
RC23369 (W0410-063) October 11, 2004
Computer Science

IBM Research Report

A J2EE Application for Process Accounting, LPAR
Accounting, and Transaction Accounting

C. Eric Wu, William P. Horn
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Abstract—Accounting is critical for information
technology budgeting and chargeback. Traditional
accounting in UNIX/Linux systems is known as
process accounting, in which an accounting record is
created when a process ends. System administrators
then aggregate accounting records based on
individual users, groups, or projects. As Web and
application servers as well as databases handle
requests and transactions for multiple entities in
various Web applications and services, LPAR
accounting and transaction accounting become
increasingly critical for service providers in shared
resource environments. In this paper we present the
design and implementation of a J2EE accounting
application for resource usage metering. For process
accounting the resulting system can generate usage
reports by projects, by groups, by users, by
commands, or by a combination of these identifiers.
For dynamically changing partitions it generates
reports for shared resources including CPUs,
memories, disks, file systems, and network interfaces.
For transaction accounting it generates reports based
on account classes provided that applications are
instrumented. It is the first known J2EE accounting
application for UNIX/Linux transaction accounting.

Index Terms—ARM transactions, resource usage,
project accounting, process accounting, transaction
accounting

I. INTRODUCTION

NFORMATION technology (IT) is usually viewed as
critical to modern businesses and organizations. The

increases in user numbers, demands for new technologies
and complexities of computing environments has
frequently caused IT costs to grow faster than other costs.
As a result, organizations are often unable or unwilling to

C. Eric Wu is with IBM T.J. Watson Research Center, P. O. Box 218,
Yorktown Heights, NY 10598. He can be reached at 914-945-2629; fax 914-945-
2944; e-mail: cwu@us.ibm.com.

William P Horn is with IBM T.J. Watson Research Center, P. O. Box 218,
Yorktown Heights, NY 10598.

justify expenditure to improve services or develop new
ones. To understand whether an IT organization is doing
its best, it has to understand the true cost of providing a
service and manage those costs professionally. This in
turn requires accounting for computing resources.

Most UNIX and Linux systems today provide some
form of process accounting that records a collection of
information for each and every process completed by the
kernel into a file. The recorded information is typically
specified in a header file. Originated from either UNIX
System V or BSD, the methodology of process
accounting on many UNIX variants was developed long
time ago, and the tools available are useful yet primitive.
An overview of process accounting can be found in [1].

Interval accounting and project accounting improve
process accounting in different ways. Interval accounting
is required because long-running processes for
applications such as databases and web servers can run
for months without termination, resulting in significant
delays in accounting data collection. Interval accounting
enables intermediate accounting records to be produced
and collected at intervals specified by a system
administrator. A number of accounting records instead of
one will then be created periodically for a long-running
process.

Project accounting is a capability that records a project
identifier along with the process accounting data. A
project identifier is a tag defined by system administrator
and is associated with processes via project assignment
policies. Having process accounting capabilities available
on a version of UNIX does not guarantee the availability
of project accounting. There have been a number of
UNIX variants that provide project accounting, including
UNICOS’ Cray System Accounting (CSA) from Cray,
Irix Comprehensive System Accounting from SGI [2],
Solaris Extended Accounting [3] from Sun Microsystems,
and AIX Advanced Accounting from IBM [4, 5].

Recent advances in dynamic logical partitions (LPARs)
allow multiple, independent operating systems running in a
single server, one on each dynamic LPAR [6]. As the
workload of an operating system changes, resources
including CPUs and memory in the dynamic LPAR can

A J2EE Application for Process Accounting,
LPAR Accounting, and Transaction Accounting

C. Eric Wu, Senior Member, IEEE and William P. Horn

I

expand and shrink over time without requiring a reboot of
the operating system. If each account entity is assigned
with an LPAR, the accounting facility must provide
LPAR accounting to record the expansion and shrinkage
of computing resources for usage-based billing over time.

When applications handle transactions for multiple
clients in a shared service environment, process
accounting or LPAR accounting cannot provide accurate
usage due to the lack of information on account entities. A
database in a Web environment, for example, may handle
all the requests on behalf of a local user regardless of
request origin. In this case only the Web server or the
application server can identify the users of its internal
transactions for accounting purposes. To provide accurate
accounting on resource usage, the account entity or class
must be passed along with transaction requests. The
ability to perform transaction accounting is critical in a
shared service environment, in which work occurs as
transactions flow through systems across networks.

In this paper we discuss the design and implementation
of the J2EE accounting application for AIX systems based
on its Advanced Accounting facility. The resulting J2EE
application is capable of generating reports for process
accounting, LPAR accounting, and transaction
accounting, with management operations and interfaces
for both program-to-program communication and human
interactions.

II. A J2EE ACCOUNTING APPLICATION

As service oriented architecture [7] becomes more
popular, it makes sense to create a Web service for
resource utilization reporting. A Web service is self-
describing, in that Web Service Description Language
(WSDL) is used to describe service operations, including
the structure of its input and output parameters. Web
service clients do not need to have prior knowledge about
the operation APIs of the service. They typically learn
from the WSDL description of the service before invoking
its operations. Thus, WSDL descriptions eliminate the
potential problems resulting from changes in operation
API. The resulting Web services effectively alleviate the
problem for users to learn the underlying technology, i.e.
the AIX Advanced Accounting facility.

Figure 1 shows the overall design of the J2EE
accounting application. There are two Web services: a
reporting Web service and a management Web service.
We use a Model-View-Control (MVC) design for easy
maintenance. The Web services provide the model with
business functions and handle the backend, including the
accounting facility, its accounting files, and an optional
database where past records from various host systems
are accumulated and aggregated. A servlet is used as the

control module as well as the Web services’ client to pass
operation requests from users to the Web services, and
deliver operation results as Java beans. A number of Java
Server Pages (JSPs) are developed for presentations and
human interactions. Alternatively a client could be a
program that communicates with the Web service directly.

Accounting file

Action handler

AIX
Advanced

Accounting

client
Servlet Action handler

database

Action handler

Accounting file

Accounting file

JSPs Beans

Entity
Beans

Web Services for
Reporting and
management

Accounting file

Action handler

AIX
Advanced

Accounting

client
Servlet Action handler

database

Action handler

Accounting file

Accounting file

JSPs Beans

Entity
Beans

Web Services for
Reporting and
management

High-Level Service Architecture

J2EE Container

Nightly
Process,
Transfer,
& store

Figure 1 Architecture of the J2EE Accounting Application

The reporting Web service is responsible to aggregate
accounting records and generate reports based on user
requirements. The management Web service is developed
to manage the accounting facility with operations such as
“start accounting”, “stop accounting”, “check status”, and
will be discussed in the next section.

The reporting Web service defines and implements
aggregate routines for process accounting, LPAR
accounting, and transaction accounting. The routines for
process and transaction accounting are relatively
straightforward, while the ones for LPAR accounting are
partitioned to get statistics for CPU & memory, file
systems, disks, network interfaces, etc., one for each
resource category. Two more operations are used to get
the names of the accounting files currently available in the
accounting facility, and to get accounting file information
such as the timestamps when it was first and last
accessed, host name, partition name and ID, etc.
Typically accounting file information is displayed at the
beginning in each report.

A. Process Accounting
Figure 2 shows the web page for process accounting

where a user can use a browser to interact with the
reporting Web service and submit requests. The JSP web
page lists all accounting files currently available in the
accounting facility. A user selects accounting files and the
report type, which could be by project, by group, or by
user. An optional project definition file may be provided

to convert project IDs to more meaningful project names.
Reports can also be generated by a combination of
project, group, user, and command, as shown in the lower
part of the snapshot.

Figure 2 Web page for process accounting.

Figure 3 shows a process accounting by-user report in
which accounting file information is omitted. It reports for
each user the total elapsed time, total thread elapsed time,
CPU time, local and remote file I/O, disk page, real page,
etc. If a combination of by-project, by-group, by-user,
and by-command is used, e.g. by-user and by-command,
each row in the table would be further divided into a
number of lines, one for each command the user has
issued. The interface also allows user to specify a specific
identifier (e.g. a specific user with a specific project) or
command for report generation.

User requests are carried out by the reporting Web
service through the servlet, which is implemented as the
client of the Web service and could be installed in a
different system to interact with interactive users.

Figure 3 Report by users for process accounting

The reporting Web service uses Java NIO mapped files
for high performance file access. Byte order, i.e. big-
endian and little-endian, can be specified based on
machine architecture in Java NIO mapped files. The
choice allows us to run command line utilities and read
AIX advanced accounting files on Intel based PCs, and
will be helpful for future expansions in a heterogeneous
environment.

B. LPAR Accounting
LPAR accounting is important when account entities

use individual logical partitions. Since each partition
expands and shrinks over time based on its workload and
needs, the accounting facility must capture these changes
of resource allocation. LPAR accounting report relies on
the reporting Web service to aggregate accounting records
for four types of resources: CPU & memory, file systems,
disks, and network interfaces. For systems with Power 5
processors and the Advanced Power Virtualization
package, resources also include virtual SCSI targets and
clients.

Figure 4 Web page for LPAR accounting

Figure 4 show the JSP web page for LPAR accounting.
The JSP page requests the list of available accounting files
through the servlet, which in turn contact the reporting
Web service for the list. A user then selects accounting
files and resource report before requesting the report.
Figure 5 shows an LPAR accounting report for CPU &
memory, and a partial report for file systems.

Figure 5 LPAR accounting report for CPU, memory, and file systems

LPAR accounting report for CPU & memory includes
CPU allocation in seconds and memory allocation in
Mbytes-seconds to indicate the sum of resources over
time. If an LPAR is allocated with 1000 Mbytes memory
for the 1st minute followed by 2000 Mbytes for the next
minute, its memory allocation would be 180000 Mbytes-
seconds. Other reported items include average utilization
of large page pool, page swap in/out, average page rate,
total system time, total user time, etc. Report for file
systems includes device names, mount points, Mbytes
transferred, number of read/write operations, number of
opens, number of creates, and number of locks. The table
for disks reports the total number of disk transfers, total
number of read blocks, and total number of write blocks
for each disk partition. For network interfaces the total
number of I/Os and bytes transferred in Mbytes are
reported. These two tables are not shown in Figure 5 to
save space.

C. Transaction Accounting
 Transaction accounting differs from process accounting
and LPAR accounting in that account entities are not
known to the operating system due to the dynamic
features of individual transactions in a shared service
environment. As a result it is required to add calls in the
middleware and applications before and after each
transaction. The Application Response Measurement
(ARM) is a standard describing a common method for
integrating enterprise applications as manageable entities
[8, 9].

Figure 6 shows the JSP web page for transaction
accounting. The web page also illustrates how to enable
ARM service and authorize non-root users. We will
discuss how to instrument applications for transaction
accounting along with a report snapshot in section IV.

Figure 6 Web page for transaction accounting

III. MANAGEMENT AND PROJECT ASSIGNMENT

The management Web service is developed to manage
the accounting facility with operations such as creating
accounting files and defining new projects. It exports
underlying accounting and project control command line
interfaces through Web service operations acctctl()
and projctl(). Critical functions such as
createFile() are built as Web service operations.

Web services help integrate multiple steps into one
service operation. The defineProj4App() operation,
for example, is used to assign a predefined project to an
application when the application is running by a given user
or group. The operation includes six steps. First it opens
an existing administration file in a specified directory or
creates the file if it does not exist, then creates a
temporary file in which a UNIX sed append command is
stored. The execution of the sed command against the
original administration file creates a new administration
file. After a successful execution the original
administration file is renamed as the backup, the new
administration file is renamed as the current one, and the
temporary file is removed at the end. The resulting web
service operation hides the details from the user and thus
effectively eliminates the pain for a user to learn and use
the underlying accounting facility.

Figure 7 Web page for accounting facility management

Figure 7 shows the JSP page for accounting facility
management. It allows a user to perform operations such
as start accounting, stop accounting, check current
accounting status, create an accounting file with a
specified file size, etc. Many other operations and
descriptions are provided to help interactive users issue
management requests, such as manage the accounting
facility, enable ARM service, and authorize non-root
users.

Figure 8 Web page for project management

Figure 8 shows the web page for project management.
It is similar to the management page and uses the same
management Web service to export project control for the
accounting facility. In addition to define a project for an
application, it allows other operations such as add a new
project, get defined projects, get loaded projects, load
defined projects, query defined projects, etc.

IV. ARM TRANSACTIONS AND INSTRUMENTATION

The Application Response Measurement (ARM)
standard allows developers to extend their enterprise
management tools directly to applications. It offers a
comprehensive end-to-end management capability that
includes measuring application availability, application
performance, application usage, and end-to-end
transaction response time [8, 9]. The ARM standard is
promoted by the Open Group to maintain service quality
in workload management [10]. The IBM Enterprise
Workload Manager [11] uses ARM-instrumented
applications to provide users with a workload
management environment that monitors and reports
performance statistics.

As a standard, the ARM API [12] is made up of a set
of function calls, including arm_register_application(),
arm_register_transaction(), arm_start_transaction(), and
arm_stop_transactoin(). Using an ARM library to
instrument transactions inside an application, one can
measure transaction response time by reading system
clock at the beginning and the end of the transaction and
subtract the first reading from the second. To correlate
one transaction in an application with its sub-transactions
in other applications, the instrumented application calls the
arm_start_transaction() routine and receives a correlator
from the ARM library. The application then passes the
correlator to the next application when it initiates the
request for the sub-transaction. A correlator is an opaque
object to the outside world, and typically contains
information such as host name, IP address, application
ID, and transaction ID to uniquely identify the
transaction.

Figure 9 ARM-instrumented applications passing correlators

To classify transactions for advanced accounting in a
shared service environment, we typically generate account
class information at the edge of the network when a
request from the outside world is received. The class

information may be predefined based on URI or certain
policy, or derived from the registered/login user. The class
information is then stored in the returned correlator.

Figure 9 illustrates the passing of correlators among
three networked applications. At the edge of the network
application A receives a transaction request. It then calls
the arm_start_transaction() routine and receives correlator
C1, where the class information is stored. When
application A is ready to initiate the sub-request to
application B, it sends correlator C1 along with the
request. Upon receiving the request application B calls the
arm_start_transaction() routine and receives correlator
C2, in which the class information is retained. Application
B sends correlator C2 along with its own sub-request to
application C. The pattern continues passing correlators
from one application to another and retaining the class
information along with the transaction flow.

The AIX 5.3 operating system comes with an ARM
library. We developed three network programs that act as
an edge server, middleware server, and backend server,
respectively, to illustrate how they work together using the
ARM library for transaction accounting. All three server
programs communicate through IPC sockets. Helper
routines are used to randomly select an account class at
the edge server and to insert class information into a
correlator.

Listing 1 An ARM-instrumented code segment

#include <arm4.h>
...
arm_register_application(“applicationName”, NULL, 0,
NULL, &aId);
arm_start_application(&aId, “groupName”, “1234”, 0,
NULL, &applHandle);
arm_register_transaction(&aId, “transactionName”,
NULL, 0, &tranBuffer, &tId);
sk = prepareSocket(&socket, &readyfd, port_number);
for (;;) {

receiveMessage(sk, &readyfd, buffer);
memcpy(&parCorr, buffer, sizeof(parCorr));
...
arm_start_transaction(&applHandle, &tId, &parCorr,
 ARM_FLAG_BIND_THREAD, &tBuffer, &tHandle,
&corr);
...
memcpy(buffer, &corr, sizeof(corr));
sendMessage(backendHost, bport_number, buffer);
receiveMessage(sk, &readyfd, buffer);
...
sendMessage(frontendHost, fport_number, buffer);
arm_stop_transaction(&tHandle, ARM_STATUS_GOOD, 0,
 NULL);

}
rc = arm_stop_application(&applHandle, 0, NULL);

In addition to account class, the accounting facility

captures other names including the application group,

application name, and transaction name. Listing 1 shows a
simplified ARM-instrumented code segment for the
middle tier. The application name, application group, and
transaction name are defined in their corresponding ARM
routines at the point of application registration, starting the
application, and transaction registration, respectively.
During the execution they are captured in accounting
records created by the accounting facility.

The loop in Listing 1 receives a message, stores
account class in its parent correlator, and calls the
arm_start_transaction() before initiating the transaction.
After account class is copied into the returned correlator,
the correlator is sent to the backend host along with the
request. Eventually the middle tier receives the returned
message from the backend host and responds to the edge
server before calling the arm_stop_transaction() routine.

Account classes can be specified through transaction
identity properties or context properties. A property is a
<name, value> pair. Identity properties are used to specify
properties that never change values, and context
properties are used for information that changes over
time. Since individual transactions are carried out for
various account classes in a shared service environment,
the account class for each transaction should be specified
using transaction context properties. In ARM 4.0 API
context property names are defined in the transaction
buffer when registering the transaction and the value is
provided in another transaction buffer when calling
arm_start_transaction().

Listing 2 Code segment to define account class

#include <arm4.h>
...
const char *names[1] = { “EWLM:AIX:Account Class” };
arm_subbuffer_tran_identity_t tIden;
arm_subbuffer_t *sbarray[1];
arm_buffer4_t tranBuffer;

tIden.header.format = ARM_SUBBUFFER_TRAN_IDENTITY;
tIden.identity_property_count = 0;
tIden.context_name_count = 1;
tIden.context_name_array = names;
sbarray[0] = &(tIden.header);
tranBuffer.count = 1;
tranBuffer.subbuffer_array = sbarray;
...
rc = arm_register_transaction(&aId,
“transactionName”, NULL, 0, &tranBuffer, &tId);

Listing 2 illustrates how to define account class using a
transaction property. The identity property count is set to
zero, indicating that no identity property is specified. The
context property name for account class must be
“EWLM:AIX:Account Class” or its value won’t be
captured in its transaction accounting record. Note that
identity properties can be defined in the same buffer,
although we define none in the code segment.

Listing 3 Code segment to specify context property value

#include <arm4.h>
...
arm_subbuffer_tran_context_t tCtx;
arm_char_t *values[1];
arm_buffer4_t tBuffer;

values[0] = getClass(&parCorr);
tCtx.header.format = ARM_SUBBUFFER_TRAN_CONTEXT;
tCtx.context_value_count = 1;
tCtx.context_value_array = values;
sbarray[0] = &(tCtx.header);
tBuffer.count = 1;
tBuffer.subbuffer_array = sbarray;
...
arm_start_transaction(&applHandle, &tId, &parCorr,
 ARM_FLAG_BIND_THREAD, &tBuffer, &tHandle, &corr);

Listing 3 shows a code segment to specify account class
as a context property value. It gets the account class from
the parent correlator. The account class is stored in the
buffer which is passed in as a parameter when calling the
ARM arm_start_transaction() routine. Although both code
segments use only one sub-buffer, they can be easily
modified with multiple sub-buffers for multiple properties.
Since correlators are opaque, care is needed to store the
account class in a correlator so that there is no conflict
with the ARM library.

Once an application is ARM-instrumented, we need to
enable the ARM service and authorize non-root users.
This can be done through simple commands as specified
in the transaction accounting web page or through the
management web page. Because account class is passed
through correlators from one application to the next, the
accounting facility captures account class values for
individual transactions. Along with the application name,
application group, and transaction name, this in turn
enables report generation for transaction accounting using
ARM classes.

Figure 10 A partial transaction accounting report

Figure 10 shows a partial transaction accounting report
using the ARM-instrumented 3-tier programs. A
transaction accounting report includes the average

response time, total response time, total queued time, and
total CPU time for each combination of account class,
application group, application name, transaction name,
and transaction user name. The transaction user name
could be anything meaningful, for example, the host name
where the application was running on. A row with light-
blue (or grey) cells indicates a summary of its previous
rows. The working prototype demonstrates the first
known J2EE accounting application for transaction
accounting produced in a UNIX/Linux system. It
demonstrates transaction accounting in a networked
environment in which transactions flow through systems
across networks.

Figure 11 Transaction accounting report for Web server and

WebSphere Application Server

IBM HTTP Server and WebSphere Application Server
have been ARM-instrumented for IBM Enterprise
Workload Manager (EWLM). Figure 11 shows the
transaction accounting report for these two commonly
used applications. The first table at the top shows file
information, including the initial time and last time when
accounting records were written into the file, host name,
partition ID and name, etc. It can be seen from the report
that their ARM instrumentation does not include the
context property value for “ELWM:AIX:Account
Class” and therefore the account class in display is
“(blank)”. This is because they were ARM instrumented
for EWLM before the AIX Advanced Accounting facility
became available.

V. SUMMARY AND WORK IN PROGRESS

We discussed the design and implementation of the
J2EE accounting application in this paper. In addition to
traditional process accounting, the J2EE accounting
application handles LPAR accounting for dynamic LPARs
whose resources expand and shrink over time, and

transaction accounting for ARM account classes in a
shared service environment. A separate command line
utility was also developed to generate reports without a
Web environment. Both the command line utility and the
J2EE accounting application are working and available for
download through IBM AlphaWorks.

Future work includes the extensions to handle Linux
accounting systems, to store and retrieve records in/from
the optional database, and to create reports for a given
time period. The extensions to handle Linux systems and
use a database are required for usage-based billing in a
heterogeneous environment. Periodical or nightly jobs
would help convert and move accounting data to the
reporting server, and we expect a handy accounting
package once the extensions are implemented.

REFERENCES
[1] V. G. Hazlewood, “Unix Accounting Magic,” Sys Admin,

vol. 7, no. 2, pp. 11 – 13, February 1998.
[2] Silicon Graphics Inc., “Comprehensive System

Accounting,” Chapter 5, IRIX Admin: Resource
Administration, Document 007-3700-015, July 2003.

[3] Sun Microsystems, “Extended Accounting,” Chapter 7,
System Administration Guide: Resource Management
and Network Services. Part number 806-4076-10, 2002.

[4] L. Browning, “Advanced Accounting for AIX 5L Version
5.3,” IBM White Paper, July 2004, at http://www-
1.ibm.com/servers/aix/whitepapers/aix_accounting.pdf,

[5] IBM, “Understanding the Advanced Accounting
subsystem,” IBM document SC23-4882-00, August
2004.

[6] IBM, “Dynamic Logical Partitioning in IBM eServer
pSeries,” http://www-
1.ibm.com/servers/eserver/pseries/hardware/whitepapers
/dlpar.pdf, IBM White Paper, October 2002.

[7] T. Erl, “Service-Oriented Architecture: A Field Guide to
Integrating XML and Web Services,” Prentice Hall,
April 2004.

[8] M. Johnson, “Monitoring diagnosing application
response time with ARM,” Proceedings of the IEEE
Third International Workshop on System Management,
pp. 4 – 13, April 1998.

[9] The Open Group, “System Management: Application
Response Measurement (ARM) API,” Open Group
Technical Standard, July 1998.

[10] The Open Group, “Application Manageability and Quality
of Service,” http://www.opengroup.org/qos/app-
manageability.

[11] IBM, “IBM Virtualization Engine: IBM Enterprise
Workload Manager,” Version 1, Release 1, IBM Manual,
August 2004.

[12] The Open Group, “Application Response Measurement
(ARM) Issue 4.0 – C Binding,” Open Group Technical
Standard, 2003.

