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Abstract

Early and reliable detection of disease outbreaks is an
important problem for public health. Syndromic surveil-
lance systems use pre-diagnostic data sources to attempt to
improve the timeliness of outbreak detection. This paper de-
scribes a number of approaches to evaluating the utility of
data sources in a syndromic surveillance context. We show
that there is some evidence that sales of over-the-counter
medications have value for syndromic surveillance.

1 Introduction

Syndromic surveillance refers to the use of pre-
diagnostic health-related data for early detection of disease
outbreaks. With recent concern over the threat of bioter-
rorism, as well as the appearance of new disease threats
(e.g., SARS), syndromic surveillance is being looked to as
a means to improve the timeliness of public health surveil-
lance.

The development of a useful syndromic surveillance sys-
tem depends in part on the identification of data sources that
have value in predicting disease outbreaks. This paper will
focus on methods for assessing the value of data sources for
predicting disease outbreaks. We will examine a number of
different approaches that use retrospective analysis to eval-
uate data sources.

A frequently cited example of a data source that is pre-
sumed to be useful for syndromic surveillance is the sale
of over-the-counter (OTC) medications. We will apply our
evaluation approaches to a large, multi-year, multi-city data
set and show that there is some evidence that OTC medica-
tion sales may be useful for syndromic surveillance.

2 Background and Related Work

Syndromic surveillance (also referred to in the litera-
ture as early detection of disease outbreaks, pre-diagnosis
surveillance, non-traditional surveillance, enhanced surveil-
lance, non-traditional surveillance, and disease early warn-
ing systems) has received substantial interest recently, espe-
cially after Sept. 11, 2001 [3, 5, 9, 12, 13, 14, 15].

A number of studies have been devoted to investigating
various data sources, such as the text and the ICD-9 diag-
nosis code of the chief complaints from emergency depart-
ment [1, 2, 6, 11], 911 calls [4], and over-the-counter (OTC)
drug sales [8].

There are at least three different classes of approaches
to evaluating the utility of a data sources for syndromic
surveillance. The first approach is based on the measuring
the correlation between a target data source and a gold stan-
dard (diagnostic) data source [16]. A second approach is to
use the target data source to better predict values in the gold
standard data source. A third option is to identify “events”
(i.e., disease outbreaks) in a gold standard data source, and
assess the timeliness of alarms produced by a detection al-
gorithm operating on the target data source. The tradeoff
between timeliness and false alarms can be assessed using
the AMOC approach [7].

3 Data

There are two data sets that will be used in this study.
The first, which we will call OTC, is a weekly summary
of unit sales of upper respiratory over-the-counter medica-
tion sales for ten cities (Baltimore/Washington, Charlotte,
Chicago, Dallas, Milwaukee, New York, Norfolk, Orlando,
Pittsburgh, and Seattle) for a three-year period (2000-2002).
The first data point is for the week ending on 1/9/2000, and
the last data point is for the week ending 12/29/2002. For
each city, sales are reported in eight categories: four types



(Cold, Allergy, Cough, and Sinus), and two target groups
for each type (Adult and Pediatric).

The second data set, which we will call CL, consists of
anonymized medical insurance claims records. The records
are from the same ten cities as for OTC, and cover the
same three-year period. Each record consists of a unique
(anonymized) patient identifier, a date of service, up to four
ICD-9 (diagnosis) codes, and a city name. There are a to-
tal of about 22.5 million records. The ICD-9 codes were
chosen by the data provider, Surveillance Data, Inc., to be
relevant to upper respiratory infections. The number of in-
surance claims were aggregated by city to weekly totals
aligned with the OTC data.

For the purposes of this study, the OTC data set is the tar-
get data source, i.e., OTC will be assessed for value in syn-
dromic surveillance. CL is the gold standard data source, as
it contains diagnostic information about actual disease.

4 Approaches

4.1 Lead-Lag Correlation Analysis

One approach to evaluating a data source for syndromic
surveillance is to conduct a lead-lag correlation analysis on
the data source with respect to a gold standard data source.
This consists of computing the correlation between the two
time series for a range of lead-lag times, and identifying the
lead-lag time at which the correlation is maximized. It can
be useful to remove trends before analyzing.

Although a correlation analysis can give a global view of
the lead time of a target data source, syndromic surveillance
is typically more interested in the lead time prior to increas-
ing levels of disease. This suggests an alternative approach
where a correlation analysis is performed on a number of
shorter time segments that contain the initial stages of dis-
ease outbreaks.

In Section 5.1 we will apply this method to the data sets
described in Section 3, and assess the value of OTC data for
syndromic surveillance.

4.2 Regression Test of Predictive Ability

This section describes another approach to evaluating the
usefulness of a target data source by posing it as a predic-
tion problem. More specifically, we are interested in pre-
dicting certain quantities associated with the gold standard
data source, and want to see whether by including the target
data, we are able to make better predictions.

This approach can be generally regarded as time-series
forecasting. If we can forecast a quantity A more accurately
using a quantity B under a certain metric, then we say that
B contains useful information for predicting A.

We now give a general description of this approach. As-
sume that the quantity of interests is presented sequentially
as a time-series

{Y } = {· · · , Y0, Y1, · · · , Yt, · · ·}.

We want to predict the future values of this time-series
based on some side-information (which may includes the
historical values of Y we observed so-far), represented as
another time-series of vectors:

{X} = {· · · ,X0,X1, · · · ,Xt, · · ·}.

Each Yt is a real-valued number, observed at time t, which
we are interested in. Each Xt is a real-vector, which en-
codes all of the side information that we hope are useful for
predicting the {Y } series.

To this end, we assume that at each time t, based on
the current side-information Xt, we would like to predict
Yt+f , which is the value of the Y series f -steps in the future
(where f > 0 is an integer). We assume that the predictor
pf (Xt) has a linear form as

Yt+f ≈ pf (Xt) = w
T
f Xt,

where wf is a weight vector (parameter of our model) that
characterizes the predictor pf . The parameter wf can be
estimated from the data (as we will describe later).

Given a predictor, represented as a weight vector w, we
can measure its quality using a certain figure of merit. In
this study, we employ the commonly used least-squares er-
ror criterion, defined as

Rf (w, [T1, T2]) =
1

T2 − T1 + 1

T2
∑

t=T1

(wT
Xt − Yt+f )2.

The number Rf (w, [T1, T2]) measures in the interval
[T1, T2], how well we can predict from X the sequence Y
f -steps in advance with the weight vector w.

The weight vector can be estimated from the historical
data using least-squares regression:

ŵf,T = arg min
w

T−f
∑

t=1

(wT
Xt − Yt+f )2. (1)

Now assume that we observe the sequences X and Y ,
up to some point T . To check how useful is X for pre-
dicting Y , we divide the time period into K consecutive
blocks (for simplicity, assume that T is divisible by K):
Ij = [Tj , Tj+1] for j = 0, . . . , K − 1, where Tj = jT/K.
Now we can use a single number

rf (X, Y ) =
1

K

K−1
∑

j=1

Rf (ŵf,Tj
, [Tj , Tj+1]) (2)



to measure the usefulness of X for predicting Y (f -steps in
the future). That is, we train a predictor ŵf,Tj

using least
squares regression (1) with data observed up to jT0, and
then test on data from jT0 to Tj+1, for j = 0, . . . , K − 1,
and then average the results. The smaller rf (X, Y ) is, the
more useful X is for predicting Y . Therefore using (2), we
can compare the usefulness of different side informations X

and X
′.

In Section 5.2, we compute the corresponding rf (X, Y )
numbers with and without including the OTC data in the
side information X. Our results suggest the usefulness of
the OTC data in public health surveillance.

4.3 Detection-Based Approaches

For the detection-based approaches we assume that dis-
ease outbreak events are labeled in the gold standard data
set, and an outbreak detection algorithm operates on either
the the target data set or the gold standard data set. Using
the AMOC approach, we are able to assess the lead time
provided by the target data source over a range of practical
false alarm rates.

4.3.1 Supervised Algorithm for Outbreak detection in
OTC data

The supervised outbreak detection algorithm utilized the
previously supplied data in order to determine various as-
pects of the algorithm. The supervised algorithm required a
number of components in order to perform the detection:

(1) Determination of features to be used, and the proper
way to combine channels.

(2) Creation of streams of anomalies.
(3) Conversion of the anomaly streams into the alarm

level using the information from (1).
This supervision was done in two forms:
(1) Feature Selection: Since multiple channels of infor-

mation were available, which channels provided the great-
est level of connection between the channels and actual out-
breaks?

(2) Combination of Multiple Channels: How do we com-
bine the signals from multiple channels in order to create
one integrated alarm level which was most effective for de-
tecting the outbreak?

In order to perform feature selection, we used the same
OTC data set (provided by SDI) as described in the other
sections. The first step was to determine which of the
channels were most discriminatory for the purpose of dis-
tinguishing the biological outbreak from the background
noise.

Let us assume that for each site i, the value indicating
the channel specific information (absentee behavior, phone
calls, pharmacy buying behavior) at time t is denoted by

y(i, t). The first step was to convert the data into statistical
deviation levels which could be compared across different
features. Thus, each stream of data was converted into a
statistical stream of numbers indicating the deviation level
with respect to the prior window of behavior of width W .
The statistical deviation value for a given stream i at time
t was denoted by z(i, t). The value of z(i, t) was found by
first fitting the prior window of with W with the polyno-
mial function f(t). The deviation value at time t0 was then
defined as follows:

s(i) =

√

√

√

√

t0
∑

t=t0−W

(f(t) − y(i, t))2/(W − 1) (3)

The value of W used was based on the last 16 reports. This
statistical deviation is also referred to as the z-number. This
value provides an idea of how far the stream of data devi-
ates from the normal behavior and gives an intuitive under-
standing of the level of anomaly at a given tick. Then, the
statistical deviation z(i, t0) at time t0 is denoted by:

z(i, t0) = (f(t0) − y(i, t0))/s(i) (4)

These alarm values could be used in order to determine
the value of each channel in the training data. A partic-
ular channel was found to be useful when this value was
found to be larger than a pre-defined threshold of 1.5. For
example, by using this technique we were able to eliminate
the allergy channel for the purpose of detection of the flu
infections. For example, this behavior was illustrated by
the allergy channel in the OTC training data. We have also
illustrated the AMOC curve for the allergy channel in the
same figure. We note that the AMOC curve for the allergy
channel was particularly poor, because it seemed to be un-
correlated to the seasonal outbreaks in the data.

Once these features were selected, they could be used on
the test data for computing the statistical deviation values
using the same methodology as discussed above. Thus, a
separate signal was obtained from stream. The next step
was to combine the deviation values from the different sites
and channels to create one composite signal. A supervised
training process was utilized to determine the optimal func-
tional form for the test data. This was achieved my find-
ing the composition which maximized the area under the
AMOC curve.

Once each channel had been converted into a single com-
posite signal, they need to be combined to create a combi-
nation signature. For example, let q1(t), q2(t) and q3(t) be
the signatures obtained from three different channels. The
combination signature was defined as the expression:

C(t) = c1 · q1(t) + c2 · q2(t) + c3 · q3(t) (5)

Here c1, c2 and c3 were coefficients which were also deter-
mined by minimizing the latency of detection on the train-
ing data. As a normalization condition, it is assumed that



the coefficients satisfy the following condition for the con-
stant C ′:

c12 + c22 + c32 = C ′ (6)

It is necessary to use the above condition for scaling pur-
poses. In order to determine the optimal alarm we found
values of c1, c2, and c3, which optimized the area under the
AMOC curve. This provides the combination signature.

4.3.2 Modified Holt-Winters forecaster

One of the unsupervised detectors used was a modified
Holt-Winter forecaster [10]. The forecaster generate a z-
value for each tick of a data channel, representing the devi-
ation of observed data from the predicted one. A z-value is
computed as follows:

z = (∆ − µ)/σ,

where ∆ is the difference between observed and predicted
data, and µ and σ are the mean and standard deviation, re-
spectively, of these ∆ differences in the past.

A Holt-Winters forecaster assumes that a time series,
X1, · · · , XN , can be modeled in terms of three key compo-
nents: the average XN , the trend TN and the daily season-
ality factors FN−D+1, · · · , FN , where D is the number of
days in the week for which there are observed data. The
average is the exponentially smoothed level value of all the
time series values. The trend is the exponentially smoothed
slope of all the N time series values. The daily seasonal-
ity factors are exponentially smoothed values reflecting the
deviation from linearity attributable to the different days of
the week. The seasonality factors can have either a multi-
plicative or additive effect. In our implementation, we chose
the additive variant. A Holt-Winters forecaster attempts to
accurately capture these three key components of a time se-
ries. It can deal with special events, such as holidays or
special days where data are missing.

4.3.3 Forecasting based on Multi-channel Regression

A simple prediction strategy that can combine single and
multi-channel prediction is to set up the problem as a linear
regression. As usual, the deviation of the actual value from
the predicted value as a measure of abnormality. We set up
a system of linear equations as shown below.

Let the observation stream of a single channel from
among the multiple OTC sales channels be [y1, . . . , yM ].
Consider using the past J observations to derive the regres-
sion parameters while using the past K samples for actually
predicting the K + 1th observation. The number of vari-

ables to be estimated from the past J samples is K.
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(7)
or using matrix notation:

Y = AyW, (8)

With this overdetermined system of equations (J >K) we
then calculate the least squares fit to this as shown in Eq 9:

W = (At
yAy)−1At

yY (9)

Assuming linear independence among columns of ma-
trix A, AtA is non singular and the generalized in-
verse (AtA)−1 exists. We calculate the weight vector
W after every update. Thus for each observation yM

we calculate the prediction aW , a being a row vector
[yM−1yM−2−1 . . . yM−J−1]. If the residual between the
actual value and the predicted value is positive we use this
difference as a measure of abnormality and probability of
an outbreak. Equation 7 can be extended to make the pre-
diction based on multiple channels. For example the matrix
A can be created by combining multiple channels. Equation
10 shows past samples from two channels [y1, . . . , yM ] and
[x1, . . . , xM ] being used to predict the current observation
of channel Y.

Y = [AyAx]

[

Wy

Wx

]

(10)

Using the above formulation we can predict the current
value of sales of any of the OTC channel based on values of
sales in the same channel as well as based on values of sales
in additional channels.

5 Experiments

5.1 Lead-Lag Correlation Analysis of OTC Data

The lead-lag correlation analysis approach requires us,
for each city, to compute the correlations corresponding to
various possible lead-lag times. In Figure 5.1, we examine
offsets ranging from five weeks prior to five weeks after.
The ten solid lines are the correlation values for each of the
ten cities. The dashed line is the mean of those values. The
peak correlation is between one and two weeks leading, i.e.,
OTC leading CL by one to two weeks. If a quadratic is fitted
to the dashed line, the maximum is at 1.7 weeks.

The provides evidence, albeit somewhat weak, that OTC
leads CL and may have value for syndromic surveillance.
Clearly there is a wide discrepancy on the correlation be-
tween OTC and CL across the different cities, and this needs
further investigation.
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Figure 1. Lead-Lag correlation analysis exper-
iment

5.2 Regression Test of the Predicative Value of
OTC

We study the usefulness of OTC for predicting insurance
claims using the approach described in Section 4.2. Since
the OTC data are weekly based, we shall form the time se-
ries on a weekly basis. In particular, we convert the insur-
ance data into weekly data aligned with the OTC data.

In this experiment, we consider different cities sepa-
rately. That is, we do not consider possible inter-city cor-
relations. For each city, we let OTCt be the total number
of OTC sales in week t, and CLt be the number of insur-
ance claims in week t. Since in public health surveillance,
we are mostly interested in sudden outbreaks of diseases,
we are interested in the log-ratio of the number of insur-
ance claims in consecutive weeks. That is, at week t, the Y
variable is given by

Yt = log2(CLt/CLt−1).

One may also use other quantities, such as whether the in-
surance claims next week is higher than this week by a cer-
tain amount (or whether Yt is larger than some threshold).

We consider a few possible side information X, which
we list below.

• X
1: Using constant side information: X

1
t ≡ [1]. This

leads to a predicator that predict Yt using its historic
mean.

• X
CL: In addition to the above, we also include his-

torical observations of the insurance claim data itself
(the log ratio of the current number of claims over

the claims of the previous week) as side-information:
X

CL
t = [Yt, 1].

• X
OTC
t : We include the constant one and the OTC data

into the side-information:

X
OTC
t = [log2(OTCt/OTCt−1), 1].

• X
CL−OTC
t : We include all of the above quantities into

the side-information:

X
CL−OTC
t = [log2(OTCt/OTCt−1), Yt, 1].

Since this framework is quite flexible, various other con-
figurations can also be studied. For our purpose, we are able
to make interesting observations from this particular config-
uration. Variations will lead to similar results.

Applying the notation in Section 4.2, for each city, we
divide the time series into K = 20 blocks, and compute the
rf (X, Y ) number in (2) for f = 1, 2 and each side informa-
tion listed above. We then average the results over the ten
cities, and report the averaged numbers in Table 1. From
the table, we can see that the OTC data has a small predica-
tive power for the insurance claims data CL. One may also
do an experiment in the reverse order (that is, use histori-
cal CL data to predict the future OTC sales). In this case,
for f = 1, the predictive performance for OTC sales, mea-
sured by the rf value, degrades from 0.0217 (without CL
in the side-information) to 0.0221 (with historical CL data
in the side-information). Therefore these experiments pro-
vide some evidence suggesting that OTC changes precede
CL changes.

X
1

X
CL

X
OTC

X
CL−OTC

f = 1 0.0287 0.0265 0.0285 0.0261
f = 2 0.0287 0.0291 0.0280 0.0287

Table 1. Averaged rf (X, Y ) numbers over ten
cities

Although effects shown in Table 1 are relatively small,
we believe they are still indicative statistically. Since we
average our results over ten cities, we may also check the
variation over different cities. In particular, in seven out
of ten cities, r1(X

OTC , Y ) is smaller than r1(X
1, Y ); also

in seven out of ten cities, r2(X
OTC , Y ) is smaller than

r2(X
1, Y ). This comparison is consistent with results in

Table 1, and justifies from a slightly different point of view
that statistically, the OTC data is (weakly) useful for pre-
dicting future insurance claims.



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

False Positives

B
en

ef
it 

(6
 −

 L
at

en
cy

)

Combined Alarm
Aggregate Cold
Aggregate Allergy
Aggregate Cough
Aggregate Sinus
Claims Data

Figure 2. The AMOC curves generated by the Super-
vised method illustrate that various OTC categories are
more timely than claims.

5.3 Results From Detection-Based Approaches

5.3.1 Supervised Method

Once the features have been selected, and the proper way
for construction of the combination signature was deter-
mined, the actual alarm level construction on the data was
straightforward. The deviation values for the data were
computed in an exactly identical way to the training data,
and the combination was created to output the correspond-
ing alarm levels at each tick. In Figure 5.3.1, we have il-
lustrated the behavior of the detection algorithms. Once
interesting observation was that the OTC data was always
more effective than the claims data. In fact, in most cases,
the OTC data acted as a “leading indicator” over the claims
data. It is also interesting to note that the adult and pediatric
data illustrated differential behavior in terms of the speed
and quality of the detection. An example of this is illus-
trated in Figure 5.3.1.

5.3.2 Modified Holt-Winters forecaster

Even though the OTC data were weekly data, the detector
treated them as daily data and assumed that there were 3
days in a week. It used the past 6 OTC data points to predict
the next OTC sale.

While there was some variability across different cate-
gories of OTC medication sales, over a wide range of false
alarm rates the Holt-Winters forecaster showed a two week
lead time for OTC over Claims. Sinus medication sales
were observed to have the best lead times overall.
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Figure 3. The AMOC curves generated by the Supervised
Method illustrate that there is differentiation between Adult
and Pediatric cough medication sales.

5.3.3 Forecasting based on Multi-channel Regression

Using the OTC data we experimented with different values
of J and K (see Section 4.3.3 for single and multichannel
prediction based outbreak detection. Based on our experi-
ments we found that sales of adult drugs were more infor-
mative about the outbreakss and had a lead time of between
2 and 3 weeks over claims. We also found encouraging em-
pirical evidence that the use of multiple channels resulted in
a better lead time for predicting outbreaks over single chan-
nel prediction. Figure 4 shows the AMOC curve using the
adult cold channel for predicting outbreaks. It also shows
the benefit of using adult cold and adult cough to predict
adult cold sales and use the deviation to detect outbreaks al-
though this benefit is evident only for small values of false
alarms as seen in the AMOC curve

6 Conclusions and Future Work

We have shown a number of different approaches to as-
sessing the value of a data source for syndromic surveil-
lance, and evaluated over-the-counter medication sales us-
ing these approaches. The appears to be evidence from each
of these approaches that OTC medication sales are a leading
indicator for disease outbreaks.

There are a number of limitations in this study. The data
sets were aggregated weekly, which reduces the precision
regarding estimates of the timeliness of OTC. This type of
study should be repeated with daily data. The detection-
based experiments identified only those outbreaks that oc-
curred at the beginning of the seasonal rise in respiratory
disease. A more careful study could examine finer grain
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Figure 4. The Adult Cold sales were found to be the
best indicator for the outbreaks with J = 15, K = 2 and
J = 20, K = 1 respectively for single channel and multi-
channel prediction. The Adult Cold and Cough sales were
used in the two channel prediction.

disease outbreaks, preferably those that have been studied
and verified by public health. This study was retrospec-
tive, looking only at historical data. A prospective study,
using the target data source to predict disease outbreak in
real time, would provide greater confidence in the conclu-
sions in this paper.
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