RC23369 (W0410-063) October 11, 2004
Computer Science

IBM Research Report

A J2EE Application for Process Accounting, LPAR
Accounting, and Transaction Accounting

C. Eric Wu, William P. Horn
IBM Research Division
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, NY 10598

="/"—="S= Research Division
i _=__=?=_ Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. Ithas been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distributionoutside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g, payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
0. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home

A J2EE Application for Process Accounting,
L PAR Accounting, and Transaction Accounting

C. Eric Wu, Senior Member, |EEE and William P. Horn

Abstract—Accounting is critical for information
technology budgeting and chargeback. Traditional
accounting in UNIX/Linux systems is known as
process accounting, in which an accounting record is
created when a process ends. System administrators
then aggregate accounting records based on
individual users, groups, or projects. As Web and
application servers as well as databases handle
requests and transactions for multiple entities in
various Web applications and services, LPAR
accounting and transaction accounting become
increasingly critical for service providers in shared
resource environments. In this paper we present the
design and implementation of a J2EE accounting
application for resource usage metering. For process
accounting the resulting system can generate usage
reports by projects, by groups, by users, by
commands, or by a combination of these identifiers.
For dynamically changing partitions it generates
reports for shared resources including CPUSs,
memories, disks, file systems, and network interfaces.
For transaction accounting it generates reports based
on account classes provided that applications are
instrumented. It is the first known J2EE accounting
application for UNIX/Linux transaction accounting.

Index Terms—ARM transactions, resource usage,
project accounting, process accounting, transaction
accounting

I. INTRODUCTION

INFORMATION technology (IT) is usualy viewed as
critical to modern businesses and organizations. The
increases in user numbers, demands for new technologies
and complexities of computing environments has
frequently caused IT costs to grow faster than other costs.
As a result, organizations are often unable or unwilling to

C. Eric Wu is with IBM T.J. Watson Research Center, P. O. Box 218,
Yorktown Heights, NY 10598. He can be reached at 914-945-2629; fax 914-945-
2944; e-mail: cwu@us.ibm.com.

William P Horn is with IBM T.J. Watson Research Center, P. O. Box 218,
Y orktown Heights, NY 10598.

justify expenditure to improve services or develop new
ones. To understand whether an IT organization is doing
its best, it has to understand the true cost of providing a
service and manage those costs professionally. This in
turn requires accounting for computing resources.

Most UNIX and Linux systems today provide some
form of process accounting that records a collection of
information for each and every process completed by the
kernel into a file. The recorded information is typically
specified in a header file. Originated from either UNIX
Syssem V or BSD, the methodology of process
accounting on many UNIX variants was developed long
time ago, and the tools available are useful yet primitive.
An overview of process accounting can be found in [1].

Interval accounting and project accounting improve
process accounting in different ways. Interval accounting
is required because longrunning processes for
applications such as databases and web servers can run
for months without termination, resulting in significant
delays in accounting data collection. Interval accounting
enables intermediate accounting records to be produced
and collected a intervals specified by a system
administrator. A number of accounting records instead of
one will then be created periodicaly for a long-running
process.

Project accounting is a capability that records a project
identifier along with the process accounting data. A
project identifier is a tag defined by system administrator
and is associated with processes via project assignment
policies. Having process accounting capabilities available
on a version of UNIX does not guarantee the availability
of project accounting. There have been a number of
UNIX variants that provide project accounting, including
UNICOS Cray System Accounting (CSA) from Cray,
Irix Comprehensive System Accounting from SGI [2],
Solaris Extended Accounting [3] from Sun Microsystems,
and AIX Advanced Accounting from IBM [4, 5].

Recent advances in dynamic logical partitions (L PARS)
alow multiple, independent operating systems running in a
single server, one on each dynamic LPAR [6]. Asthe
workload of an operating system changes, resources
including CPUs and memory in the dynamic LPAR can

expand and shrink over time without requiring a reboot of
the operating system. If each account entity is assigned
with an LPAR, the accounting facility must provide
LPAR accounting to record the expansion and shrinkage
of computing resources for usage-based hilling over time.

When applications handle transactions for multiple
clients in a shared service environment, process
accounting or LPAR accounting cannot provide accurate
usage due to the lack of information on account entities. A
database in a Web environment, for example, may handle
al the requests on behaf of a loca user regardiess of
request origin. In this case only the Web server or the
application server can identify the users of its interna
transactions for accounting purposes. To provide accurate
accounting on resource usage, the account entity or class
must be passed along with transaction requests. The
ability to perform transaction accounting is critical in a
shared service environment, in which work occurs as
transactions flow through systems across networks.

In this paper we discuss the design and implementation
of the J2EE accounting application for AlX systems based
on its Advanced Accounting facility. The resulting J2EE
application is capable of generating reports for process
accounting, LPAR accounting, and transaction
accounting, with management operations and interfaces
for both program-to-program communication and human
interactions.

Il. A J2EE ACCOUNTING APPLICATION

As service oriented architecture [7] becomes more
popular, it makes sense to create a Web service for
resource utilization reporting. A Web service is sdf-
describing, in that Web Service Description Language
(WSDL) is used to describe service operations, including
the structure of its input and output parameters. Web
service clients do not need to have prior knowledge about
the operation APIs of the service. They typicaly learn
from the WSDL description of the service before invoking
its operations. Thus, WSDL descriptions eliminate the
potential problems resulting from changes in operation
API. The resulting Web services effectively aleviate the
problem for users to learn the underlying technology, i.e.
the AIX Advanced Accounting facility.

Figure 1 shows the overadl design of the J2EE
accounting application. There are two Web services. a
reporting Web service and a management Web service.
We use a Model-View-Control (MVC) design for easy
maintenance. The Web services provide the model with
business functions and handle the backend, including the
accounting facility, its accounting files, and an optiona
database where past records from various host systems
are accumulated and aggregated. A servlet is used as the

control module as well as the Web services' client to pass
operation requests from users to the Web services, and
deliver operation results as Java beans. A number of Java
Server Pages (JSPs) are developed for presentations and
human interactions. Alternatively a client could be a
program that communicates with the Web service directly.

J2EE Container
Web Services for Entity
Reporting and Beans Nightly
management database Process,
Transfer,
& store
Action handler

Servlet [Action handler

Action handler

@

Accounting file
AIX

Advanced |Accounting file

Accounting
Accounting file

JSPs Beans

Figure 1 Architecture of the J2EE Accounting Application

The reporting Web service is responsible to aggregate
accounting records and generate reports based on user
requirements. The management Web service is developed
to manage the accounting facility with operations such as
“start accounting”, “stop accounting”, “check status’, and
will be discussed in the next section.

The reporting Web service defines and implements
aggregate routines for process accounting, LPAR
accounting, and transaction accounting. The routines for
process and transaction accounting are relatively
straightforward, while the ones for LPAR accounting are
partitioned to get satistics for CPU & memory, file
systems, disks, network interfaces, etc., one for each
resource category. Two more operations are used to get
the names of the accounting files currently available in the
accounting facility, and to get accounting file information
such as the timestamps when it was first and last
accessed, host name, partition name and ID, etc.
Typicaly accounting file information is displayed at the
beginning in each report.

A. Process Accounting

Figure 2 shows the web page for process accounting
where a user can use a browser to interact with the
reporting Web service and submit requests. The JSP web
page lists all accounting files currently available in the
accounting facility. A user sdlects accounting files and the
report type, which could be by project, by group, or by
user. An optional project definition file may be provided

to convert project IDs to more meaningful project names.
Reports can aso be generated by a combination of
project, group, user, and command, as shown in the lower
part of the snapshot.

imci +) o (2 #2 C Samch Fevortm W vede B3 (3 o 00 &

] Tk . T O g ol B 0
= i cowch uab -

Process Accounting

Coogh o ke & | B ockod i oproms & I Duraa

1 Blas el thee repon
i e Y Ay W i

Szimgh repor
Ry Projece

By Urrap
=By Liger

optioual propdcl Gls: ecprojcipojdal
Sk i e

You can alan spscify koo m o e couring, which could T a oo o
of By Projevi. By Oroeps, By Users, and By Conmmeds. For eammple, iF ome
chosans Hry Prajacis By Linars, ace aereiag will be performed Far asch
pregect, which is further divided For cach wser. The teat ingul frdd Sollowing
wach salaction ls used o specify m 10k or & commennd whas "Far o spoclSe ..." i
wekeiod

By Prefents

By G

Foy 1wy

oy Correnans
5 ple

= prujeci_ s
= gep_id
= ueer_id:

= posienant

[am proemn ccommarm g sopmn 1

A i it

Figure 2 Web page for process accounting.

Figure 3 shows a process accounting by-user report in
which accounting file information is omitted. It reports for
each user the total elapsed time, total thread elapsed time,
CPU time, local and remote file I/O, disk page, real page,
etc. If a combination of by-project, by-group, by-user,
and by-command is used, e.g. by-user and by-command,
each row in the table would be further divided into a
number of lines, one for each command the user has
issued. The interface also allows user to specify a specific
identifier (e.g. a specific user with a specific project) or
command for report generation.

User requests are carried out by the reporting Web
service through the servlet, which is implemented as the
client of the Web service and could be ingaled in a
different system to interact with interactive users.

i Elspsed Time Thread Elapsed CPU Time Lacsd File 10 Other File 10
i 8 bl faecs) Time [ees) faecs) (MBS [Mls|
dlioal | e g IMEWHT LESIEN L4TOR1A 0266301

(16d)
diswrl ey 5 0 MW B R S 3000
o AT 18088202065 LEE 20065 J96.BRISS1 4206 L0k 5
th(BS96) 10734 279405031 IZTR 405031 TA.B0093S| GAEMAN 140010237
Toat{l) | Sl 1521525 1521525 L5237 S4T515 0061119
Inkk Page BeslPage VieouslPage Loesl Secket i Remote Socket 10

e Socs ety Seen (M) (i)

=

“"El'l';g.fl 106 00 101440 287710 1L61936E 053029

i['““:.']' gl 1] 00 SH0EMO0 4FTTTERD 00 184 434516
rh (B6GE) | L0734 00 sEIIE0 CIERTEN 00 0621458

st | 902 an S| 330 LARETE]

Figure 3 Report by users for process accounting

The reporting Web service uses Java NIO mapped files
for high performance file access. Byte order, i.e. big-
endian and little-endian, can be specified based on
machine architecture in Java NIO mapped files. The
choice alows us to run command line utilities and read
AlX advanced accounting files on Intel based PCs, and
will be helpful for future expansions in a heterogeneous
environment.

B. LPAR Accounting

LPAR accounting is important when account entities
use individual logicd partitions. Since each partition
expands and shrinks over time based on its workload and
needs, the accounting facility must capture these changes
of resource alocation. LPAR accounting report relies on
the reporting Web service to aggregate accounting records
for four types of resources: CPU & memory, file systems,
disks, and network interfaces. For systems with Power 5
processors and the Advanced Power Virtudization
package, resources aso include virtual SCSI targets and
clients.

T LPAR Acesunting - Micresoft stemet Explorer] =]
Me BHIE Wea Felils Toos e g
Groet -+ 0 (2] [2 v Tt @ e & G500 S

] N e wa D B oot van iad Aeoouniing (Bar_fie_achion po W L *
Cargire | « fsmvchvel = @D D biocked B tions 4

Logical Partition Accounting

LEAR aceoliititg o crincal when amingle logioal paminods skare & plivacal
diachime, Fasonness sich as the stmber of CPUS fivd ey s22e 10 4 logical
partitzon may shasge aver time

8 r . fivess N <o SRR HTETval & iy 0 pot LPAR i reparts, To
T o st nterval Aceomnng, réder 1o the laar oo 1 0 wsnags el
web pape for natem insmuctions.

Thra aire corrently & sdvansad aceountng fibes in e AIX Advancad
Aceniiting fecalony. Highlaht e o fiore aceomming files, wlee] neeaninees,
arxl then click on the botion to get LPAR stmtistics. The resources coelid be CPHU
and memory. file sysiems, netoork imterfaces, and disks for the selecied

i accounting files. 1 your system is o POWERS based system with Advanced
Bower Virualizabon package. LPAR accounting reports also inchede VECE]
rarpeis and cliema

Salocraceositing Bles -~ Selaet pasimiems

ochdsin B CCPU mod Memory CFile Systems
; & Metnork [nberfaces © Disks
: CVRCE] Target CWVRCE] CHenns
a5 Al of Above
[get LOAR aoanueting repor] a
il W e

Figure 4 Web page for LPAR accounting

Figure 4 show the JSP web page for LPAR accounting.
The JSP page requests the list of available accounting files
through the servlet, which in turn contact the reporting
Web service for the list. A user then selects accounting
files and resource report before requesting the report.
Figure 5 shows an LPAR accounting report for CPU &
memory, and a partia report for file systems.

CPU and Memory

| Average. Page FPage
Progest Cennt CPU Secs Menary Ublizstion nf, Swap Swap AR TagsRuln (or
e MEhvie Secs Secomd)
Large Fage Fool s e
00300504 | 8,761 TOR4ED WA Hd14 G QA1 ISR L
Project Comt I Time NV it Time SProcess Tine UProgess Ioterrapt Number Of
i} {socs) (sees) (sees) Time(secs) Time (secsh =
1] i%0 S136A2905D, SL9TIEAT| NTT.TG6EE2S 21041536 LE6B405G, 2951915 REEE
Fibe Systems
. DF5 MBrtes Numbersf Number of
% .
Fruj_ID Count Do Namie Meunl Filol tppe TramDerred Reade Wi ﬂl-“"‘1
35 'dev helfrar v G365 168 BTEISED: 3&51150
I eapeersplol0l-fikrm | Gndre 13 LETLT IED 130
35 fewlumeimapslantn femete | remoe | 19 0 a0 ual
14 dars e remoiEnd | 13 1611161 1740 144
185 Jerporbisplalll-fsXicona | Smmiwu | 13 4271706795199 3.430TMIET T1E48.0
&5 dev b1 {opi lopl 041641 L77.0 56.0
frmdpars 12

5 lexpeet'sp Inli1-lpars 1361373 Lizd 1414

Figure 5 LPAR accounting report for CPU, memory, and file systems

LPAR accounting report for CPU & memory includes
CPU dlocation in seconds and memory dlocation in
Mbytes-seconds to indicate the sum of resources over
time. If an LPAR is alocated with 1000 Mbytes memory
for the 1™ minute followed by 2000 Mbytes for the next
minute, its memory alocation would be 180000 Mbytes-
seconds. Other reported items include average utilization
of large page pool, page swap in/out, average page rate,
total system time, total user time, etc. Report for file
systems includes device names, mount points, Mbytes
transferred, number of read/write operations, number of
opens, number of creates, and number of locks. The table
for disks reports the total number of disk transfers, total
number of read blocks, and total number of write blocks
for each disk partition. For network interfaces the total
number of 1/Os and bytes transferred in Mbytes are
reported. These two tables are not shown in Figure 5 to
save space.

C. Transaction Accounting

Transaction accounting differs from process accounting
and LPAR accounting in that account entities are not
known to the operating system due to the dynamic
features of individual transactions in a shared service
environment. As a result it is required to add callsin the
middleware and applications before and after each
transaction. The Application Response Measurement
(ARM) is a standard describing a common method for
integrating enterprise applications as manageable entities
(8, 9].

Figure 6 shows the JSP web page for transaction
accounting. The web page aso illustrates how to enable
ARM service and authorize non-root users. We will
discuss how to instrument applications for transaction
accounting along with a report snapshot in section V.

! Transaction Accountig - Mecrosoft intemiet Explorer

fie Edf Vien Fvoies Took Hep I

Bt - o] & (b 0 sewch o e i vedn £ () L 3
A hip s mieressa wamsOnbmcomWhaned Ao ing Sransacrion_fle_aon.go
o g Serch et - B 44 bocked Bl oo

i Transaction Accounting %

Goghe=

Transaction sccoamting is critical for shared resowrces such as application
servers and databases. Thers are currestly 6 sdvesced sceonmiiag files in fhe
ATX Advanced Acvourting fedliny. Highlight oe or more socoustng files sad
then click ca the brtton o gef ransaclion aocomting pepors.

I_ gt LG aciion acoouning mpors]

Eaarfaacstaoridaial B

Enable ARM for Tramsaction Accouniing

Apphialon Respoiss bMeasiresienl [ARM) hbrary sipport = avmlabile m ATX
5.3 rat i disablled by default. To enable ARM support, von con e tha SMIT
coatnisnd “anit ewln® o enable 5 or issee $e command:

edsbdntenint iy -

.-ﬂ W Intemet

Figure 6 Web page for transaction accounting

[1l. MANAGEMENT AND PROJECT ASSIGNMENT

The management Web service is developed to manage
the accounting facility with operations such as creating
accounting files and defining new projects. It exports
underlying accounting and project control command line
interfaces through Web service operations acctct! ()
and projctl(). Criticd functions such as
creat eFi | e() arebuilt as Web service operations.

Web services help integrate multiple steps into one
service operation. The def i nePr oj 4App() operation,
for example, is used to assign a predefined project to an
application when the application is running by a given user
or group. The operation includes six steps. First it opens
an exigting administration file in a specified directory or
creates the file if it does not exist, then creates a
temporary file in which a UNIX sed append command is
stored. The execution of the sed command against the
origina adminigtration file creates a new administration
file. After a successful execution the origind
adminigtration file is renamed as the backup, the new
administration file is renamed as the current one, and the
temporary file is removed at the end. The resulting web
service operation hides the details from the user and thus
effectively diminates the pain for a user to learn and use
the underlying accounting facility.

D tcvanced Accounting Faciliy Management - Wicrouadt Infemes Ceploner

Fe Fof Yew Foviries Took lieln ir

\ . =
l._}s.-_a. - u (3] Fy) seach s Wl e v o B - , §

e Vg o L DT CGT A i OO e T i =
Carehir = fRGeachives + @ BH2 Hodod | B opoore

Management of AIX Advanced Accounting 2

The WSDL of the AAA mazagement semvice can be fomd here for progrom-in-
program sommaications, This page provides accesses for hmnam mieractions
1 Click am ene of the following lumons for AAN manigemms ogeration

Select operabon
i chnek el
L Shafl actoliting

i shop pocommizeg

oo roes |

EE the facility is not reoning, vow need i bave o least one acsouming file
avarilahli hifire starting e scomating ciliry, Creans ome if sone 5 avaslable

| Operations for Accounting Files

i Tocreale an acsouming fle, spesify e Glerams @ varascet and fle size &
i MByes dnd hen click the “aresn Gle® mos

size in MByies: i ik |

' : & e

i filename:

Figure 7 Web page for accounting facility management

Figure 7 shows the JSP page for accounting facility
management. It allows a user to perform operations such
as start accounting, stop accounting, check current
accounting status, create an accounting file with a
specified file size, etc. Many other operations and
descriptions are provided to help interactive users issue
management requests, such as manage the accounting
facility, enable ARM service, and authorize non-root
users.

T Protect warsgement - Wotanctt Inbsmet Equarnsr
it Vs Faworie Tool Hep &
Frvoam uen) - L4

.) PP e L O M A 0T o L ¥
~ WrEmwchwee - B Bhaeobloced

an.:n_-':’._m

Cuoghes

Project Management

Clack o oz of fhie ol boavieg bumis e pregect Sanapeai=l operalis
Projects can b defined by edicag ihe ‘sicprogsctpropded file

'|'_E:Im‘|r:dr|wd-._ :II_ L‘Hdﬂ'\-ll’“ﬂpv\pn-: |

| et defired :\mr':!!

Add a New Froject
premest daiw GRS S
[R5 H 0 s

| detinm progect

eyl Jireeiory;

Tiefine & Project for an Application

Femnensber oo load o, click oo the load bumos) fi2 sew rale afier defiens
presect for an apphicotion

opplication:

dlj i (ri=re

promect e

Figure 8 Web page for project management

Figure 8 shows the web page for project management.
It is similar to the management page and uses the same
management Web service to export project control for the
accounting facility. In addition © define a project for an
application, it alows other operations such as add a new
project, get defined projects, get loaded projects, load
defined projects, query defined projects, etc.

IV. ARM TRANSACTIONS AND INSTRUMENTATION

The Application Response Measurement (ARM)
standard alows developers to extend their enterprise
management tools directly to applications. It offers a
comprehensive end-to-end management capability that
includes measuring application availability, application
performance, application usage, and end-to-end
transaction response time [8, 9. The ARM standard is
promoted by the Open Group to maintain service quality
in workload management [10]. The IBM Enterprise
Workload Manager [11] uses ARM-instrumented
applications to provide users with a workload
management environment that monitors and reports
performance statistics.

As a standard, the ARM API [12] is made up of a set
of function cals, including arm_register_application(),
arm_register_transaction(), arm_start_transaction(), and
arm_stop_transactoin(). Using an ARM libray to
instrument transactions inside an application, one can
measure transaction response time by reading system
clock at the beginning and the end of the transaction and
subtract the first reading from the second. To correlate
one transaction in an application with its sub-transactions
in other applications, the instrumented application calls the
arm_start_transaction() routine and receives a correlator
from the ARM library. The application then passes the
correlator to the next application when it initiates the
request for the sub-transaction. A correlator is an opaque
object to the outside world, and typicaly contains
information such as host name, 1P address, application

ID, and transaction ID to uniquely identify the
transaction.
Measurement Measurement Measurement
Agent Agent Agent
ARMAPI ARM API ARM API
A | A A | A [A
start T1 stop T1 start T2 stop T2 start T3 stop T3
(Cor C1) (Corr C2)
Copr C1 Cgr G2
A v
(T1), Comr C1 (T2), Corr G2
Application A ¢ |App|ication Bl | Application C

Figure 9 ARM-instrumented applications passing correlators

To classify transactions for advanced accounting in a
shared service environment, we typicaly generate account
class information at the edge of the network when a
request from the outside world is received. The class

information may be predefined based on URI or certain
policy, or derived from the registered/login user. The class
information is then stored in the returned correlator.

Figure 9 illustrates the passing of correlators among
three networked applications. At the edge of the network
application A receives a transaction request. It then calls
the arm_start_transaction() routine and receives correlator
Cl1l, where the class information is stored. When
application A is ready to initiate the sub-request to
application B, it sends corrdlator C1 aong with the
request. Upon receiving the request application B cals the
arm_start_transaction() routine and receives correlator
C2, in which the class information is retained. Application
B sends correlator C2 aong with its own sub-request to
application C. The pattern continues passing arrelators
from one application to another and retaining the class
information along with the transaction flow.

The AIX 5.3 operating system comes with an ARM
library. We developed three network programs that act as
an edge server, middleware server, and backend server,
respectively, to illustrate how they work together using the
ARM library for transaction accounting. All three server
programs communicate through IPC sockets. Helper
routines are used to randomly select an account class at
the edge server and to insert class information into a
correlator.

Liging 1 An ARM-instrumented code segment
#i ncl ude <arnmd. h>

armregi ster_application(“applicationName”, NULL, O,
NULL, &ald);
arm start_application(&ald,
NULL, &appl Handl e);
armregi ster_transaction(&ald,
NULL, O, &tranBuffer, &tld);
sk = prepareSocket (&socket,
for (5:) {
recei veMessage(sk, &readyfd, buffer);
mencpy(&par Corr, buffer, sizeof(parCorr));

“groupName”, “1234”, 0,

“transacti onNane”,

& eadyfd, port_nunber);

arm start_transacti on(&appl Handl e, &t 1d, &parCorr,
ARM FLAG BI ND_THREAD, &t Buffer, &tHandle,
&corr);

mencpy(buffer, &corr, sizeof(corr));
sendMessage(backendHost, bport_nunber,
recei veMessage(sk, &readyfd, buffer);

buffer);

sendMessage(frontendHost, fport_nunber, buffer);
arm stop_transaction(& Handl e, ARM STATUS_GOOD, O,
NULL) ;
}

rc = arm.stop_application(&appl Handl e, 0, NULL);

In addition to account class, the accounting facility
captures other names including the application group,

application name, and transaction name. Listing 1 shows a
smplified ARM-instrumented code segment for the
middle tier. The application name, application group, and
transaction name are defined in their corresponding ARM
routines at the point of application registration, starting the
application, and transaction registration, respectively.
During the execution they are captured in accounting
records created by the accounting facility.

The loop in Listing 1 receives a message, stores
account class in its parent corrdlator, and calls the
arm_start_transaction() before initiating the transaction.
After account class is copied into the returned correlator,
the correlator is sent to the backend host dong with the
request. Eventually the middle tier receives the returned
message from the backend host and responds to the edge
server before calling the arm_stop_transaction() routine.

Account classes can be specified through transaction
identity properties or context properties. A property is a
<name, value> pair. Identity properties are used to specify
properties that never change vaues, and context
properties are used for information that changes over
time. Since individual transactions are carried out for
various account classes in a shared service environment,
the account class for each transaction should be specified
using transaction context properties. In ARM 4.0 API
context property names are defined in the transaction
buffer when registering the transaction and the vaue is
provided in another transaction buffer when calling
arm_start_transaction().

Ligting 2 Code segment to define account class
#i ncl ude <arnmd. h>

const char *nanmes[1] = { “EW.M Al X: Account Cl ass” };
arm subbuffer_tran_identity_t tlden;

arm subbuffer_t *sbarray[1];

armbuffer4_t tranBuffer;

tlden. header. format = ARM SUBBUFFER_TRAN_| DENTI TY;
tlden.identity_property_count = O;

tl1den. cont ext _name_count = 1;

tlden. context _nane_array = nanes;

sbarray[0] = &(tlden. header);

tranBuffer.count = 1;

tranBuf fer. subbuffer_array = sbarray;

rc = armregister_transaction(&ald,
“transactionName”, NULL, 0, &tranBuffer,

&t d);

Listing 2 illustrates how to define account class using a
transaction property. The identity property count is set to
zero, indicating that no identity property is specified. The
context property name for account class must be
“BEWLM Al X: Account O ass” or its vaue won't be
captured in its transaction accounting record. Note that
identity properties can be defined in the same buffer,
although we define none in the code segment.

Ligting 3 Code segment to specify context property value
#i ncl ude <arnmd. h>

arm subbuffer_tran_context_t tCtx;
arm char _t *val ues[1];
armbuffer4_t tBuffer;

val ues[0] = getCl ass(&parCorr);

t Gt x. header . format = ARM SUBBUFFER_TRAN_CONTEXT;
t Ct x. cont ext _val ue_count = 1;

t Ct x. cont ext _val ue_array = val ues;

sbarray[0] = &(tCtx.header);

tBuffer.count = 1;

t Buf f er. subbuf fer_array = sbarray;

arm start_transacti on(&ppl Handl e, &tld, &parCorr,
ARM FLAG BI ND_THREAD, &tBuffer, &t Handle, &corr);

Listing 3 shows a code segment to specify account class
as a context property value. It gets the account class from
the parent correlator. The account class is stored in the
buffer which is passed in as a parameter when calling the
ARM arm_start_transaction() routine. Although both code
segments use only one sub-buffer, they can be easily
modified with multiple sub-buffers for multiple properties.
Since correlators are opague, care is needed to store the
account class in a correlator so that there is no conflict
with the ARM library.

Once an application is ARM-instrumented, we need to
enable the ARM service and authorize non-root users.
This can be done through simple commands as specified
in the transaction accounting web page or through the
management web page. Because account class is passed
through correlators from one application to the next, the
accounting facility captures account class values for
individual transactions. Along with the application name,
application group, and transaction name, this in turn
enables report generation for transaction accounting using
ARM classes.

J;;""’ Respanie Quiwd CPL
- Tims Thim Tiww
(mmeced mecs) (mescr)

Aceoml Appleades

Cliss Aalaien g s Tramepction 17Nam Coont

{mn)

y . ‘ppl Edp= : - e - .
153 AC3 Griogg 2 ¥ Eipr T2 mkre) 4 Erha} 1341 0 13313

Remue

Clam_ACH Grog 1 RN Tt - 4 M O W B
hrl Eiye

Clam ACH Grogp 2 L"_I'_’ EigsTrmn | miere 4 1174 W &N MTM

Tlam ACH Grog 2 “_ff;:'l" Filige Tra | 4 i T T T I
%ol Eil

{m #07 Cromp I-;I_.I,._:E EdpeTrw 3 miere! 3 |k S A

Chiws AT Giroag 2 ":';’:I" e Tran 3 PSR T S T Y 1t

. : Ayl Edge . Sk ¥

(AL Gromg 1 B oM S a0 2
= o Lemer

Cliss ACT Givig 2

Appd bliddle | Azpl hiddle
: Tt : i

feme

e 4807 L

Figure 10 A partia transaction accounting report

Figure 10 shows a partial transaction accounting report
using the ARM-instrumented 3-tier programs. A
transaction accounting report includes the average

response time, total response time, total queued time, and
total CPU time for each combination of account class,
application group, application name, transaction name,
and transaction user name. The transaction user name
could be anything meaningful, for example, the host name
where the application was running on. A row with light-
blue (or grey) cells indicates a summary of its previous
rows. The working prototype demonstrates the first
known J2EE accounting application for transaction
accounting produced in a UNIX/Linux system. It
demonstrates transaction accounting in a networked
environment in which transactions flow through systems
across networks.

File Infarmation
Fie T Tiens Lot Tiw Hoa Coee | Banltion | S Sasiee
X am Nummber
arimmckiaeribla o i o FAARZ AT s WL a BN e anmecs
Statictics
Fxch roer with bedd Ser vvlurs s Tkt e cel indicaies o wmnary Fee in ifes reponi. Erpey shle indicoios e fack of requesind
records :x arcounkry filn
Average
Respias wil ir
] Rogpuase " e Gun

gl tion Grop '.liilr-u:-i.ﬂ Tioe T Thse

[F S TR SR S]]

Tragsades [Vame Coani

Chins Tiine

|y
[5a)]

Urbwrvina WabRequo {Hak) 4 140 Bl o 14
Fiagin

F SERVER

Apacho] 528 | Unix|

L]

TBA HTTF SERVER A6
Mak) = Wiliavieg WebRejasit B MM EEA 50 1
et 1.113 {Taix)
Phaghs
IR HITF SEEVER L8 il
iank) IR | e BN ENA 40 1
st Finda
BN _HTTF SEENERLATED
ank = 1445011 [ie] 20 10
o Apailie1. 138 (Talx) i
bl WV Wk pher IRl Bk 02 a3 [8]
alank) aprrl Wby LRl 5] [E RS R B it}
|\:ilL_l armer | '“u-l&ih‘rr [5) [ERIEL B (e L1} [IT]

Figure 11 Transaction accounting report for Web server and
WebSphere Application Server

IBM HTTP Server and WebSphere Application Server
have been ARM-instrumented for IBM Enterprise
Workload Manager (EWLM). Figure 11 shows the
transaction accounting report for these two commonly
used applications. The first table at the top shows file
information, including the initial time and last time when
accounting records were written into the file, host name,
partition ID and name, etc. It can be seen from the report
that their ARM instrumentation does not include the
context property value for “ELVWM Al X: Account
C ass” and therefore the account class in display is
“(blank)”. This is because they were ARM instrumented
for EWLM before the AIX Advanced Accounting facility
became available.

V. SUMMARY AND WORK IN PROGRESS

We discussed the design and implementation of the
J2EE accounting application in this paper. In addition to
traditional process accounting, the J2EE accounting
application handles LPAR accounting for dynamic LPARs
whose resources expand and shrink over time, and

transaction accounting for ARM account classes in a
shared service environment. A separate command line
utility was also developed to generate reports without a
Web environment. Both the command line utility and the
J2EE accounting application are working and available for
download through IBM AlphaWorks.

Future work includes the extensions to handle Linux
accounting systems, to store and retrieve records in/from
the optional database, and to create reports for a given
time period. The extensions to handle Linux systems and
use a database are required for usage-based hilling in a
heterogeneous environment. Periodica or nightly jobs
would help convert and move accounting data to the
reporting server, and we expect a handy accounting
package once the extensions are implemented.

REFERENCES

[1] V. G.Hazlewood, “Unix Accounting Magic,” Sys Admin,
vol. 7, no. 2, pp. 11— 13, February 1998.

[2] Silicon GraphicsInc., “Comprehensive System
Accounting,” Chapter 5, IRIX Admin: Resource
Administration, Document 007-3700-015, July 2003.

[3] Sun Microsystems, “Extended Accounting,” Chapter 7,
System Administration Guide: Resource Management
and Network Services. Part number 806-4076-10, 2002.

[4] L. Browning, “Advanced Accounting for AIX 5L Version
5.3, IBM White Paper, July 2004, at http://www-
1.ibm.com/servers/aix/whitepapers/aix_accounting.pdf,

[5] IBM, “Understanding the Advanced Accounting
subsystem,” IBM document SC23-4882-00, August
2004.

[6] IBM,“Dynamic Logical Partitioningin IBM eServer
pSeries,” http://www-
1.ibm.com/servers/eserver/pseries/hardware/whitepapers
[dipar.pdf, IBM White Paper, October 2002.

[7] T.Erl, “Service-Oriented Architecture: A Field Guideto
Integrating XML and Web Services,” Prentice Hall,

April 2004.

[8] M. Johnson, “Monitoring diagnosing application
response time with ARM,” Proceedings of the IEEE
Third International Workshop on System Management,
pp. 4—13, April 1998.

[9] The Open Group, “System Management: Application
Response Measurement (ARM) API,” Open Group
Technical Standard, July 1998.

[10] The Open Group, “Application Manageability and Quality
of Service,” http://www.opengroup.org/qos/app-
manageability.

[11]IBM, “IBM Virtualization Engine: IBM Enterprise
Workload Manager,” Version 1, Release 1, IBM Manual,
August 2004.

[12] The Open Group, “Application Response Measurement
(ARM) Issue 4.0 — C Binding,” Open Group Technical
Standard, 2003.

