-bypass protection). 

Now that trust into the correctness of the 
measurement list is established, every meas-
urement list entry must be validated to build 
trust into the software-stack of the attested 
system. 

 2.4 Software Stack 
Measurement Analysis 

In order to establish a trust chain from the 
TPM hardware root-of-trust into the current 
run-time of a running system, we distin-
guish two parts of the chain. The first chain 
extends from the TPM over the boot stages 
to the running Linux kernel. The second 
chain is maintained by the running kernel 
and extends over the uptime of the attested 
system starting with the first file loaded 
(here: init). The two chains are securely 
linked by the running kernel extending an 
aggregate over the first part of the chain as 
first measurement into the PCR that repre-
sents the aggregate of the second chain. 

To establish the trust chain from the 
TPM hardware to the running Linux kernel, 
we need to keep track of all steps during the 
system boot in order to ensure that the next 
step will continue to measure the succeed-
ing step correctly. To jumpstart this process, 
initial trust is necessary and placed into the 
correct implementation and embedding of 
the TPM hardware into the system platform. 

Then, trust into the measurement represent-
ing the boot BIOS is necessary, including its 
property to measure the succeeding boot 
steps correctly (Master boot record). This 
process continues to the boot loader (here: 
Grub) and finally the kernel being measured 
before it becomes active. All these meas-
urements are protected by Platform Con-
figuration Registers PCR0 – PCR7 as stan-
dardized for PC architectures in [9]. Validat-
ing the pre-kernel boot process means trust-
ing the code that was executed throughout 
these stages based on the collected SHA1 
fingerprints and resulting aggregates in 
these PCRs. 

Using this trust model, an attesting party 
can establish trust into the kernel and its 
(measurement) properties through the com-
pleteness and integrity of the measurement 
chain from the root-of-trust (TPM) up to the 
kernel. If any of the intermediate finger-
prints is not trusted, then the kernel cannot 
be trusted because any measurements fol-
lowing the distrusted fingerprint cannot be 
guaranteed to represent the following 
loaded stage correctly. A measurement can 
therefore only be trusted if its represented 
code is known to correctly measure the ac-
tually loaded code taking over the next boot 
stage and to protect the measurement in the 
TPM PCR as specified in [9]. Unknown 
fingerprints or fingerprints of known mali-
cious code break this trust chain. Only con-
figuration changes of the boot sequence and 
rebooting the system (resetting the TPM 
PCRs) can re-establish trust into a distrusted 
measurement chain. 

The aforementioned boot measurements 
are pretty static (regarding order and finger-
print value). Thus, we can simply check the 
boot PCRs 0–7 against a set of permitted 
values. If they match, the first part of the 
chain is trusted. If not, the boot sequence is 
not trusted and the attested system fails the 
test based on the challenger’s policy. 

We focus in the following on attesting to 
the much more dynamic software stack es-
tablished by the running system kernel to 
extend the established chain of trust into the 
run-time of the system. Here, the changing 
order of measurements and the dynamic 
program versions will lead to a very large 
range of possible PCR values even for simi-
lar systems. Therefore, rather than attesting 
to a predetermined aggregated PCR value, 
every single measurement is validated and 
evaluated as trusted or distrusted according 
to the policy of the challenging party. The 
overall attested client’s run-time image is 
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then build bottom up using these measure-
ments and known properties of the repre-
sented part of the software stack (e.g., pro-
gram or configuration file). 

We trust a measurement if and only if the 
following conditions hold: 

 We know what it represents, e.g., execu-
table functionality or configuration file 
and how it affects the run-time of the at-
tested system. 

 The represented data loaded into the sys-
tem run-time does not compromise our 
measurement instrumentation in a way 
that prevents future correct and complete 
measurements. If, for example, we ex-
pect all executed bash script files to be 
measured, then we won’t trust a meas-
urement representing a loaded bash shell 
that does not induce such measurements. 
Another example is a loaded kernel 
module that compromises the kernel in-
strumentation and prevents complete 
measurements in the future. Even such a 
kernel module – compromising and tak-
ing over the whole system software stack 
– cannot eliminate its own measurement 
without invalidating the integrity value 
kept in the TPM PCR. 

 The measured data is assumed to work 
correctly after loading it into the run-
time even in the assumed presence of at-
tackers. This means that potentially 
known vulnerabilities in the represented 
data (e.g., local or remote exploits) are 
considered acceptable by the policy. 

The above evaluation is done by the attest-
ing party only once (unless policy changes) 
for each program or configuration file and 
stored together with its SHA1 value in a so-
called known-fingerprints data base. Thus, 
when evaluating a measurement, the chal-
lenging party looks up the respective 160bit 
fingerprint in its policy data base and ex-
tracts directly the information about the 
trustworthiness of this fingerprint under the 
active policy. More complex analysis could 
also relate multiple measurements to each 
other, e.g. to ensure that interdependent 
programs are interoperable. 

Any program or configuration, whose 
fingerprint is unknown (potentially mali-
cious), could corrupt the system and prevent 
future correct measurements. Thus, evalua-
tion can stop here because later measure-
ments and the protection thereof cannot be 
trusted to represent the real software-stack 
of the attested system. An example would 
be a malicious kernel module corrupting the 
kernel by intercepting measurement re-

quests and hiding malicious software being 
loaded into the system. Malicious compo-
nents could then be loaded without meas-
urements being taken and thus without evi-
dence being produced. 

In conclusion, the software stack valida-
tion is successful only if all individual 
measurements taken on the attested system 
are trusted by the challenging system.  

Future work includes partitioning of the 
measurement space and allowing for finer-
grained evaluation of measurement lists. 
This could mean to allow unknown soft-
ware to be loaded on the attested system 
(represented by measurements unknown to 
the challenging party) as long as its impact 
is controlled and does not affect the security 
of other parts of the run-time that might be 
of interest to the challenging party. Trust 
into such strong isolation between system 
parts can be justified by secure virtualiza-
tion or by mandatory security enforcement 
in the kernel (e.g., SELinux [11]). 

 3. Results 
We implemented mutual attestation on two 
Redhat Linux systems running our instru-
mented Linux 2.6.5-bk2-lsmtcg kernel [5] 
and open-source TPM drivers [6,7]. The at-
testation service is implemented as a Web 
service running in a Jakarta Tomcat Con-
tainer. The database of known fingerprints 
is compiled for each system independently 
by measuring existing executables and li-
braries and attaching trusted or distrusted 
labels and comments. In our case, the data 
base had about 20 000 entries, 5 of which 
where fingerprints of known Linux Rootkit 
exploits [12]. We have supplied both ma-
chines with valid certificates of TPM keys 
that were created on the peer system for 
validating the signed TPM PCRs. 

We use a Java GUI (c.f. Figure 3) to ini-
tiate and control the mutual attestation of 
the two systems named Tcg and Eserver2. 
Tcg initiates the mutual attestation by call-
ing the attestation Web service on Eserver2, 
providing a random number RN1. 

Eserver2 answers with the current meas-
urement list and the signed TPM PCR val-
ues including RN1. Tcg validates the signa-
ture over the TPM PCRs, then validates the 
included random number (nonce) and recal-
culates the assumed PCR aggregate using 
the measurement list. If the computed ag-
gregate matches the value of the signed 
TPM PCR10, then the measurement list is 
successfully validated. Afterwards, Tcg runs 

through the measurement list, looking up 
the known fingerprint database for each 
measurement value in turn. 

 

Figure 3: Demo GUI showing successful 
mutual attestation 

If at any time, it does not find the measure-
ment value or if the data base tags the value 
as distrusted, the validation fails. The at-
testation succeeds if all measurements are 
found and trusted. Following this attestation 
is the reverse attestation of Tcg against 
Eserver2, which proceeds symmetrically. 
Adapting the database of known finger-
prints, we can as well validate the meas-
urement list against service level agreement 
policies. 

 3.1 Detecting 
Compromised Systems 

We have successfully deployed our proto-
type for detecting Rootkit-exploits [12].  
 

  
Figure 4: Demo GUI showing exploit 

Figure 4 shows the main GUI window for 
the case that a distrusted measurement is 
found in the measurement list.  

Figure 5 shows the details of the meas-
urement that was responsible for failing the 
attestation: a Syslogd (audit program) that is 
part of a Rootkit exploit; it replaces the 
original Syslogd program and contains hid-
den code that covers traces of attackers. It is 
safely distinguished from the non-
compromised Syslogd by its differing 
SHA1 hash value. Along with this compro-
mised root kit program, there are usually 
other programs installed that include hidden 
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functionality and allow attackers to bypass 
normal system access control. 

 

  
Figure 5: Measurement indicating exploit 

Although those specific programs are not 
shown in the figure, they are detected as 
well. 

 3.2 Overhead 
The instrumentation and measurement 
overhead for creating and maintaining the 
measurement list on the attested system is 
negligible. A new measurement, which oc-
curs mostly throughout the booting of the 
system, incurs overhead for computing the 
SHA1 hash value over the file to be loaded 
and additionally about 5ms overhead for ex-
tending the new measurement into the TPM 
PCR. We measured a throughput of about 
80 Megabyte/second for computing the 
SHA1 hash value in the Linux kernel. Re-
measuring files that were measured before 
is very efficient because we use dirty-
flagging and caching mechanisms that skip 
computing the SHA1 value for files that 
cannot have changed since the last time 
they were measured. As a result, re-loading 
a file that was already measured before in-
curs less than 1 microsecond overhead. 

We experienced a latency of about 1 
second for a single unidirectional attestation 
and about 2-3 seconds for mutual attestation 
via the non-optimized Demonstration GUI. 
This includes the 2048bit TPM RSA signa-
tures of the PCRs, the communication of the 
Web services exchanging the measure-
ments, as well as validating the measure-
ment list and comparing the measurement 
list entries against the known fingerprint da-
tabase. In conclusion, the overhead intro-
duced by our technique is negligible for 
most application scenarios. 

 4. Outlook 
The guiding principles for the system de-
scribed in this article were low-overhead 

and the separation of measurements and 
verification. The latter was important be-
cause we did not want to limit the remote 
party in what programs it can execute. 

The system presented here is an essential 
first step in establishing a trusted platform. 
However, it dose not consider the following 
areas, which we are addressing in our future 
work: 

 Scalability. The list of individual finger-
prints of programs, libraries and scripts 
do not scale very well. In an enterprise 
setting this is less of an issue, typically 
only few software configurations exists 
and patches are applied centrally so it is 
easier to maintain an enterprise wide da-
tabase of trusted programs. 

 Trust. Trust is in the eye of the beholder. 
While each recipient of attestation 
statements could derive its own trust 
level, it would probably delegate this to 
trusted-third-parties and make the deci-
sion for it based on, for example, a com-
pany policy. On a world-wide scale this 
is analogous to a PKI infrastructure 
which has its own set of challenges. 

 Privacy. The individual measurements 
give potential attackers a wealth of in-
formation about the system at hand. 
Clearly, this is undesirable. 

 Isolated execution. The TPM, while an 
excellent trust anchor, is passive. For 
many applications, active trusted com-
ponents such as compliance checkers or 
monitoring agents are needed. Trust into 
such components can only be established 
through strong isolation. 

 Conclusion 
We have shown one example of how the 
TPM security chip can be used to establish 
trust into previously unknown systems. In 
addition to the here discussed role as Root 
of Trust for Reporting, the TPM also im-
plements functions that make it suitable as a 
Root of Trust for Storage, supporting the lo-
cal system to protect storage and to imple-
ment its own security mechanisms based on 
trusted hardware functions. 

TPM hardware –implementing open in-
terface specifications– has the potential 
to become the foundation for many trust-
establishment processes needed in vital 
emerging and established areas, such as 
On-Demand environments, Autonomic 
Computing, and Web Services. A crucial 
role herein plays the TPM’s protection 

against the system software, which 
makes it suitable as a root-of-trust. 
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