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Abstract—The extraction of high-level color descriptors is an 
increasingly important problem, as these descriptions often 
provide link to image content. When combined with image 
segmentation, color naming can be used to select objects by color, 
describe the appearance of the image and generate semantic 
annotations. This paper presents a computational model for color 
categorization, naming and extraction of color composition. In 
this work we start from the National Bureau of Standards’ 
recommendation for color names [1], and through subjective 
experiments develop our color vocabulary and syntax. To assign 
a color name from the vocabulary to an arbitrary input color, we 
then design a perceptually based color naming metric. The 
proposed algorithm follows relevant neurophysiological findings 
and studies on human color categorization. Finally, we extend the 
algorithm and develop a scheme for extracting the color 
composition of a complex image. According to our results, the 
proposed method identifies known color regions in different color 
spaces accurately, the color names assigned to randomly selected 
colors agree with human judgments, and the description of the 
color composition of complex scene is consistent with human 
observations. 
 

Index Terms—Color naming, color composition,  segmentation  

I. INTRODUCTION 

C olor is one of the main visual cues and has been studied 
extensively on many different levels, starting from the 

physics and psychophysics of color to the use of color 
principles in practical problems, such as accurate rendering, 
display and reproduction, segmentation, and numerous other 
applications in image processing, visualization and computer 
graphics. Although color naming represents one of the most 
common visual tasks, it has not received significant attention 
in the engineering community. Yet today, with rapidly 
emerging visual technologies, sophisticated user interfaces 
and human-machine interactions, the ability to name 
individual colors, point objects of certain color, and convey 
the impression of color composition becomes an increasingly 
important task. The extraction of higher-level color 
descriptors represents a challenging problem in image analysis 
and computer vision, as these descriptors often provide link to 
image content. When combined with image segmentation, 
color naming can be used to select objects by color, describe 
the appearance of the image and even generate semantic 
annotations. For example, regions labeled as light blue and 
strong green may represent sky and grass, vivid colors are 
typically found in man-made objects, while modifiers such as 
brownish, grayish and dark convey the impression of the 

atmosphere in the scene. All the applications mentioned so far 
require flexible computational model for color categorization, 
naming or extraction of color composition. However, 
modeling human behavior in color categorization involves 
solving, or at least providing some answers to several 
important problems. The first problem involves the definition 
of the basic color categories and “most representative 
examples”, called prototypical colors, which play a special 
role in structuring these color categories. Another open issue 
is how to expand the notion of basic color terms into a 
“general” yet precise vocabulary of color names that can be 
used in different applications. Another problem involves the 
definition of category membership. Although the idea that 
color categories are formed around prototypical examples has 
received striking support in many studies, the mechanisms of 
color categorization and category membership are not yet 
fully understood. And finally, assuming that we have been 
able to provide some solutions to all these non-trivial 
problems and develop an algorithm that assigns a color name 
to an arbitrary color sample, we are still very far away from 
capturing how the color appearance of a complex scene may 
be described by a human observer. The objective of this paper 
is to provide the first steps in addressing these issues, as we 
make an attempt to develop a computational model for naming 
individual colors, as well as generating useful descriptors of 
color composition. To achieve these goals we need to consider 
relevant neuro-physiological findings and some well-known 
studies on human color categorization, as they set the 
directions for our work.  

A. Color perception, categorization and naming 
Color vision is initiated in retina where the three types of 

cones receive the light stimulus. The cone responses are then 
coded into one achromatic and two antagonistic chromatic 
signals. These signals are interpreted in the cortex, in the 
context of other visual information received at the same time 
and the previously accumulated visual experience (memory). 
Once the intrinsic character of colored surface has been 
represented internally, one may think that the color processing 
is complete. However, an ever-present fact about human 
cognition is that people go beyond the purely perceptual 
experience to classify things as members of categories and 
attach linguistic labels to them. Color is no exception. Sky and 
sea are classified as blue, despite the differences in the 
perceived color. That color categories are perceptually 
significant can be demonstrated by the “striped” appearance of 
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the rainbow. In physical terms, the rainbow is just a light with 
the wavelength changing smoothly from 400-700 nm. The 
unmistakable stripes of color in the rainbow suggest an 
experimental basis for the articulation of color into at least 
some categories [3]. A breakthrough in the current 
understanding of color categorization came from a cross-
cultural study conducted by Berlin and Kay [4]. They studied 
the color naming behavior with subjects from variety of 
languages. They examined 20 languages experimentally and 
another 78 through the literature review and discovered 
remarkable regularities in the shape of the basic color 
vocabulary. As a result of their study, Berlin and Kay 
introduced a concept of basic color terms, and worked on 
defining the color categories corresponding to these basic 
terms. They identified 11 basic terms in English (black, white, 
red, green, yellow, blue, brown, pink, orange, purple and 
gray). Berlin and Kay’s experiments also demonstrated that 
humans perform much better in picking the “best example” for 
each of the color terms than in establishing boundaries 
between the categories. This lead to the definition of focal 
colors representing the centers of color categories, and the 
hypothesis of graded (fuzzy) membership. Many later studies 
have proven this hypothesis, indicating that prototypical 
colors play a crucial role in internal representation of color 
categories, and the membership in a color category seem to be 
represented relative to the prototypes [5]. 

 Unfortunately, the mechanism of color naming is still not 
completely understood. The only existing theoretical models 
of color naming based explicitly on neurophysiology of color 
vision and addressing the universality of color foci and graded 
membership are [6] and [7]. Apart from not being developed 
or implemented as full-fledged computational models, both of 
these have important drawbacks. In Kay and McDaniel’s 
model [6] membership in color categories is formalized in 
terms of fuzzy set theory, by allowing objects to be members 
of a given set to some degree. In terms of color categories, this 
means that a focal or prototypical color will be represented as 
having a membership degree of 1 for its category. Other, non-
focal colors will have membership degrees that decrease 
systematically with the distance from the focal color in some 
color space. However, this model considers only four fuzzy 
sets (red, green, yellow and blue) and supporting other color 
terms requires the introduction of new and ad hoc fuzzy set 
operations. Furthermore, it is not clear how the non-spectral 
basic color categories, such as brown, pink and gray are to be 
dealt with, nor how to incorporate the learning of color names 
into the model. Cairo’s model of color naming is based on 
findings in the physiology of the pre-cortical system [7]. It 
defines four physical parameters of the stimulus: wavelength, 
intensity, purity and adaptation state of the retina. According 
to the model, the pre-cortical visual system performs analog-
to-digital conversion of these four parameters, and represents 
11 basic color categories as specific combinations of the 
quantized values. As already observed, although interesting 
for its attempt to take adaptation into account, this model is 
clearly a gross simplification, which cannot hold in general 

[5]. 

B. From color spaces to color naming models 
Color spaces allow us to specify or describe colors in 

unambiguous manner, yet in everyday life we mainly identify 
colors by their names. Although this requires a fairly general 
color vocabulary and is far from being precise, identifying a 
color by its name is a method of communication that everyone 
understands. Hence, there were several attempts towards 
designing a standard method for choosing color names. The 
Munsell color order system is widely used in applications 
requiring precise specification of colors, such as production of 
paints and textiles [8], [9]. Two notable disadvantages of the 
Munsell system for the color-based processing are: 1) the lack 
of a color vocabulary and 2) the lack of exact transform from 
any color space to Munsell. For example, a transform 
proposed by Miyahara [10] is fairly complicated and 
sometimes inaccurate for certain regions of CIE XYZ. The first 
listing of over 3000 English words and phrases used to name 
colors was devised by Maerz and Paul and published in the 
Dictionary of colors [11]. Even more detailed was a dictionary 
published by The National Bureau of Standards (NBS). It 
contained about 7500 different names that came to general use 
in specific fields such as biology, textile, dyes and paint 
industry [1]. Both dictionaries include examples of quite 
esoteric words and the terms are listed in an unsystematic 
manner, making them unsuitable for general use. Following 
the recommendation of the Inter-Society Council, NBS 
developed the ISCC-NBS dictionary of color names for 267 
regions in color space [1]. This dictionary employs English 
terms to describe colors along the three dimensions of the 
color space: hue, lightness and saturation. There are five 
values for lightness (very dark, dark, medium, light and very 
light), four values for saturation (grayish, moderate, strong 
and vivid), three terms that address both lightness and 
saturation (brilliant, pale and deep), and 28 names for hues 
constructed from a basic set (red, orange, yellow, green, blue, 
violet, purple, pink, brown, olive, black, white and gray). One 
problem with the ISCC-NBS model is the lack of systematic 
syntax. This was addressed during the design of a new Color-
Naming System (CNS) [12], which was based on the ISCC-
NBS model. CNS uses the same three dimensions, however 
the rules used to combine words from these dimensions are 
defined in a formal syntax. An extension of the CNS model, 
called the Color-Naming Method (CNM), was proposed by 
Tominaga in [13]. Tominaga used a predefined set of color 
names in the Munsell color space and developed a method for 
specifying color names of individual pixels or surface color 
samples [13]. Color names in the CNM are specified at one of 
four accuracy levels (fundamental, gross, medium, and 
minute), so that names from the higher accuracy level 
correspond to smaller color regions in the Munsell space. 
However, the method has several drawbacks. First, it uses a 
non-standard vocabulary of color names (e.g. lilac, lavender, 
sky, gold). Furthermore, the method is based on the optical 
measurement system, which converts the input color surface 
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into the Munsell color space. In order to apply such a system 
to recorded images one needs to deal with the issues of RGB 
to Munsell conversion [10], [20], [23] -- a setback for 
applications that go beyond closely controlled settings such as 
Tominaga’s (for example, diverse digital image libraries or 
web images, which are often not obtained with calibrated 
cameras). Finally, it is not obvious how to extend Tominaga’s 
methods to automatically assign a color name to a sample 
image, point out examples of named colors, describe color 
regions and objects in the scene and communicate the color 
composition of the image. A computational model that 
provides the solution to some of these problems was proposed 
by Lammens, who used Berlin and Kay’s color naming data 
and applied a variant of the Gaussian normal distribution as a 
category model [5]. The model was fitted to the 11 basic color 
names and does not account for commonly used saturation or 
luminance modifiers, such as vivid orange or light blue. Since 
the quality of color categorization depends on an intricate 
fitting procedure, there is no straightforward extension of the 
model to include these attributes. In [27], [28] Belpaeme 
offers another approach to the formation and computational 
simulation of color categorization - categorization based on 
the notion of color primitives surrounded by color regions 
with fuzzy boundaries, and modeling via adaptive radial basis 
function networks. 

The goal of our work is to develop a broader computational 
color naming method, which will provide more detailed color 
descriptions, allow higher-level color communication, and 
satisfy the following properties. Color naming operation 
should be performed in a perceptually controlled way, so that 
the names attached to different colors reflect perceived color 
differences among them. Segmenting a color space into the 
color categories should produce smooth regions. The method 
should account for the basic color terms and use systematic 
syntax to combine them. It should respect the graded nature of 
category membership, the universality of color foci, and 
produce results in agreement with human judgments. The first 
step in our work, described in Section 2, involves the design 
of a balanced and well-represented set of color prototypes,  
vocabulary, and the corresponding syntax. In Section 3, we 
describe the design of a color naming metric, which for an 
arbitrary input color determines the category membership. In 
Sections 4 and 5 we extend this approach to name color 
regions and provide the description of the color composition 
for complex images. Some applications for color naming, 
directions for future work and concluding remarks are given 
in Section 6. 

II. COLOR NAMING VOCABULARY AND SYNTAX 
As a starting point in our vocabulary, we adopted the ISCC-

NBS dictionary [1], since it provides a model developed using 
controlled perceptual experiments and includes the basic color 
terms. Each color category is represented with its centroid 
color, thus preserving the notion of color foci. Yet, due to the 
strict naming conviction the ISCC-NBS dictionary includes 

several color names that are not well understood by general 
public (i.e. blackish red) and lacks systematic syntax. As the 
centroid colors span the color space in uniform fashion and 
allow grading between the categories, we decided to use these 
points as the prototypes in our color naming algorithm, but 
had to devise our own name structure that follows few simple 
systematic rules. To determine a reliable color vocabulary, we 
have performed a set of subjective experiments aimed at 
testing the agreement between the names from the ISCC-NBS 
dictionary and human judgments, adjusting the dictionary for 
the use in automatic color naming applications and gain better 
understanding of human color categorization and naming.  

A. Experiments 
We have conducted four experiments: Color Listing 

Experiment aimed at testing 11 basic color categories from 
Berlin and Kay study, Color Composition Experiment aimed 
at determining color vocabulary used in describing complex 
scenes, and two Color Naming Experiments aimed at 
understanding human behavior in color naming and adjusting 
the differences between the human judgments and the 
semantics of the ISCC-NBS vocabulary. Ten subjects 
participated in the experiments. All subjects had normal color 
vision and normal or corrected-to-normal vision.   

Color Listing Experiment In addition to the 11 basic color 
terms in English, some studies indicated few marginal cases 
such as beige/tan [3], olive and violet [1]. To test the 
relevance of these terms we asked each subject to name at 
least twelve “most important” colors.  

Color Composition Experiment   In this experiment the 
subjects were presented with 40 photographic images in a 
sequence and asked to name all colors in the image. The 
images were selected to provide broad content, different color 
compositions, spatial frequencies and arrangements among the 
colors. Each image was displayed on a calibrated monitor 
against light gray background. The order of presentation was 
randomly generated for each subject. The subjects were 
advised to use common color terms and avoid rare color 
names. If they found a certain color difficult to name, we 
advised them to describe it in terms of other colors. 

Color Naming Experiments In these experiments the 
subjects were presented with 267 centroid colors from the 
ISCC-NBS color dictionary and asked to name each color. 
The color patches were displayed on the computer monitor 
calibrated so that there was no difference between the colors 
on the monitor and corresponding chips form the Munsell 
Book of Colors [9] when viewed under same conditions. In 
the first experiment, 64×64 pixel patches were arranged into 
9×6 matrix and displayed against light gray background. The 
names were assigned by typing into a text box below each 
patch. The display was then updated with the new set of 
patches, until all 267 colors have been named. The placement 
of colors within the matrix was determined randomly for each 
subject. In the second color naming experiments only one 
200×200 pixels color patch was displayed on the screen. As in 
the Color Composition Experiment, in both Color Naming 
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Experiments subjects were advised to use common color 
names, common modifiers for brightness or saturation, and 
avoid names derived from objects/materials. (Similar 
experiment has been recently described by Moroney in [29]). 

B. Experimental results: Findings, vocabulary and syntax  
Here we summarize the most important findings from the 

experiments and describe the resulting color naming 
vocabulary and syntax. 

In the Color Listing Experiment 11 basic colors were found 
on the list of every subject. Nine subjects included beige and 
four included violet. Modifiers for hue, saturation and 
luminance were not used. None of the subjects listed more 
than 14 color names. The subjects maintained almost identical 
vocabulary when describing images in the Color Composition 
Experiment. The modifiers for hue, saturation and luminance 
were used only to distinguish between different types of the 
same hue in the single image (such as light blue for sky and 
dark blue for water) and were otherwise seldom included. 
Although most of the images had rich color histograms the 
subjects never listed more than ten colors.  

The subjects showed the highest level of precision in the 
Color Naming Experiments. Most of them (8/10) frequently 
used modifiers for hue, saturation or brightness. The modifiers 
for hue were designed either by joining two generic hues with 
a hyphen, or by attaching the suffix –ish to the farther hue. 
Typically, only two adjacent hues (e.g. purple and blue) were 
combined. Seven subjects used olive, although they had not 
used this term in the previous experiments. On the other hand, 
although it had been listed in the Color Listing Experiment, 
violet was seldom used and was most of the time described as 
bluish purple. Modifiers brilliant and deep, as in the ISCC-
NBS vocabulary, were not used. There was a very good 
degree of concordance between the subjects; In the First Color 
Naming Experiment, out of 267 color samples, 223 of them 
were assigned the same hue by all subjects (the variations 
were in the use of modifiers), 15 were assigned into one of 
two related hue categories (such as yellowish green and 
green), 19 were assigned into one of three related hue 
categories (such as greenish yellow, yellowish green and 
green). The remaining 10 color samples were not reliably 
assigned into any category. Out of 223 hues that were 
assigned into the same category by all subjects, 195 were the 
same as in the ISCC-NBS vocabulary, 22 were assigned to a 
related hue, and 8 hues were assigned entirely different color 
name. Similar results were obtained in the Second Color 
Naming Experiment. The most notable difference between 
subjective judgments and ISCC-NBS vocabulary involved the 
use of saturation modifiers. Colors appeared less saturated to 
our subjects and they generally applied higher “thresholds” 
when attaching modifiers like vivid, strong or grayish. These 
observations are in agreement with the results of Moroney’s 
experiments [29]. 

To analyze the agreement between the two color naming 
experiments, for each experiment we have devised a list of 
corrected color names, i.e. the names from the ISCC-NBS 

vocabulary were changed to reflect the opinion of the majority 
of subjects. By comparing the two lists, we have observed a 
very good agreement between the experiments - the only 
difference between the two experiments was in the use of 
luminance modifiers. The same color was often perceived 
lighter when displayed in the small patch (Experiment 1) than 
in the large window (Experiment 2). Also, very pale and 
unsaturated (grayish) colors appeared more chromatic when 
displayed in the smaller window. Hence, colors that were 
perceived as grayish in the first experiment (grayish blue for 
example) were named gray (bluish gray) in the second.  

For the final vocabulary we have adopted the list from the 
first color naming experiment. These names were generated in 
the interaction with other colors and we felt that this choice is 
a better representative of the real-world applications.  We 
have generalized our findings in the following syntax  (the 
symbol : denotes “is defined as” and symbol  | denotes meta-
or):  

<color name> : <chromatic name> | <achromatic name> 
<chromatic name> : <lightness> <saturation> <hue> | 

<saturation> <lightness> <hue> 
<achromatic name> : <lightness> <achromatic term> 
<lightness> : blackish | very dark | dark | medium | light | very 

light | whitish 
<saturation> : grayish | moderate | medium | strong | vivid 
<hue> : <generic hue> | <halfway hue> | <quarterway hue> 
<generic hue> : red | orange | brown | yellow | green | blue | purple 

| pink | beige | olive  
<halfway hue> : <generic hue> - <genereic hue> 
<quarterway hue> : <ish form> <generic hue> 
<ish form> :  reddish | brownish | yellowish | greenish | bluish | 

purplish | pinkish 
<achromatic term> : <generic achromatic term>| <ish form> 

<generic achromatic term> 
<generic achromatic term>:  gray | black | white 

We also assume that: 1. If  <lightness> is omitted, medium 
is assumed. 2. If <saturation> is omitted, medium is assumed. 
3. Only adjacent hues may be combined to form <halfway 
hue> and <quarterway hue>. 

 
Our experiments have confirmed that ISCC-NBS dictionary 

includes several color names/terms that are not well 
understood by general public. It is important to emphasize that 
the primary goal of our experiments was to “correct” only the 
syntax of these names, not the color values of corresponding 
prototypes. Consequently, our vocabulary can be viewed as a 
“renamed ISCC-NBS”, as it operates on the same set of 
prototypes as the ISCC-NBS model. The difference between 
them is due to the fact that: 1) color prototypes that have not 
been consistently perceived by our subjects were removed 
from the model, and 2) some of the ISCC-NBS names were 
changed to reflect the majority of subjective decisions.  

III. COLOR NAMING METRIC 
Having established the vocabulary of color names, the next 

step is developing an algorithm to assign a color name to an 
arbitrary input color. The color naming process should address 
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the graded nature of category membership and take into 
account the universality of color foci. Therefore, we will 
perform color categorization through the color naming metric. 
Assuming a well-represented set of prototypes (foci), the 
metric computes the distance between the input color and all 
prototypes, thus providing a membership value for each 
categorical judgment.  

Although commonly used as measure of color similarity, 
Euclidean distance in the CIE Lab color space has several 
drawbacks for the use in color naming applications. The first 
problem is related to the sparse sampling of the color space. It 
is well known that the uniformity of the Lab suffers from 
defects, so that “nice” perceptual properties remain in effect 
only within a radius of few just-noticeable differences [2][14]. 
Since there are only 267 points in our vocabulary, the 
distances between the colors may be large and the metric only 
partially reflects the degree of color similarity. For example, 
when the vocabulary was used with the Lab distance to name 
regions along the gray line in the Lab color space (0<L<100, a 
= 0, b = 0), some regions were named pinkish white, light 
bluish gray and dark greenish gray, instead of white, light 
gray and dark gray. The other, more serious problem is 
related to our perception of color names and their similarity. 
Let us assume an arbitrary color represented by a point in the 
Lab space, and a set of neighboring colors, { , on a circle 
with the radius L in that space. Although all pairs  
are equally distant, we do not perceive them as equally 
similar. This is illustrated in Fig. 1 (within the limit of printer 
gamut of course) where color c  is compared to the colors 

- , all satisfying . The color 
coordinates and related data are given in Table I. Although all 
pairs share the same distance in the color space, the perceptual 
differences between them are not equal. The data in Table I 
indicate a correlation between perceptual similarity, distances 

, and spatial angles  in the HSL 
space. (Throughout this work we will be using HSL defined as 
the double-cone subset of a cylindrical space. The conversion 
algorithm is given in [19]. For the Lab conversion we used 
standard algorithm with D65 white point [24]). 

}nic

10=

), xip c

),( nip cc

p
Lab1xc

HLSD

5xc

,( pc

),( xip ccD

(HLS cθ)xic

A.  Testing the hypothesis: Color similarity experiment  
To test the relationship between perceptual similarity, color 

distances and angles in the Lab and HSL color spaces we have 
conducted a small-scale subjective experiment. Four subjects 
participated in the experiment. The subjects were given 10 
sets of color samples. Each set consisted of a “prototype” 
color , and five colors, {  with 

. The distances between the prototype and 
the other colors ranged from 6 to 30. For each set the subjects 
were asked to order the samples according to the perceived 
similarity to the prototype. The sets were displayed in 
sequence on a computer monitor with light gray background 
under the daylight illumination. Each color sample was 
displayed in the 100×100 pixels window and could be moved 
on the screen to allow for the comparison with the prototype 

. By analyzing the scores, the first thing we observed is 
that for  all colors were perceived as equally similar 

to the prototype. In other cases subjects identified the best and 
worst match unanimously, frequently leaving other samples 
unranked. Typically, the colors our subjects failed to rank 
were close in all three values. For the colors that were ranked 
by the subjects, the correlation between the subjects’ rankings 
and rankings determined based on θ  was 0.96. The 
correlation between the subjects’ rankings and rankings 
determined based on  was 0.85, and the correlation with 
the rankings determined based on  was 0.70. The slope 
of the least square regression line for the subjects’ rankings 
and the rankings assigned according to ,  and 

pc
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HSL HSLD
Labθ  was 0.97, 0.84, was 0.87, respectively. These results 

indicate that HSLθ  and  (alone or combined) are better 
predictors of perceptual similarity between equidistant colors 
than 

HSLD

Labθ , although alone neither represents an accurate color 
naming metric. 
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B. Designing the color naming metric 
The metric we designed models the findings from the 

experiment. Let us assume a prototype  and arbitrary input 
color . As discussed previously, for a given  a 
combination between 

)x
)xc  and  reflects 

the “reliability” of the Lab distance as a measure of similarity 
,

in the color name domain. Thus, we will use this relationship 
to modify  in the following manner. We first compute 
the distances between c  and  in the Lab and HSL spaces:  

D
x

(()x l +      

2) xp ssR −+== . 

Given R, we then find a color c : (  with  o

Ro =) , and  

(/)() 2+= popop sllsso .  (1) 

Solving (1) results in po hh = , ))2
1 pos , 

))22
pp l+(/1 sR±  and we chose a point that 

satisfies π<),( occxHSL . This is illustrated in Fig. 2. 
According to our hypothesis, given the distance L, the optimal 
perceptual match is found along 0θ . Assuming 
a small increment R∆ , we update the initial solution c  as: 

),( op cc , 1(oo Rss ∆±= , )1 oR  

until Dcc op ≈),
p

optx cc

. For the given R,   is an “optimal” 
perceptual match to c . We denote this solution . As an 
estimate of perceptual dissimilarity between  c  and c , we 
use the relative difference in the HSL space between  and 
the projection  ⊥ : 
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x
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As required by our model, in predicting the amount of 
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perceptual similarity this formula takes into account both the 
distance and the angle in the HSL space. Therefore, we use 
this value to increase the Lab distance proportionally to the 
amount of dissimilarity : d∆

)),(),(1)(,(),( xpxpxpLabxp ccdcckccDccD ∆+=   (3) 

The factor k(L) is introduced to avoid modifying distances 
between very close points and limit the amount of increase for 
large L ( k(L) = 0, if L < 7  and  k(L) = const, if L > 30 ).   

C. Testing the metric 
To test the stability of the method we have applied the 

metric to name different color regions in the RGB and HSV 
color spaces. Fig. 3 shows the transition of color names along 
the “color circle” in the HSL space and along the “red-yellow” 
line in the RGB space. As it can be seen in both color spaces 
color names change smoothly and the known color regions are 
identified accurately. To test the agreement with human 
observers we asked four subjects to review the color names 
assigned by our method to 100 randomly selected colors. Each 
subject received a different set of colors. The experimental 
setup was the same as in the first color naming experiment. 
The subjects agreed with the assigned color name in 91% of 
cases (362/400). 

IV. EXTRACTING THE COLOR COMPOSITION OF AN IMAGE  
Human observation of a scene is typically very different 

from the recorded image. The method we have presented so 
far allows us only to name isolated samples of colors or assign 
color names to individual image pixels - the method does not 
account for color constancy, spatial relationships and 
interactions among colors. Therefore, the histogram of color 
names computed from the recorded image directly does not 
provide an accurate description of color content. To address 
the issue of color composition we need to address, at least to a 
certain extent, the issues of color constancy and chromatic 
adaptation, image segmentation and scene understanding. In 
this section we present an algorithm that takes into account the 
issues listed above and provides a description of the scene 
consistent with human observation. The algorithm has two 
parts. The first deals with the problem of color constancy, 
while the second provides image smoothing and segmentation 
suitable for the extraction of perceived colors.  

A. Color constancy issues 
The approach we adopt here is similar to the one taken by 

Lammens [5], as it seems to be fairly robust with respect to 
different lightning conditions, and to some extent even with 
respect to different sensing devices. We first gamma correct 
the image to make the intensities perceptually linear (we use 
the gamma correction factor of 2.2). Next we need to 
compensate for the differences in illumination conditions, 
with respect to both intensity and spectral characteristics. Here 
we rely on the most accepted hypothesis, the Von Kries law of 
coefficients, which assumes that different adaptations of a 
particular retinal area modify the overall sensitivities of the 

three fundamental color-response mechanisms, without 
affecting their relative spectral sensitivities [2]. Although the 
spectrum of the light source cannot be completely recovered 
from the image, as long as the spectrum of the light source is 
not too distorted, the Von Kries model provides reasonable 
results [2], [5]. In our scheme we take a variant of the “white 
world approach” to estimate the scene illuminant. This process 
is based on the assumption that the whitest point in the image 
comes from a surface that reflects light equally in all 
directions – thus by finding the “whitest” point for the given 
image we have an indication on what the illumination of the 
scene was. We therefore search the image for the “best 
representatives” of white, w, and black, b, and then use these 
values to apply a simple chromatic adaptation transform: 

ii

ii
i bw

byxcyxc
−

−
=

),(),('   (4) 

where:  is the original color in 
the linear RGB color space, and  is the transformed 
value. The best representatives for white and black are found 
as follows. The original image is first median filtered to refine 
the well-defined color regions and remove “noisy” pixels that 
do not contribute to the perceived colors. Next, each pixel   is 
represented as: , where  
and  are the color name distances (3) between the 
given pixel and the black and white prototypes from the 
vocabulary, respectively. The black and white prototypes are 
then chosen as:  

)],(),(),([),( 321 yxcyxcyxcyxc =
,(xc′

(),,((:),( xdyxdyx wb
),( yxw

)y

)), y ),( yxdb
d

),( bb yxcb = , ( )),(min(arg), yxdyx bbb = , and 
),( ww yxcw = , ( )),(min(arg), yxdyx www = . (5) 

This procedure can be understood as stretching of the gray 
axis of the original image and realigning it with the theoretical 
gray axis for perfectly homogeneous flat-spectrum 
illumination. 

B. Spatial averaging and segmentation  
An important process in the early stage of human vision is 

spatial averaging, which significantly accounts for the way we 
interpret color information. The smoothing process is partly 
due to the nature of the channel between the retina and visual 
cortex, where the neighboring receptors converge into one 
ganglion, while the groups of ganglions converge to single 
neurons in the visual cortex [15]. The amount of averaging 
depends on the spatial frequencies, spatial relationships 
among the colors, size of the observed objects and the global 
context. For example, the capability of human visual system to 
distinguish different colors drops rapidly for high spatial 
frequencies, consequently we describe texture areas with a 
single color, since only spatial averages of the microvariations 
are perceived. On the other hand we do not average isolated 
edges, as they represent object and region boundaries.  

Based on these observations we model human perception as 
an adaptive low-pass filter operation, i.e. convolution of the 
input image with a localized kernel. In the proposed method 
we start by reducing the number of colors in the image to 128. 
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We use the LBG vector quantization algorithm [16] to obtain a 
set of colors that optimally represent image colors in the Lab 
space (with respect to the mean square error). For each pixel 

, we then compute the local color contrast, con(x,y), as: ),( yx

 
||),(||

||),(),(||),(
yxc

yxcyxcyx −=con  (6) 

where ),( yxc
),( yxc

(
() cy ∗=

g

 is the average color in a small neighborhood 
around  and  is the norm of the vector. The pixel 

is considered an edge if its contrast exceeds a 
predefined threshold con

|||| ⋅

)(), y
)

),( yx

,(xpc

min. In the next step, to distinguish 
between the uniform regions, texture areas, and contour 
points, we use a sliding window to estimate the mean m, and 
variance v, of edge density for each pixel. Depending on these 
estimates we label pixels as: Type 1) uniform, m = 0, Type 2) 
noise, m < tm1, Type 3) color edge, i.e. edge between two 
uniform regions, tm1 < m < tm2, Type 4) texture edge, i.e. 
transition between uniform and textured region (or between 
two textured regions), tm2 < m < tm3, Type 5) coarse texture, m 
> tm3, v > tv, or Type 6) fine texture, m > tm3, v < tv. Figs. 4 and 
5 illustrate edge detection and pixel labeling processes. The 
labeling operation produces pixel maps, which control the 
smoothing process and determine the computation of 
dominant colors in the following way. Pixels labeled as noise 
are first removed and their color is changed to the neighboring 
uniform color. Since human eye creates a perception of a 
single dominant color within uniform regions, the amount of 
smoothing is largest for the uniform pixels. To allow for the 
highest amount of smoothing, the radius of the smoothing 
kernel is chosen adaptively for each uniform pixel, depending 
on the distance to the closest edge (color or texture). Pixels 
labeled as color edge and texture edge are not filtered. Also, 
since edges do not contribute to the way humans describe 
color content, these pixels are not used in computation of 
color composition. Finally, the amount of averaging 
performed in the textured areas is chosen based on the edge 
density, so that amount of averaging is higher for fine textures 
and lower for coarse textures. Thus, the perceived color at the 
location ,  is computed as 

 where * is the convolution 
operator and  is the Gaussian kernel defined as: 

), y
(g xN
,( yxN

x ),( yxpc
),, yx

)exp(),(
2

22
),( σ

+
−=

yx
kyxg

cc yxN , 1),(),( =∑ yxg cc yxN  (7) 

and  is the radius of the kernel. Note that  
depends on the type of pixel in the center of the kernel, 

, as:   

),( yxN

)cy

),( yxNg

,( cx





 −

=
6  Type is  ),(,2
5  Type is  ),(,
1  Type is  ),(||,),(),(||

),(
cc
cc
ccee

yxD
yxD
yxyxyx

yxN   (8) 

and  is the edge pixel closest to . Hence, the 
smoothing algorithm averages only within the uniform and 
textured regions, thus simulating the behavior of human visual 
system. Yet, due to imperfections in computing edge maps 

some boundary pixels are included in the smoothing 
operation, which produces slight “graying out” of the resulting 
image and causes some regions to be named differently. 
Therefore, we will again apply the modified Von Kries 
adaptation in the linear color space (the color-restoration 
problem can be viewed as the color-constancy problem, since 
our task is to preserve the same color appearance to the human 
observer). In computing (4), we use the same spatial location 
for the black and white representatives but “read” their color 
values from the smoothed image. The smoothed and “color-
restored” image is then subjected to the mean-shift color 
segmentation [17] and used as an input to the color naming 
procedure. Prior to the segmentation the color value for each 
pixel labeled as color or texture edge is replaced with the 
color value of the closest uniform or texture region. The 
complete algorithm is illustrated in Figs. 4 and 5.  

),( ee yx ),( yx

V. COLOR NAMING RESULTS 
To extract the color composition of a scene, we start from 

the color-segmented image, and via (3) attach the color name 
to all pixels labeled as uniform or texture. In the next step, we 
compute the histogram of color names and use it to generate 
the description of color composition.  

The structure and syntax of our color vocabulary allow us 
to describe color composition at different accuracy levels. 
According to the findings from our experiments, at the 
fundamental level, the color names are expressed as <generic 
hue> or <generic achromatic term> from the syntax. At the 
coarse level, color names are expressed as <luminance> 
<generic hue>, or <luminance> <generic achromatic term>. 
At the medium level, color names are obtained by adding the 
<saturation> to the coarse description. Finally, at the minute 
level, the complete <color name> as specified in the syntax is 
used. These different precision levels correspond to different 
color naming patterns in human language. For example, we 
use fundamental level when referring to well-know objects or 
when color information is not considered important (Color 
Listing Experiment). According to our experiments, the 
description of photographic images are mainly formulated 
with coarse or medium precision (Color Composition 
Experiment), while the color names at the minute level are 
typically used when describing isolated samples of colors 
(Color Naming Experiments) or specific objects and regions 
(Color Composition Experiment). We have applied the 
method to 40 images used in Color Composition Experiment. 
Tables II and III show color compositions extracted from 
images in Figs. 4 and 5, and a comparison to subjective 
descriptions from Color Composition Experiment. In general, 
the “computed” descriptions were in agreement with human 
judgements. 

VI. RESULTS, DISCUSSION AND CONCLUSIONS 
We have presented a new framework for color naming, 

which follows relevant studies on human categorization, and, 
as our results demonstrate, captures human behavior in 
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describing individual colors and color composition of 
complex images. It is important to note that although the 
color-naming metric (3) has been designed for the use in color 
naming applications (and with the given set of prototypes), the 
framework and algorithms can be easily modified to use any 
other distance function that satisfies the requirements for the 
color-naming metric. Candidate approaches include CIE94 
[21] and CIECAM97s [22], or the recent color difference 
metrics (such as CMC or dE2000) addressing the non-
uniformity of the CIE-Lab. Regardless of the metric used, 
there are numerous interesting applications for color naming 
in image processing and analysis. Using color names to label 
regions can often improve segmentation result, since 
neighboring regions that share the same color name can be 
merged. As illustrated in Fig. 5f, this also reduced false 
contours introduced by the color quantization process. In 
many cases color names only, or in combination with other 
features (spatial attributes, boundary, size features, etc.) can 
help enhance information about analyzed images and reveal 
their semantics. Therefore, our color-naming scheme might be 
seen as a “distant relative” of the spatially driven color 
retrieval algorithms, see for example [30]. Color name 
representation is especially suited for image/video retrieval 
tasks, where depending on the application domain and users 
needs color similarity criteria might include colors and 
relationships between the most important regions, color 
similarity of main objects, similarity in terms of color 
composition, or higher-level criteria, such as “images are 
pale”, “bright”, or “grayish”. The descriptions derived from 
the color name histogram can be used to address the latter 
queries, as we can search for “dark” images, images with 
“impression of single color”, or  “monochromatic” images 
(Fig. 6a). Overall number of colors in the image also caries a 
degree of semantics. This query is used in Fig. 6b to identify 
and filter-out banners and graphics commonly used on 
Internet sites (images with a limited number of colors and 
color composition with predominantly vivid colors). By 
adding the semantics of other pictorial features (lines, energy, 
texture, shape) we can continue to build our knowledge of the 
image world. Figs. 6c,d show results of modeling categories 
“Outdoor Architecture” (based on the presence of “sky” 
region and long straight lines) and “Flowers” (based on the 
spatial relationships between vivid colored curved regions and 
green regions with irregular boundaries). (For a detailed 
overview of the image retrieval system used to provide these 
examples, underlying algorithms and image features see [31], 
[32]). These are only few interesting demonstrations of what 
can be accomplished with perceptually based color naming 
models and the whole area is certainly open for improvement. 
In generating the color description of a scene our model takes 
into account direct color measurements (hue, saturation and 
luminance), image elements (regions and edges), and their 
spatial properties (uniformity and “texturenes”). However, 
these three aspects are only elementary building blocks, which 
contribute to our color perception in an exceptionally complex 
way. As pointed by Jacobson and Bender in [18] the 

interactions between these building blocks produce many 
dimension of color experience. Hence, we need to go further 
and develop better models to predict how the appearance of 
color changes depending upon its neighboring colors and 
overall color content. Yet, even though we are still beginning 
to tackle this problem, our results demonstrate potential value 
of the color naming algorithms in many areas of image 
processing, visualization, computer graphics and human-
machine interaction. 
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red 

vivid reddish orange

strong orange 
strong yellowish orange 

vivid yellow 
strong greenish yellow 

vivid yellowish green 

vivid green 

vivid light bluish green 

vivid light greenish blue 

stong light blue 

vivid blue 

vivid purplish blue 

vivid bluish purple 

moderate red  

vivid purple 

vivid reddish purple 

strong dark purplish pink 

s = 83 
l = 57 
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Cp Cx 1 Cx 2 Cx 3 Cx 4 Cx5  vivid reddish 
orange 

vivid red 
 

red 
 

strong yellowish 
orange 

strong  
orange 

 
vivid 

orange 
vivid 

yellow 

vivid greenish 
yellow 

 

 Fig. 1: Example of perceptual differences among equidistant pairs of colors. 
The color data is given in Table I. Fig. 3: Color names assigned to a “color circle” in the HSL space defined with 

s = 83 and l = 135, and along a red-yellow line (r = 235, 0 < g < 255, b = 20) 
in the RGB space. To compute the distribution of color names, each line has 
been quantized into 200 points and the color-naming algorithm has been 
applied to each point. The crosses shown on each line indicate the boundary 
points between two different color names. 

 
TABLE I: COLOR DATA FOR FIG. 1: COLOR DISTANCES AND ANGLES BETWEEN 

 AND c   IN THE LAB  AND HSL COLOR SPACES pc xi

 cp: (L,a,b) = (47,70,55) (h,s,l) = (0,90,85) 
 (L,a,b) (h,s,l) DLab DHLS θLab θHLS 
cx1 (57,70,55) (5,82,98) 10.0 17.0 4.8 7.5 
cx2 (37,70,55) (349,100,73) 10.0 24.0 5.3 11.1 
cx3 (47,60,55) (11,91,81) 10.0 17.8 4.4 8.3 
cx4 (53,76,60) (0,89,96) 9.9 11.0 0.9 3.8 
cx5 (53,76,50) (354,89,95) 9.9 13.7 4.8 5.5 

 
 

    
(a)        (b          (c) ) 

   
(d)        (e)         (f) 
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Fig. 4: (a) Original image, (b) uniform pixels (white), (c) color and texture 
edges (white pixels), (d) textured regions (white pixels), (e) smoothed and 
color-restored image, and (f) color segmented image 

 
TABLE II: COLOR COMPOSITION EXTRACTED FROM THE IMAGE IN FIG. 4 AND 
THE COMPARISON TO THREE TYPICAL DESCRIPTIONS OUR SUBJECTS ENTERED 

IN THE COLOR COMPOSITION EXPERIMENT. 
Minute Medium Coarse 

strong purplish red  (29%) 
vivid yellow (21%)  

moderate pink (22%)  
moderate dark pink (9%) 

strong light yellowish green (4%)  

strong red (29%)  
vivid yellow (21%) 

moderate pink (22%) 
moderate dark pink (9%) 

light green (4%) 

red (29%) 
yellow (21%) 
pink (22%) 

dark pink (9%) 
light green (4%) 

 
Fundamental Subjects’ descriptions 

red (29%) 
yellow (21%) 
pink (31%) 
green (4%) 

purple 
yellow 

light green  
pink 

dark pink 

red  
yellow 
pink 

yellow 
pink 

green 
purple 

   
(d)        (e)         (f) 

Fig. 5: (a) Original image, (b) uniform pixels (white), (c) color and texture 
edges, (d) textured regions (white pixels), (e) smoothed and color-restored 
image, and (f) color segmented image. The mean-shift color segmentation is 
further improved by merging regions that share the same color name. 

 
 
 

TABLE III: COLOR COMPOSITION EXTRACTED FROM THE IMAGE IN FIG. 5 AND 
THE COMPARISON TO THE TYPICAL DESCRIPTIONS OUR SUBJECTS ENTERED IN 

THE COLOR COMPOSITION EXPERIMENT. 
Minute Medium Coarse 

vivid blue  (49%) 
strong purplish blue (7%)  

vivid reddish orange (23%)  
deep brown (12%) 

brownish black (4%) 

vivid blue  (49%) 
 strong blue (7%)  

 vivid orange (23%)  
 brown (12%) 

black (4%) 
 

blue  (56%) 
orange (23%)  
 brown (12%) 

black (4%) 

Fundamental Subjects’ descriptions 
blue  (56%) 

 orange (23%)  
 brown (12%) 
 black (4%) 

blue 
light blue 

dark orange  
brown 
black 

orange  
brown 

very light blue 
black 

blue 
brown 
black 

 
 

   
(a)        (b)         (c) 

 
 

 

 

 
 
  

(a)             (c)             
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(b)             (d)             

 
Fig. 6: Semantic cues derived from color composition: (a) “dark” images and “monochromatic” images, (b) Web banners: Images with a limited number of colors 
and a color composition with predominantly vivid colors, (c) “Outdoor architecture” and (d) “Flowers. 
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