
RC23377 (W0404-063) April 9, 2004
Computer Science

IBM Research Report

Handling and Profiling the Increasingly Large and Complex
Memory Allocation Patterns of the 64 Bit Era

Ulrich Finkler
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Handling and Profiling the Increasingly Large and Complex Memory

Allocation Patterns of the 64 bit Era

Ulrich Finkler∗

May 5, 2004

Abstract

The transition from 32 bit to 64 bit processors
caused a sudden increase in memory use for a vari-
ety of workloads. Additionally, object oriented pro-
grams and advanced data structures predominantly
use small memory blocks with complex allocation
patterns. The increasing size and complexity of allo-
cation patterns has exposed limitations in the scala-
bility and performance of memory allocators. BFM,
the allocator presented in this paper, was motivated
by such limitations observed in the processing of
VLSI designs.

BFM provides low memory overhead (best fit allo-
cation) and competitive performance. Its worst case
complexity, O(log(N)) with small constants, holds
not only amortized, but for each individual opera-
tion. N is the number of heap operations performed
in the past. Thus it ensures the absence of patho-
logical cases and is well suited for applications that
wish to control response times.

Together with the allocator, a tracing infrastruc-
ture is presented that allows to plot memory use over
execution time for every call chain. The overhead
for tracing is very low such that tracing of multi-
hour and multi-GB runs is feasible without moving
to much larger machines.

In addition to the description of the data struc-
tures and algorithms of the allocator and tracer,
experimental comparisons with the glibc allocator,
Hoard and the IBM r©AIX r©1 allocator are pre-
sented, along with experimental results of tracing.

∗IBM T.J. Watson Research Center, Route 134, Yorktown
Heights, New York 10548.

1IBM and AIX are registered trademarks of International
Business Machines Corporation in the United States, other
countries, or both.

1 Introduction

With the introduction of 64-bit processors a hard
barrier for memory use by a single process fell, re-
moving a critical bottleneck for a variety of applica-
tions, as for example VLSI layout processing. Now
there are SMP machines with hundreds of GB of
main memory and programs that use such amounts.
Additionally, the transition to 64-bit increases mem-
ory waste in allocators relative to the actual memory
use by the application since the size of pointers dou-
bles while string, integer and floating point variables
maintain their size.

Furthermore, object oriented programs and ad-
vanced linked data structures allocate memory in
large numbers of small blocks in complicated pat-
terns. The combination of larger core memories and
more complex allocation patterns exposed bottle-
necks in memory allocation.

Performance variations in memory allocation are
mitigated by the fact that an application spends only
a fraction of its time with allocation, but differences
in memory usage are fully exposed. Main memory is
a dominating cost factor for large machines. Mem-
ory waste limits not only the capacity of a single
process but also has an impact on the usable num-
ber of concurrent large applications and threads.

The allocator presented in this paper was initially
motivated by the observation of performance prob-
lems in VLSI layout processing applications on AIX.
One of the design goals was to ensure the absence of
pathological behavior. Later we found that out of a
selection of allocators on AIX and Linux, each had
cases with a problematic behavior.

The glibc allocator exhibited already in a 32-bit
environment excessive runtimes with certain alloca-
tion patterns. The average time for a malloc/free
pair varies by a factor 200 and more. Thus, an ap-

1

plication spending on one input about 1 % of its time
in allocation may increase its runtime by a factor of
3 on a similar input. Such a case was encountered
with a large VLSI processing application, turning an
overnight execution into days. On the other hand
the glibc allocator is fairly memory efficient.

AIX (4.x to 5.1) provides two flavors of allocator,
the default allocator and a ’bucket’ allocator. The
default allocator showed no excessive execution time
increases, but the handling of small blocks is consis-
tently slow and memory usage not always optimal.
The AIX ’bucket’-allocator treats small blocks more
efficiently, but occasionally requires even more mem-
ory than the default allocator.

We also took the Hoard allocator [4] into consid-
eration. The experiments show that Hoard is effi-
cient across all experiments. But the Hoard alloca-
tor showed cases of significant memory waste similar
to the AIX bucket allocator.

BFM, the allocator presented in this paper, com-
bines provably good worst case performance and low
memory usage without sacrificing performance in
common cases. It provides (almost) best fit alloca-
tion and a worst case complexity of O(log(N)) per
operation, not only amortized. Its performance and
memory usage for all investigated test patterns were
competitive with the best results of the four tested
alternatives.

Section 2 discusses the data structures of the BFM
heap and section 3 covers experiments that compare
BFM to the two flavors of the AIX allocator, the
Hoard and the glibc allocator. In addition to the
actual heap structure, a memory tracer for BFM is
presented in section 4 that allows to plot memory
usage over the time line for every call chain. The
tracers execution time and memory overhead is suf-
ficiently small that tracing of multi-hour and multi-
GB runs is feasible without moving to much larger
machines. This is particularly beneficial if the un-
traced application is already testing the limits of the
largest available machines.

2 Data Structures

The BFM heap structure consists of two compo-
nents. The first component handles larger blocks
of memory and is based on a pair of binary trees
(indexed fit [5]). It implements a best fit allocation

with immediate coalescing.

The second component handles small blocks and is
based on bucketing. It implements a best fit scheme
with ’group-wise recombination’, i.e. a block with
minimal waste is used out of a limited selection of
sizes but blocks are not coalesced until a consecutive
group of blocks is free.

Neither of the two basic schemes is new, but the
specific implementation provided by BFM reduces
the performance disadvantage of best fit schemes for
simple patterns and avoids the sometimes subopti-
mal memory usage of bucketing schemes.

The two different coalescing schemes fit the differ-
ent properties of small and large blocks [5][14][15].
The allocator performance on small blocks has the
largest impact (allocation time versus usage time)
on the total execution time. Small blocks are used
frequently and the time to initialize and use a small
block is often in the order of magnitude or less than
the cost of its allocation and deallocation. The effi-
cient (constant time) group-wise coalescing depends
on high usage rates and a limited number of different
sizes to avoid unacceptable external memory waste.
The for this case critical internal memory waste is
low.

The tree-based immediate coalescing spends more
time to reduce memory waste for less frequent allo-
cations with a larger variation in block size but this
is mitigated by the fact that the initialization and
usage time of a large block is typically larger than
the allocation cost.

2.1 The Bucket Component

All blocks smaller than a given threshold – we chose
64*sizeof(void*) – are handled in the bucket com-
ponent. Using a lookup table the size of a request
is matched to a bucket such that memory waste is
less than a certain threshold. For example requests
of sizes smaller 6*sizeof(void*) are matched exactly
and all blocks between 56 and 63 sizeof(void*) are
mapped to 63*sizeof(void*). The choice of different
tables allows to reduce the memory waste at the cost
of an increasing number of buckets and thus a lower
likelihood of reuse and vice versa.

Figure 1 shows the structures of the bucket com-
ponents. The size in pointers is used to obtain from
the first table an index into a second table, i.e. the
the first table determines which fields in the second

2

3 51 2 4 6

3 51 2 4 6

1

1

3 6

6

Figure 1: Bucket data structures, numbers in-
dicate block size in sizeof(void*). Rounded
rectangles are page records. Rectangles are
lookup tables with block sizes as indices.

table are used. Each (used) entry in the second ta-
ble holds a doubly linked list of page records with
blocks of the same size.

���
���
���
���

Unfractured

Figure 2: Memory layout of a page record.
Gray: Administrative information. Striped:
Block in use, its prefix points to its page
record. White: Blocks in singly linked free
list. Unfractured: Not used yet.

A page record (figure 2) is a consecutive block of
memory that provides 1024*sizeof(void*) bytes for
blocks of a fixed size. It also holds a small struc-
ture for administrative information which contains
pointers for the doubly linked list of page records, a
pointer to a singly linked free list and a pointer to a
consecutive piece of unfractured memory.

A block that is in use reserves the first
sizeof(void*) bytes as a prefix which holds a pointer
to its page record. Large blocks handled in the tree
component use a prefix with room for two point-
ers, the first containing the size of the block and the
second being zero to allow differentiation between
bucket and tree managed blocks. If we rely on 4-
byte alignment it is possible to use the lowest bit of
a one-pointer prefix to differentiate, but the savings
are minor.

2.1.1 Operations

An allocation obtains a memory block as follows:
1. Look up the bucket for the required size.
2. If the first page record has no free block, insert
a new page record from the tree component at the
beginning of the page record list.
3. Select the first page record.
4. If possible use a block from the free list, otherwise
cut a block from the unfractured part.
5. Reduce the free block count. If the page record
is now entirely used, move it to the end of the page
record list.

A free operation releases a memory block as fol-
lows:
1. Use the prefix to find the page record. Insert the
free block into the free list.
2. Increase the free count.
3. If the page is now entirely free, give it back to the
tree component.
4. If the page record is not entirely free but its pre-
decessor is completely used, move it to the front of
the page record list.

2.1.2 Analysis

Allocation and deallocation take constant time in
the bucket component itself. An allocation may only
take O(log(N)) time if a page is exchanged with the
tree component.

The simple reordering scheme (step 5 for alloca-
tion, step 4 for deallocation) has some interesting
properties with regard to heap fragmentation. All
completely used blocks reside as a compact sublist
at the end of the list of page records of a bucket.
Conceptually this sublist is a separate list, the black
list. The rest of the page records which all have at
least one free block form the white list.

If a block is returned to a black page, that page
turns white and moves to the front of the white list.
The expected number of free blocks in a page record
increases with the time it spent in the white list
without being in front. The distance of a white block
from the front of the white list also grows with the
time it spent in the white list. Thus, in the average
the number of free blocks per page increases with
its distance from the front of the white list. Since
allocations are always satisfied from the front of the
white list, the pages with the largest amounts of free

3

blocks are least likely to be used. This increases the
probability to obtain entirely free pages and thus
minimizes heap fragmentation.

Since allocation patterns and lifetimes of allocated
memory blocks are not necessarily random one must
ask the question how the scheme performs in prac-
tice. The experimental comparisons of the ’maxi-
mum resident set size’ under AIX and Linux (section
3) for a variety of allocation patterns show that the
memory footprint of BFM, together with that of the
glibc allocator, is the smallest out of the five evalu-
ated allocators. Furthermore, the bucket component
realizes two mechanisms that increase locality com-
pared to a pure ’coalesce by address’ scheme as for
example implemented by the tree component, type
separation and regrouping.

Type separation occurs if different data types fall
into different buckets. Often several structures, e.g.
a graph and a binary tree, are constructed simulta-
neously, creating an alternating allocation pattern
ABABAB or ABCABC. If there are no reusable
blocks, an allocator like the tree component cuts
pieces alternatingly for tree nodes and graph edges,
mixing them in memory. If blocks are obtained from
different buckets graph edges and tree nodes are in
disjoint page records.

Regrouping occurs when free blocks belonging to
the same page record are reused as a group, even
if they do not form a consecutive memory block.
Consider the construction of a binary tree and sub-
sequent deletion of a part of this tree. Since there
is typically no correlation between the address and
the tree order, the deallocated blocks are more or
less evenly distributed over the page records ini-
tially used for the tree nodes. The allocator reuses
blocks one page record at a time, i.e. in groups that
are within an area of 1024*sizeof(void*). Thus, a
subsequent set of allocations from the same bucket
has at least initially a higher locality (lower aver-
age distance between memory accesses) compared
to reusing blocks in random or deallocation order.
This helps in particular to reduce the number of
TLB misses.

2.2 The Tree Component

The tree component of the allocator handles blocks
larger than 64*sizeof(void*) and is based on a pair
of binary trees. Each free block is present in both

trees. The ptrtree holds free blocks ordered by their
start address. The sizetree holds linked lists of free
blocks of size S ordered by size (figure 3). This is an
indexed fit [5], the efficiency results from the choice
for the binary tree (see section 2.2.2).

struct
ptr−node

struct
size treenode size link

struct

0x40

0x10 0x80

0x30

24

120

size tree ptr tree

0x30

Figure 3: The sizetree (doubly linked lists
per size), ptrtree and memory layout of a free
block creating implicit links (dashed lines).

The trees are implicitly linked since the memory
for the tree nodes and list links resides at fixed lo-
cations at the beginning of the free block, requiring
16 sizeof(void*). This space is available in the free
block since smaller blocks are handled in the bucket
component.

2.2.1 Operations

An allocation performs the following operations:
1. Find smallest block in sizetree that satisfies re-
quest, obtain a new block via sbrk if necessary.
2. If rest is less than 64 sizeof(void*), remove it from
ptrtree and sizetree.
3. If rest larger than 63 sizeof(void*), split it and
update the sizetree. The ptrtree remains unchanged.
4. Create prefix that holds the size and return it.

A deallocation performs the following operations:
1. Use the prefix to determine the size of the block.
2. Find predecessor and successor in the ptrtree,
merge if necessary.
3. Remove any unused nodes from ptrtree and size-
tree and create appropriate new node in sizetree.

The use of the trees is fairly straightforward, with
the exception that coalescing takes advantage of the
fact that merging a freshly deallocated block with
a previously deallocated block is possible without

4

modification of the structure of the ptrtree, even if
the key (start address) of the resulting block is dif-
ferent. The majority of the manipulations in the
sizetree are simple operations in the singly linked
lists.

It is possible to replace the ptrtree with Knuth’s
boundary tags [9] and thus to replace the logarithmic
operation of the ptrtree with a constant operation.
But due to the operations in the sizetree the worst
case complexity is still O(log(N)) and the impact on
the elapsed time of actual programs is small since the
time spent in allocation of a larger block compared
to the time using the larger block is small. Boundary
tags require additional space at the end and the be-
ginning of each allocated block and working without
boundary tags appears to help locality.

2.2.2 Choice of Balanced Tree

While the dual-tree mechanism is fairly straightfor-
ward, the choice and implementation of the trees
is critical. Analysis and experiments show that a
careful implementation of red-black trees provides
significant advantages with respect to performance
and robustness.

Red-black trees guarantee balance within a con-
stant factor. Furthermore, red-black trees rotate
only a constant number of times per operation in
the worst case, at most once per insertion and at
most twice per deletion. The remaining operations
are comparisons between elements during the search
and comparisons and modifications of the color bits
after insertions and deletions. Furthermore, in many
cases a constant number of color bit modifications
is sufficient to fix the tree structure after an inser-
tion or deletion. Thus, in many cases red-black trees
require only a constant number of write operations
per insertion or deletion, which are particularly ex-
pensive on large SMP machines.

Splay trees require amortized O(log(N)) write op-
erations for each insertion and deletion. Further-
more, they require splaying and thus write oper-
ations during searches to avoid multiple searches
in a temporarily unbalanced tree. Both bottom-up
splaying and top-down semi-splaying [1] performed
significantly worse than the red-black tree in our
tests. Some allocators use Cartesian trees [8]. In
comparison to red-black trees Cartesian trees may
become quite unbalanced and thus require rebuild-

ing to maintain a logarithmic complexity. It is also
not clear how well Cartesian trees approximate a
best fit [5].

Last, but not least, red-black trees provide a loga-
rithmic worst case per operation, not only amortized.
Thus they are not only fast, but also well suited for
environments that are sensitive to the latency of in-
dividual operations.

2.2.3 Tree Implementation

The red-black tree implementation itself is based on
the description in [2] with a few modifications. We
found a few opportunities to reduce the number of
comparisons by code restructuring. The most sig-
nificant change affects the use of the sentinel node.

The algorithm presented in [2] uses a shared sen-
tinel node such that a value written to the sentinel
is subsequently used in the tree fix up. This requires
that a modification in one tree has to be completed
before such an operation is started in another tree.
This hampers thread safety and interoperation of
linked trees. This is not hard to avoid and using
the sentinel as a ’write only’ memory field saves a
branch instruction by not testing for the terminal
node in several frequently executed places.

3 Experiments

This section provides experimental results for several
allocators and comparisons to BFM. Under Linux
both the glibc (2.3.2) allocator and the Hoard allo-
cator (2.1.0) are compared against BFM. Under AIX
5.1 the default allocator and the bucket allocator
(MALLOCTYPE=buckets) are compared against
BFM. We also tried the latest version of the Hoard
allocator (3.0.2), but frequent segmentation viola-
tions both on a SuSE 8.2 and a RedHat 9 system
prevented its testing.

This section describes two types of experiments.
The first set of experiments uses patterns with vary-
ing degree of complexity inspired by patterns seen
in subroutines of applications. The second set of ex-
periments uses an allocation intensive task in VLSI
layout processing, a scanline based netbuild.

We also ran a few comparisons with standard pro-
grams using LD_PRELOAD under Linux. The differ-
ences in compiling a source module using a few larger
template headers with g++ were minor (glibc 2.4 s,

5

Hoard 2.5 s, BFM 2.4 s). The same is true for run-
ning an 80 page postscript file through ghostscript
(glibc 7.2 s, Hoard 7.5 s, BFM 7.3 s).

3.1 Patterns

A large application is typically composed out of
smaller subroutines which show characteristic allo-
cation patterns. Figures 5, 6, 7 and 8 show results
for 28 patterns described in this section.

A routine that collects a number of elements in
a queue and then processes and deallocates the ele-
ments one-by-one creates a fifo:S pattern with a sin-
gle block size S (in units of sizeof(void*)). A similar
routine using a stack creates a lifo:S pattern. Pat-
terns 1 and 2 in the results are fifo:13 and fifo:111,
patterns 3 and 4 lifo:13 and lifo:111.

Alternating patterns are also common. Consider
two data structures that are constructed concur-
rently. After evaluation their destructors deallocate
them. If the block sizes are A and B, the allocation
forms a sequence ABABAB and the deallocation
forms AAABBB, providing the content of each list
in lifo or fifo order. We denote such patterns with
alt:7,17 (pattern 5), the numbers separated by com-
mas indicating the different sizes involved. Patterns
6 and 7 are alt:17,176 and alt:93,192.

A third common type are actually random pat-
terns. For example a list is constructed, sorted and
subsequently destructed. Typically the sort order
does not correlate with the initial location of the
blocks in memory and thus elements are deallocated
in pseudo-random order with respect to the order
of allocation. An analogous scenario is the filling
and destruction of a balanced binary tree. An-
other pseudo-random type of pattern is created by
scanline algorithms that involve several data struc-
tures as described in section 3.2. When and what
sizes of elements are allocated and deallocated de-
pends on the geometric input and varies greatly
for example by the type of VLSI design level be-
ing processed. Patterns 20 to 24 are r:1-63, r:64-
2023, r:1024-2048, r:1000 and r:700-1000, respec-
tively. The notation a-b indicates that multiple sizes
between a*sizeof(void*) and b*sizeof(void*) bytes are
used.

If more than two sizes are involved and differ-
ent destructors operate in lifo or fifo or random or-
der more complex patterns are created. We denote

ptrtype *field = malloc(N*sizeof(ptrtype));

for (i=0; i<N; i++) {

field[i]=malloc((of+((1+i)>>8))%hs);

memset(field[i],0xDF,(of+((1+i)>>8))%hs);

}

for (i=0; i<N; i+=2) free(field[N-2-i]);

for (i=0; i<N; i+=2) {

field[i]=malloc((of+((1+i)>>7))%hs);

memset(field[i],0xDF,(of+((1+i)>>7))%hs);

}

for (i=0; i<N; i+=4) free(field[i]);

for (i=0; i<N; i+=4) free(field[i+1]);

for (i=0; i<N; i+=4) free(field[i+2]);

for (i=0; i<N; i+=4) free(field[i+3]);

free(field);

Figure 4: Generator for pattern 25. N controls
the number of allocations in the patter, of is
the smallest allocation size and hs the largest.

such patterns with ’multi:a-b’. These patterns re-
quire coalescing to maintain a small memory foot-
print. They typically allocate N elements in a cer-
tain grouping, then deallocate one half of the allo-
cated elements in a certain pattern. Next they al-
locate N/2 new blocks with slightly different sizes
before cleaning up. The patterns 8 to 19 are off
the type mi:1-N/128 for even pattern indices i and
mj−1:67-N/128 for odd pattern indices j, i.e. with
and without small blocks. Pattern 25 (figure 4), 26,
27, 28 are of type ma:1-250, mb:1-90, mb:1-10000
and mb:1-20000, respectively. All 28 patterns ini-
tialize the allocated memory and use a few hundred
MB of memory except for r:1-63, which uses a few
dozen MB.

3.1.1 Results

Figures 5, 6, 7 and 8 show comparisons of elapsed
times and memory usage for BFM and the four mem-
ory allocators mentioned above. The Linux experi-
ments were performed on a 2.8 GHz Pentium4 r©with
1 GB of dual channel DDR400 RAM. The AIX ex-
periments were performed on an IBM pSeries r©2

model 630 with 4 processors and 16 GB RAM.
Figures 5, 6 show Linux results relative to the

glibc allocator, i.e. Hoard/glibc and BFM/glibc.
Figures 7 and 8 show AIX results relative to the
AIX default allocator. The figures comparing per-
formance mark the 4/3 and 3/4 ratio. Execution

2IBM and pSeries are registered trademarks of Interna-
tional Business Machines Corporation in the United States,
other countries, or both.

6

1 6 11 16 21 26
0

1

2

3

4

4

3

Figure 5: Total elapsed times with Hoard
(black bars) and BFM (white bars) for 28 pat-
terns relative to the glibc-allocator.

1 6 11 16 21 26
0

1

2

Figure 6: Maximum VmSize from /proc of
Hoard (black bars) and BFM (white bars) rel-
ative to the glibc allocator.

time variations of this order of magnitude in the
patterns are in general mitigated by non-allocation
computations. Effects of this size are for example
caused by the type of lock that is used, to ensure
a fair comparison BFM was set up with a spin lock
analogous to Hoards.

The AIX bucket allocator, Hoard and BFM work
efficiently for all patterns. The glibc allocator is slow
on a few patterns, two of which show pathological
behavior. Figure 9 shows how for pattern 25 the ex-
ecution time grows much faster than linear with in-
creasing pattern size. The execution of this pattern
with 1.5 million elements (less than 1 GB memory)
takes with the glibc allocator a few hundred times
longer than with BFM or Hoard and the ratio is
growing rapidly with pattern size.

The AIX default allocator is slow for patterns in-
volving small blocks. While none of the cases is as
bad as the execution time with the glibc allocator
for pattern 25 and 26, BFM or the bucket allocator
provide significant performance improvements for al-
location intensive applications.

The glibc, AIX and BFM allocators waste little
memory for all patterns, but Hoard sometimes does
not coalesce blocks successfully. In the most extreme

1 6 11 16 21 26
0

1

2

3

4

4

3

Figure 7: Total elapsed times with the AIX
bucket allocator (black bars) and BFM (white
bars) relative to the AIX default allocator.

1 6 11 16 21 26
0

1

2

Figure 8: Maximum size (getrusage) of AIX
bucket allocator (black bars) and BFM (white
bars) relative to the AIX default allocator.

cases the total memory footprint is almost doubled.

0.0 0.5 1.0 1.5

pattern size [106 elements]

0

200

400

600 Time [s]

?

?

?

?

× × × ×

Figure 9: Pattern 25 for different sizes for
glibc (?) and BFM (×).

3.2 Netbuilding

The input to a VLSI netbuild consists typically out
of several large sets of rectangles, one set per VLSI
design layer. In recent microprocessor designs mil-
lions of rectangles are common per layer in larger
cells. The set of layers forms a ’stack’ such that
a layer ’B’ connects electrically to the layer ’A’ di-
rectly below and the layer ’C’ directly above where
two rectangles overlap. Within a layer ’A’ electrical
connectivity is established where two rectangles in
’A’ overlap. Netbuilding establishes electrically con-

7

nected sets of rectangles, the nets. Figure 10 shows
a flow diagram of the scanline algorithm.

r
i
o
r
i
t
y
Q

e

P

u
sorted rectangles N

sorted rectangles 2

sorted rectangles 1

Scanline:
Dynamic Interval Trees

merged rect stream

intersections

Set of Nets:
List with Union−Find

create and merge

Figure 10: Flow diagram for netbuilding.

The code generates a number of lists with random
rectangles simulating multiple layers of a VLSI de-
sign. Each of those lists is sorted. A priority queue
merges the N streams into a single stream of geome-
try that is processed by a scanline. Rectangles inter-
secting the scanline are stored in N dynamic inter-
val trees used to find rectangle intersections. Each
processed rectangle may start a new net or merge
existing nets. The set data structure representing
the nets uses union by rank with path compression
[10].

The code performs roughly 10 new/delete pairs
per processed rectangle distributed over roughly the
same number of data types over a size range of 16
to 64 bytes (64 bit). A significant improvement in
locality and thus performance is achieved by copy-
ing geometry into the interval trees rather than ref-
erencing the original input. The scanline intersects
roughly O(

√
N) elements at any given time and per-

forms the majority of accesses. Netbuilding forms a
pattern of the mixed type multi-random:2-8.

Figure 11 compares memory usage and execution
time for the five allocators. The two Linux allocators
and BFM are close in this case, which correlates to
the performance result of pattern 20, pseudo random
operations on small blocks.

The AIX default allocator uses significantly more
memory and time than BFM. The AIX bucket allo-
cator improves the execution time, but uses even
more memory. While the performance correlates
with pattern 20, memory waste is primarily caused
by internal fragmentation due to the small block
sizes. Note the increase of memory waste of 64-bit

0

1

2

Hoard glibc aixdef64 aixbuc64aixdef32

Figure 11: Netbuilding (BFM=’1’: Intel 32-
bit: 134 sec, 602 MB; AIX 64-bit: 191 sec, 989
MB, AIX 32-bit: 169 sec, 600 MB). Black bars
show elapsed time, white bars show memory.

compared to 32-bit code due to the larger pointer
size but equal integer size.

3.3 Multiple Threads

Various schemes to improve scalability for multiple
threads can be applied to BFM, for example using
multiple heaps with ownership (glibc allocator) or a
scheme like Hoards multiple specialized heaps that
fall back onto a single main heap.

In order to investigate how BFM performs in a
parallel scheme, we adopted the approach of Hoard:
Multiple bucket components that fall back to a single
tree component. Note that the coalescing within a
page record is not affected by using multiple bucket
components, only bucket components that are not
used by any thread may contain records whose reuse
is missed. A form of emptiness threshold [4] is nat-
urally provided by the ratio of block size to page
size, since entirely empty pages return to the tree
component.

The netbuilding application described in section
3.2 stresses the memory allocator as well as the
memory subsystem of the hardware and exposes any
limitations to scalability at a relatively small num-
ber of threads. In a multi threaded environment N
netbuild jobs corresponding to cells may be paral-
lelized over M processors (typically N >> M).

In large multi-threaded applications there are typ-
ically many more independent tasks than proces-
sors. Besides of potential dependencies between
tasks there are two reasons not start all N tasks as
threads at once. On one hand starting many more
threads than processors increases the peak memory
usage without the benefit of additional speedup. On
the other hand starting all threads at once reduces
load balancing since all threads obtain the same
share of compute power regardless of their size.

8

(1,8) (2,8) (4,8) (8,8)(16,32)

(# threads, # tasks)

0

50

100 Time [s]

×

×
× ×

[×]

?

?

?

?

[?]

◦

◦
◦

◦
[◦]

(1,8) (2,8) (4,8) (8,8)(16,32)

(# threads, # tasks)

0

4

8

12 Memory [100 MB]

×
×

×

×

×

?

?

?

?

?

◦
◦

◦

◦

◦

Figure 12: Multi-threaded netbuild tasks
(glibc: ?, BFM: ×, Hoard: ◦). [] indicate
division by 4.

To capture the character of multi-threaded appli-
cations with a large number of tasks we used a set
of identical netbuilding tasks, each processing 106

shapes distributed over seven layers. The number of
tasks is chosen as a multiple of the number of threads
such that all threads remain busy during the entire
run. Condition variables were used to coordinate
scheduling to a fixed number of threads.

Figure 12 shows elapsed time and peak memory
usage for a set of combinations (N,M) of N threads
and M netbuilding tasks. The experiments were
performed on a 4-way IBM xSeries r©3 model 330.
BFM using Hoard’s multi heap scheme scales sim-
ilar to Hoard, carrying over an advantage in mem-
ory usage. For the execution time the same holds
for glibc. The glibc allocator with its entirely sepa-
rate heaps uses more and more memory compared to
Hoard and BFM, demonstrating the impact of blow
up [4].

There are two combinations, (8, 8) and (16, 32),
that deserve additional attention. Case (16,32) tests
the behavior for a number of threads larger than
the number of (virtual) CPUs. Memory usage in-
creases proportional to the number of concurrent
tasks, speedup is reduced due to lower locality and
higher thread scheduling overhead.

For the case (8, 8) the number of tasks matches
exactly the number of processors presented by the
operating system (four hyper-threading CPUs ap-
pear as eight). All threads are scheduled at the start
of the application and thus heap sharing provides no
memory benefit. The glibc allocator appears to gain

3IBM and xSeries are registered trademarks of Interna-
tional Business Machines Corporation in the United States,
other countries, or both.

a performance benefit from its better locality since
there is no exchange between the heaps. The un-
typically large execution time of Hoard for the case
(8, 8) (also present for (4, 4)) appears to be rather
an artefact of the implementation than a problem of
the scheme, since BFM using a very similar scheme
does not experience it. Establishing affinity between
threads and heaps is very sensitive to the hash func-
tion used.

(1,24) (8,24) (12,24) (24,24)

(# threads, # tasks)

0
2
4
6
8

10
12
14 Time [100 s]

×

× × ×

?

? ? ?

◦

◦ ◦ ◦

∗

∗ ∗ ∗

+

+ + +

(1,24) (8,24) (12,24)(24,24)

(# threads, # tasks)

0

1

2

3

4
Memory [GB]

×

×

×

×

?

?

?

?

◦

◦

◦

◦

∗

∗

∗

∗

+

+
+

+

Figure 13: Multi-threaded netbuild tasks
(AIX multiheap: ?, BFM multiheap: ×, BFM
and thread specific cache: +, BFM multiheap
and thread cache: ∗, AIX bucket multiheap:
◦). Platform: 24-way IBM S80, 64-bit code.

Figure 13 shows the analogous experiment on a
24-way IBM S80. BFM using multiple bucket com-
ponents (symbol ×) uses less memory than the AIX
allocators across all test cases. The AIX bucket allo-
cator with multiple heaps (symbol ◦) delivers similar
performance to BFM, but requires much more mem-
ory. The AIX default allocator using multiple heaps
(symbol ?) is slower than the bucket flavor but uses
slightly less memory.

With an increasing number of threads and thus
CPUs, the performance difference between the
multi-heap approaches shrinks together with the
speedup as the execution time becomes dominated
by memory accesses and processor bus use.

Figure 13 indirectly demonstrates the importance
of memory usage. An application with higher com-
putational cost per processed data volume than net
building scales to much higher numbers of processors
and the impact of memory allocation on total run-
time is much lower. For this form of parallelism by
data partitioning non-sequential memory usage in-
creases proportional to the number of threads, such
that at some point the amount of core memory dic-

9

tates how many threads can be executed concur-
rently without paging.

3.4 Thread Specific Caching

Multi-heap solutions as discussed in the last section
have an Achilles heel, in the worst case all dealloca-
tions may hit the same heap. If only complexity is
considered, the slowdown is at most a factor of two
[4]. Unfortunately, the penalty is in practice much
larger.

Using the AIX bucket allocator, experiment
(1, 24) (figure 13) takes 790 seconds on one CPU.
Only a fraction of this time is spend in allocation.
Experiment (24, 24) takes 1201 seconds (over 28000
CPU seconds), the impact is much worse than just
serialization of a fraction of the execution time.
Microbenchmarks show that a lock transfer takes
roughly 1000 clock cycles.

Thread specific caching addresses this worst case
behavior for the most critical case of smaller blocks.
A thread specific cache contains a stack of depth d,
here d = 8, for each size range of the bucket com-
ponent. Memory usage per thread is less than 3568
sizeof(void*) bytes for d = 8. Since the cache is
thread specific, it is not necessary to protect it by a
lock. When the stack is empty or full, d/2 blocks are
obtained from or returned to the heap with a single
lock acquisition, respectively.

Figure 13 shows that thread specific caching on a
single heap (symbol +) drops the execution time of
our worst case experiment from 1201 to 221 seconds.
Additionally, the single-thread execution time drops
since the cost of at least one quarter of the uncon-
tended lock acquisitions is avoided.

Combining BFM’s multi heap scheme with thread
specific caching (symbol ∗) combines the benefit of
using multiple bucket components (fastest for high
thread numbers) with thread caching (fastest for low
thread numbers) and significantly improves the ’sin-
gle lock’ worst case.

4 Memory Tracing

There are excellent tools that find memory leaks and
errors, e.g. Valgrind. But those tools cause serious
increases in execution time and memory use and are
not able to locate causes of high memory use that
are not a leak. A typical example are obsolete global

variables. They are cleaned up properly by their
destructors at the end of the program, but could
have been released much earlier.

There are rather efficient tools that determine the
total memory usage of a program run and even al-
low plotting usage over time. But only knowing at
which point in time the usage peak occurred makes
it hard to correlate memory usage with the actual
allocation. Furthermore, the larger the program the
harder becomes the task of finding memory ineffi-
ciencies.

In this section, we present a highly efficient mem-
ory profiler which allows to plot for each call chain
the amount of memory it owned over the time line
based on a trace file generated during a single run.
The trace overhead is sufficiently small that tracing
is feasible even for programs that run untraced for
multiple hours and use multiple GB of memory. Fur-
thermore the trace files are reasonably small. While
the BFM profiler finds leaks and can check for false
deallocations, it does not monitor load and store in-
structions as for example Valgrind.

Sampling as used for profiling of execution time is
not feasible for this form of memory profiling. The
allocation of a block has to be attributed to a call
chain. Later the deallocation of the block, which
typically occurs in a different call chain, has to be
deducted from the allocating call chain. Thus it is
necessary to capture each allocation event and to
maintain a record for every memory block that is in
use by the program.

There are three key components in order to ac-
complish this task: Event generation, online event
accounting and trace compression. Each of these
components described in the following subsections
contributes to reducing the amount of work and
trace data.

4.1 Event Generation

An allocation event consists of its call chain (as a
sequence of return addresses) and a time stamp in
addition to address and size of the allocated block.
A deallocation event consists of the block address
and a time stamp.

Creating an event for every allocation and deallo-
cation takes too much time. Thus, event generation
uses page record allocation and deallocation to gen-
erate events for small blocks, large blocks generate

10

events directly.

Two properties make the use of page records to
collapse events a feasible approximation. The buck-
eting provides a certain amount of type separation,
i.e. the page allocation events for two types that fall
into different buckets are separated and thus pages
are attributed correctly to the call chains. But ob-
viously it is a common case that multiple call chains
allocate from the same bucket B.

Let Nc be the number of page record events on B
assigned to a call chain C. Let Ac be the number of
block accesses (malloc/free) performed by C on B
and let A be the total number of accesses performed
on B. N is the total number of page record events
performed for B. For large numbers of allocations it
holds

Nc

N
≈ Ac

A
.

The formula is an approximation since the allocation
requests may have small variations in waste and it
is assumed that the allocation pattern does not cor-
relate with the number of blocks in a page record.
This is in practice the case, the approximation is
analogous to time profiling by sampling the stack at
fixed time intervals.

4.2 Online Accounting

Even with the reduction of events described in the
last section, trace file sizes and the time to write
them would be excessive if the resulting events were
recorded directly. The next stage reduces the event
stream to a stream of amount changes associated
with call chains. One recorded change may cover
multiple events. For this purpose two dictionaries
are used.

The first dictionary uses call chains as keys and
stores the amount currently owned for a call chain.
Each allocation event for a call chain increases or
decreases the amount owned.

The second dictionary provides the mechanism to
find the record of the allocating call chain based on
the address of a deallocated block. It uses the ad-
dress of an allocated block as a key and holds a ref-
erence to the record of the allocating call chain as
well as the block size for each block currently used.
Upon deallocation the call chain record is updated
and the block record deleted. Since each event car-
ries a time stamp each update of a call chain record

provides one data point for the plot of the affected
call chain.

Note that using the page records helps also to
limit the memory overhead due to tracing. For
every used block the tracer has to hold a block
record. The block record requires 6*sizeof(void*).
But the smallest allocation event to record is of size
64*sizeof(void*) and most events are actually the size
of a page record, 1024*sizeof(void*). Thus the appli-
cation allocates at least 10 times as much memory as
the tracer requires to keep track of the blocks. The
remaining memory overhead of the tracer is required
for the call chain records.

4.3 Trace Recording

Despite event reduction and online accounting the
number of records with time, call chain index and
size still is still too large to generate trace files for
computations that run for multiple hours. But anal-
ysis of traces shows that especially for large program
runs there is potential for lossy compression.

After the first allocation of a call chain C, which
establishes the initial record, changes are recorded
only if a call chain holds more memory than the size
of a page record and if the change is larger than a
given threshold, e.g. 5 % of the last recorded value.
This accuracy is completely sufficient for applica-
tions that use multiple Megabytes and it eliminates
the small fluctuations that otherwise bloat the trace
files.

4.4 Implementation

The implementation of the trace generation with
lossy compression and the event generation is fairly
straightforward. But the online accounting poses a
few problems. On one hand the accounting gener-
ates a fair amount of allocations itself. On the other
hand there are millions of dictionary lookups with
rather long keys, the call chains. Some of the trace
experiments were performed on a VLSI application
with several hundreds of thousands of lines of code,
call chain lengths of tens of steps are common. Also
the number of call chains is rather unpredictable and
can be large. The aforementioned VLSI application
generated events in over 5000 call chains on opti-
mized code with a significant amount of inlining.

In order to minimize the disturbance of the traced

11

process, only the event generation takes place there.
The online accounting and trace generation, which
allocates memory itself to maintain dynamic struc-
tures, is performed in a child process which is forked
at the first trace event. This separates the alloca-
tions of the tracing and the traced code and takes
advantage of available additional processors.

Efficient handling of the call chain records is a
challenge. The keys are long and degenerate since
there are large common subchains. Hashing has to
evaluate the entire key and a comparison-based tree
looks in the average O(log(N)) times at a significant
number of call chain steps to determine a difference.
A tree structure called PATRICIA [6] turned out to
be an excellent solution.

A PATRICIA is a binary tree based on compar-
ison of individual bits. But rather than comparing
a bit of a fixed position on each level of the tree, it
records in each node the index of the differentiating
bit. In the average case the number of bits evalu-
ated in a search, insertion or deletion is independent
of the key length and logarithmic in the number of
elements in the PATRICIA.

4.5 Experiments

We traced several runs of a large VLSI application
(runtime 10 hours on an IBM pSeries 690, memory
peak 18 GB, single thread). Using a separate pro-
cessor for the tracer, the elapsed time of the origi-
nal program (with default AIX allocator) was a few
minutes longer than for the traced version (BFM +
tracer). Using BFM saved more time than the event
generation required. The tracer used less than 2
GB additional memory. The zipped trace file was
roughly 250 MB in size.

Figure 14 shows the two main contributors in the
netbuild test case. Random input is created at the
beginning and remains present until the end of the
program. After the lists are sorted the nets are
formed, the slope of the linear increase reflects the
nearly constant throughput of the scanline. The nets
are destructed first after the search.

Tracing the netbuild test case was performed on
a single CPU Power4 machine. It increased the
elapsed time from 173 seconds to 192 seconds. The
memory usage of the traced process was unchanged
(slightly below 1 GB) and the tracer process required
2 % of the memory of the traced process. There

0 100 200

Time [sec]

0

200

400

600 Memory [MB]

...

.

..

.

..

.

..

.

..

.

.

..

..

..

.

.

..

.

..

.

..

.

..

.

..

.

.

..

.

.

..

.

.

..

.

.

.

..

.

.

.

..

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
........

................
..........
......
....
....
....
....
....
...
...
...
...
....
..
...
...
..
...
..
...
..
...
..
..
...
...
....
..
..
....
...
...
..
..
..
...
...
..
...
..
...
..
....
...
..
..
....
..
..
..
..
....
..
..
...
..
....
...
...
...
...
...
...
...
...
..
...
....
...
...
...
...
....
...
..
...
...
..
...
....
..
...
...
..
...
...
....
...
...
...
...
..
..
...
...
....
...
..
..
...
...
...
...
...
....
...
...
...
...
..
...
...
...
....
...
...
...
...
...
...
...
...
...
....
...
...
...
...
...
...
...
...
...
...
....
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.................................

Figure 14: The two main contributors to the
netbuild, creation of random input and form-
ing of nets during the search.

were 20 call chains, four with significant activity.
The (uncompressed) trace file was 16 kB in size, less
than 5 kB compressed. This test case performs a lit-
tle less than 100 million allocation and deallocation
events.

5 Conclusion

Memory allocators with provably good worst case
behavior and best fit allocation carry the stigma of
being slow in practice. As the experiments and anal-
ysis presented in this paper show, the BFM heap
structure combines competitive performance with
very low memory waste. The worst case complex-
ity of O(log(N)) with small constants holds for each
individual operation. The heap structure also per-
forms well in parallelization schemes and allows ef-
ficient memory profiling.

Confirming the theoretical arguments, BFM’s
memory usage and performance was throughout the
experiments competitive with the best results out of
four widely accepted allocators without showing a
bottleneck. This is particularly important for mem-
ory usage, since the transition from 32-bit to 64-bit
address spaces tends to increase the impact of mem-
ory waste.

Affinity between heaps and threads in multi heap
schemes as well as approaches like thread specific
caching is becoming increasingly important as the
gap between processor clock and memory latency
widens. An open topic for future research is the
question how a better integration between thread
libraries and allocators may further improve scala-
bility.

12

References

[1] Sleator, Tarjan. Self Adjusting Binary Trees.,
Journal of the ACM, Vol. 32, No 3, 1985, pp.
652-686.

[2] T.H. Cormen, C.E. Leiserson, R.L. Rivest. In-
troduction to Algorithms, MIT Press.

[3] R. Sedgewick. Algorithms, 2nd Edition
Addison-Wesley 1988.

[4] E.D. Berger, K.S. McKinley, R.D. Blumofe,
P.R. Wilson. Hoard: A Scalable Memory Allo-
cator for Multithreaded Applications. ASPLOS-
IX, Cambridge, MA, 2000.

[5] P.R. Wilson, M.S. Johnstone, M. Neely, D.
Boles. Dynamic Storage Allocation: A Survey
and Critical Review, Proc. 1995 International
Workshop on Memory Management, Springer
Verlag LNCS.

[6] D. R. Morrison. PATRICIA - Practical Algo-
rithm to Retrieve Information Coded in Al-
phanumeric, Jrnl. of the ACM, 15(4) pp514-
534, Oct 1968.

[7] I. Puaut. Real Time Performance of Dynamic
Memory Allocation Algorithms, 14th Euromi-
cro Conference on Real-time Systems, Vienna,
Austria, June 2002.

[8] C.J. Stephenson. Fast Fits: New Methods for
Dynamic Storage Allocations, Nineth sympo-
sium on operating system principles, October
1983.

[9] D.E. Knuth. The Art of Computer Program-
ming, Volume 1: Fundamental Algorithms, Ad-
dison Wesley, 1973.

[10] A. Aho, J. Hopcraft, and J. Ullmann. Data
structures and and algorithms, Addison Wesley,
Reading, Mass., 1983.

[11] Valgrind, a GPL’d system for debug-
ging and profiling x86-Linux programs.
http://valgrind.kde.org/

[12] Tamar Domani, Gal Goldshtein, Elliot K.
Kolodner, Ethan Lewis, Erez Petrank, Dafna
Sheinwald. Thread-local heaps for Java, Pro-
ceedings of ISMM 2002, pages 76-87.

[13] Dave Dice, Alex Garthwaite. Mostly Lock-free
Malloc, Proceedings of ISMM 2002, pages 163-
174.

[14] David Detlefs, Al Dosser, Benjamin Zorn.
Memory allocation costs in large C and C++
programs, Technical report CU-CS-665-93, Uni-
versity of Colorado at Boulder, 1993.

[15] Brad Calder, Dirk Grunwald, Benjamin Zorn.
Quantifying Behavioral Differences Between C
and C++ Programs. Technical report CU-CS-
698-94, University of Colorado at Boulder,
1994.

13

