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On Detection of Changes in Count Data

Emmanuel Yashchin

IBM Research Division, Mathematical Sciences Department, Thomas J. Watson Research Ctr.,
P.O. Box 218, Yorktown Heights, NY 10598, USA

Abstract

The problem of monitoring categorical data is encountered in a wide range of practical settings.
For example, in the field of manufacturing, problems of this type include monitoring defect rates,
levels of contamination or data integrity. This article discusses an approach to monitoring in
situations where the underlying parameters of the categorical data are subject to abrupt changes
of unpredictable magnitude at some unknown points in time. We derive detection schemes based
on the Likelihood Ratio Approach and discuss their performance and issues related to their design
and analysis. The paper also discusses problems related to on-line estimation of the parameters
in the presence of abrupt changes. It contains several examples that illustrate use of the proposed
techniques in semiconductor industry.
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1. INTRODUCTION

A large number of statistical applications in industrial setting is related to problems involving
data streams subject to abrupt changes in time, such as shifts or drifts. Typical problems of this kind
are related to detection of unfavorable changes (data monitoring and control charting), estimation
of the current process parameters (control and filtering), identifying points of change and regimes
(forecasting, process diagnostics) and tests for data homogeneity (modelling, process capability anal-
ysis). These problems have been extensively discussed in the literature (eg., see Telksnys (1986),
Basseville and Nikiforov (1993), Hawkins and Olwell (1998). Most of the literature on this subject
focuses on variable data and attributes data. The early literature (eg. see Shewhart (1931)) em-
phasized computationally simple ad-hoc techniques; the more recent literature, however, takes into
consideration recent advances in computing technology and discusses a number of methods that offer
clear advantages in terms of statistical power. For problems involving count data, a number of new
methods have been discussed in recent literature, e.g., see Michelson (1996), Woodall (1997), Borror,
Champ and Rigdon (1998), Skinner, Montgomery and Runger (2003); several practical guides on
working with count data are also available, e.g., see Bzik (1997).

One way to obtain powerful monitoring procedures is based on the concept of the Likelihood
Ratio (LR). In this article we discuss several LR based methods in conjunction with the problem of
monitoring categorical data. The presentation will center around the problem of detection; however,
the reader familiar with the literature related to use of LR techniques will be able to take advantage
of the proposed methods in other problems involving serial count data.

Section 2 discusses some basic concepts related to the LR technique. In Section 3 we introduce
the basic model and its parameters. We also introduce the parameters that a practitioner would
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typically want to monitor in this model. In Section 4 we apply the LR approach do derive control
schemes for the parameters of interest. In Section 5 we discuss an example.

2. THE PROBLEM OF DETECTION

Let {X t}, t = 1, 2, . . . be a sequence of (generally multivariate) observations that may represent,
for example, proportions of defective items due to various causes or counts of contaminating particles
of various types observed in successive periods of time. The stochastic behavior of the sequence is
determined by the vector of parameters θ. To simplify the presentation, we assume that all the com-
ponents of this vector are of primary interest (i.e., no nuisance parameters) and that the observations
{X t} are independent. Denote the most recent moment of time by T and the corresponding most
recently observed observation by XT . Denote the joint distribution of m most recent observations
by fθ(XT−m+1, . . . ,XT−1,XT ), and denote its natural logarithm (the log-likelihood) by Lm(θ).

To set up the problem of detection, one should first specify the acceptable region Ω0 in which
θ should reside under normal operating conditions and the unacceptable region, Ω1. Note that the
union of Ω0 and Ω0 does not need, in general, to cover the whole parameter space: there will generally
exist a ”grey” area in between. This three-zone approach is motivated by practical convenience: in
many industrial applications an engineer will have no difficulty specifying areas that are distinctly
”good” or ”bad”; however, dividing the parameter space into two regions to separate ”good” values
from ”bad” ones could prove to be a challenge.

Performance of detection schemes is typically measured in terms of the Run Length (RL), a
random variable representing the number of observations taken until a signal is triggered. In general,
one would like this variable to be large when θ ∈ Ω0 (i.e., a low false alarm rate) and small when θ ∈
Ω1 (i.e. good sensitivity with respect to out-of-control conditions). The most popular measure is the
Average Run Length (ARL); however, design of control schemes based on quantiles and probabilities
of RL has also been developed.

Now let us denote, for a given set of last m observations,

L∗
m0 = max

θ∈Ω0

Lm(θ), L∗
m1 = max

θ∈Ω1

Lm(θ), D∗
m = L∗

m1 − L∗
m0. (2.1)

Denote by m0 the minimal depth of data m for which θ is estimable. Then one can define a general
strategy that leads to powerful control schemes as follows.

Likelihood Ratio (LR) Strategy: Trigger an out of control signal at time T if D∗
m > h for

some m ≥ m0 and pre-specified threshold h.

The LR strategy leads to powerful procedures for a wide class of situations involving control of
univariate and multivariate processes with or without serial correlation. Since it is not convenient for
practical use (as it requires one to examine the whole data set to reach a decision whether a signal is
to be triggered at time T ), any practical application of the LR strategy involves choosing a window
of size M and triggering a signal only if D∗

m > h for values m0 ≤ m ≤ M. In effect, this amounts to
running a truncated SPRT backwards in time. As shown in Lai (1995), in the univariate case one
can achieve asymptotic efficiency of the LR test by examining only a subset of values m. However,
this approach could still require a search going deep into history to establish whether a signal is to
be triggered.

In Yashchin (1995) an alternative procedure, the Regenerative Likelihood Ratio (RLR) is intro-
duced. In its simple version, this procedure calls for determining the depth MT dynamically, based
on the previous history:
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Regenerative Likelihood Ratio (RLR) Strategy: Given that at time T the last regeneration
point was registered MT units of time ago, trigger a signal if D∗

m > h for some m0 ≤ m ≤ MT . If
D∗

m ≤ 0 for every m0 ≤ m ≤ MT , declare T the new regeneration point.

When the observations are univariate and their distribution belongs to an exponential family,
the LR and RLR strategies are equivalent, see Yashchin (1995)). The latter paper also discusses the
relative merits of these approaches. In what follows, we limit our attention to the RLR schemes.

It is sometimes more convenient to implement the RLR strategy in terms of a scheme {st, t =
1, 2, . . . , T} that can be plotted on a chart so as to enable one to assess the state of the process
graphically:

RLR Strategy, Alternative Formulation: Define the value of the scheme sT at time T by

sT = max
m0≤m≤MT

D∗
m (2.2)

and trigger a signal at time T if sT > h. If sT ≤ 0 then declare MT the new regeneration point.

3. PARAMETERS OF INTEREST IN COUNT DATA MODELS

Consider the problem of monitoring level of contamination in a chip manufacturing line. In a
typical fab, almost all parts of the line are located in so called ”clean rooms” where special precautions
are taken to eliminate even very small particles from the air, tools and workers. The air quality is
monitored by counting, at regular time intervals, the number of particles of size exceeding a certain
threshold that land on the exposed test surface. The particles are further categorized by type to
facilitate the diagnosis in case the counts become unacceptably high. The four categories considered
in this example are ”Metal”, ”Organic”, ”Inorganic” and ”Other”. In what follows, we refer to these
categories as ML, GC, IC and OR, respectively. Consider an air filtering system that serves three
parts of the line which we will call areas A1, A2 and A3. The purpose of the monitoring system is
to trigger a signal as soon as possible after onset of an undesirable event, while maintaining a low
rate of false alarms. Furthermore, we will show how one can set up the system in such a way that a
signal is helpful in diagnosing the problem.

When deciding on monitoring policy, one must first have a good idea on what can go wrong with
the process and, based on that, decide which parameters to monitor and prioritize them. To clarify
this statement, note that monitoring multiple parameters inevitably poses a problem of keeping the
overall rate of false alarms low. By dividing the set of parameters into classes of first and second
priority and making sure that the rate of false alarms for the second priority parameters is very low
(which will cause an agreeable decrease in detection sensitivity for these parameters), one will be
able to greatly reduce the intensity of false alarms and take the maximum advantage of the available
data stream.

3.1. The Model

The data used in the monitoring system consists of a sequence of two-way contingency tables
{Bt}, t = 1, 2, . . .. Every table has 3 rows corresponding to areas A1, A2, A3, and 4 columns
corresponding to particle types ML, GC, IC and OR. Since it is quite convenient to work in a general
setting, we shall denote the number of rows in the table by I and the number of columns - by J . We
shall use the following notation:

n is the number of particles in a single observed contingency table.

nij is the number of particles in the cell (i, j).
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ni. number of particles in the i-th row.

n.j number of particles in the j-th column.

λij expected number of particles in the cell (i, j)

λi. expected number of particles in the i-th row.

λ.j expected number of particles in the j-th column.

λ expected number of particles in the table.

pij is the probability that the next observed particle will be in the cell (i, j) under the target operating
conditions.

pi. is the probability that the next observed particle will be in the i-th row under the target operating
conditions.

p.j is the probability that the next observed particle will be in the j-th column under the target
operating conditions.

πij is the probability that the next observed particle will be in the cell (i, j) under the actual operating
conditions.

πi. is the probability that the next observed particle will be in the i-th row under the actual operating
conditions.

π.j is the probability that the next observed particle will be in the j-th column under the actual
operating conditions.

In this article we assume that the data for an individual two-way table comes from the following
model: first, the counts for individual areas are determined based on some discrete (say, Poisson) ran-
dom variables with means λi., i = 1, 2, . . . , I. The total number of particles is, therefore, distributed
with mean λ =

∑
i λi. and the probability that a particle falls in row i is πi. = λi./λ. Subsequently,

these counts are distributed into individual cells in accordance with the probabilities πij/πi. which
will be considered the basic parameters of the model.

3.2. Area - specific Parameters

It is quite obvious that a sensible monitoring policy should give proper consideration to events
pertaining to each individual area: if, for example, a tool in a given area malfunctions, one would
like to be able to detect this fact and diagnose the problem by focusing on data exclusively from this
area. So, let is focus on the data related to the i-th area. One simple approach to monitoring would
be to consider the cell counts as Poisson distributed random variables with means {λij} and monitor
data in each cell (i, j) by specifying acceptable and unacceptable regions for the respective λij. In the
situation of interest, however, such policy would hardly be advisable, the main reason being that it is
not clear how to set the acceptable and unacceptable regions. Consider, for example, metal particles
in Area 1. An increase in the average count of metal particles may not in itself represent a danger to
the process: it is the overall number of particles in Area 1 that determines the process yield. So, in
the case where filtering in Area 1 fails we could get a signal that there is an increase in the number
of metal particles, which could confuse the diagnostic process: in fact, there is an increase in every
particle category, but other charts did not yet produce a signal. So, one could prefer in this situation
to monitor the expected total particle counts in every area (the acceptable and unacceptable levels for
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the underlying parameter can usually be easily established) and, in addition, monitor the proportions
of particles of various types in every row.

Now let us focus on the data corresponding to the i-th row. In light of the arguments given above,
λi. should be considered a first priority parameter and monitored based on the counts ni.. Let us
introduce the notation

p̃ij = pij/pi. and π̃ij = πij/πi., (3.1)

for j = 1, 2, . . . , J . We shall also define the distribution (π̃ij , j = 1, 2, . . . , J) by π̃i and the
distribution (p̃ij , j = 1, 2, . . . , J) - by p̃i. Since a malfunctioning tool is considered quite likely to
produce particles of a single type, it also makes sense to monitor the individual proportions, π̃ij to
detect changes upwards from the respective target levels, p̃ij . These target levels and unacceptable
deviations are determined from historic data related to past normal and abnormal environments in
a specific area.

Another important parameter to monitor is the lack of fit between the distribution π̃i and the
target distribution, p̃i. Even if the overall particle intensity λi. and the individual proportions π̃ij

remain within acceptable limits, a change in the distribution will typically be associated with some
new factor affecting the manufacturing line that the engineers need to know about. It occurs quite
frequently that changes of this nature have nothing to do with the line itself, but are related to
malfunctions of measurement tools, changes in the data acquisition procedure or arrival of a new
technician. The situation here is quite similar to that occurring in monitoring multivariate data: it
is not only important to detect changes in individual measurements, but also to detect changes that
affect all the measurements simultaneously.

To monitor the discrepancy between the actual and target distributions within the i-th row we
must first choose the measure of distance between these distributions. One natural choice is to use
the Kullback - Leibler information defined by

di = I(p̃i, π̃i) =
∑
j

p̃ij ln(p̃ij/π̃ij). (3.2)

The measure di has a number of attractive theoretical properties and it has been used quite extensively
in research related to categorical data (see Kullback (1959), Gokhale and Kullback (1978)). The
main reason for statistical power of techniques based on this measure is related to the fact that it
is proportional to the expected log-likelihood ratio between the actual and target distributions. In
many applications, it is advisable to monitor di as a second priority parameter. One of the problems
in practical applications is how to determine its acceptable and unacceptable levels. This can usually
be achieved by analysis of stretches of historic data corresponding to acceptable process conditions
and plotting the resulting estimates d̂i that for longer stretches could be considered as approximately
equal to the underlying values of di. The unacceptable level can then be chosen somewhere in the
right tail of this distribution; under such conditions, one will be able to state, following a signal, that
the discrepancy between the actual and target distributions is much higher than that expected under
satisfactory conditions. The acceptable level can be chosen somewhere around the sample mean of
d̂i.

3.3. Global Parameters

In the described data model it is natural to monitor several global features related to the sequence
of tables {Bt}. One important (usually first priority) parameter is the rate λ. The reason for
monitoring λ in addition to particle rates in individual areas is related to the fact that the latter are
driven by different assignable causes. For example, when the chart for monitoring λ triggers a signal,
it can typically be associated with the failure of the central filtering system; if, however, a chart for
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λi. triggers a signal, the cause is more likely to be within the area itself (of course, such diagnostic
statements can only be made if the charts under consideration are properly designed).

Another parameter worth monitoring involves the distance d between the actual data model and
the class of two-way classifications for which the conditional distributions within rows are equal to
the target vectors (p̃i, i = 1, 2, . . . , I). In what follows we will refer to this family as the FCR
(fixed - conditional - rows) class of two-way distributions and denote it by FCR{p̃ij}. The reason for
monitoring d in addition to monitoring di for every row is again related to our requirement that an
out of control signal should also be helpful in diagnosing the problem: the assignable causes leading
to increase in an individual di can be different from those leading to increase in d.

One simple way to define such a distance is by using the principle of minimum discrimination in-
formation (MDI) estimation (see Gokhale and Kullback (1978)). This principle states that a distance
between a given distribution {πij} (typically determined by the data) and some class of models (that
are used to explain the data) is defined as the minimal Kullback - Leibler distance measured between
all representatives of the class and {πij}; when {πij} is an empirical distribution, the representative
of the class for which the minimum is reached is called the MDI estimator. The properties of such
an estimator are typically comparable to those of the Maximum Likelihood Estimator (MLE) and in
many cases the two coincide.

So, consider the FCR{p̃ij} class of two-way distributions. Each member of this class represents a
collection of rows {αip̃i, i = 1, 2, . . . , I} with some αi > 0 and

∑
i αi = 1. Let us find the representative

of this class that is closest to the actual underlying distribution {πij}. This is achieved by minimizing
(by αi) the distance ∑

i,j

αip̃ijln(αip̃ij/πij) (3.3)

subject to the constraint
∑

i αi = 1. By using the Lagrange multiplier method we obtain the optimal
values of αi,

α∗
i =

πi.exp(−di)∑
i πi.exp(−di)

, (3.4)

where di is given by (3.2). The distance d between the FCR{p̃ij} class of models and the distribution
{πij} is, therefore,

d = −ln

[∑
i

πi.exp(−di)

]
. (3.5)

Finally, one will also want to monitor some measure of association between the rows and columns in
the table. Such measure is an analog of a squared correlation coefficient (it is always between 0 and
1). The value 0 means that the rows and columns are independent, i.e. πij = πi.π.j for every (i, j).
In this article we limit our attention to one such measure - the Theil’s η defined by

η = 1 −
∑

i,j πijln(πij/πi.)∑
j π.jln(π.j)

(3.6)

(see Theil (1970)). One can see that this measure does not treat the rows and columns symmetrically:
in the setting of our example, the denominator represents the overall entropy of the distribution of
particles while the numerator is the expected entropy of the particle type distribution given the area.

The reason why it is useful to monitor η in addition to monitoring other global parameters is
related to the fact that its behavior is typically associated with its own set of assignable causes. For
example, in the situation where the conditional distributions π̃i undergo changes of the same kind
(say, increase in proportions of ML and OC particles at the expense of IC and OR particles), the
chart for d will trigger a signal, but the chart for η will remain comfortably below its threshold.
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However, in the case where areas are affected in a non-systematic way, the signal will typically be
more likely to be triggered by the chart for η.

4. THE MONITORING SCHEMES

Since our monitoring strategy calls for decomposing the data stream into sequences of univariate
statistics (each sequence being targeted to its own set of assignable causes), the LR scheme will be
somewhat simpler from the computational standpoint. The easiest to handle is the case where we
monitor a basic parameter for which we can identify a sufficient statistic. The main reason for this
simplification is related to the fact that in this case the acceptable and unacceptable regions for the
monitored parameter are one - dimensional sets and we can typically point out the value θ0 ∈ Ω0

that is closest (in the sense of Kullback - Leibler distance) to Ω1. Similarly, we can point out the
value θ1 ∈ Ω1 that is closest to Ω0. So, if we denote by θ̂(m) the MLE based on the last m data
points (in the case of our example, on data in the tables BT−m+1, . . . ,BT−1,BT ), and by L∗

m the
corresponding value of the log-likelihood, L∗

m = Lm(θ̂(m)), then the maximum log-likelihoods L∗
m0

and L∗
m1 are determined as follows:

(a) If θ̂(m) ∈ Ω0 set L∗
m0 = L∗

m and L∗
m1 = Lm(θ1).

(b) If θ̂(m) �∈ Ω0 and θ̂(m) �∈ Ω1, set L∗
m0 = Lm(θ0) and L∗

m1 = Lm(θ1).

(c) If θ̂(m) ∈ Ω1 set L∗
m1 = L∗

m and L∗
m0 = Lm(θ0).

The above technique simplifies computations greatly in cases where we monitor the only parameter
of the distribution (it can also be extended to the case where nuisance parameters are present, see
Yashchin (1995)). Note that in the case (a) there is no need to compute the score D∗

m because it is
negative.

4.1. Monitoring the Basic Model Parameters

In the context of categorical data, this technique can be used to monitor the basic model parame-
ters λi., π̃ij or a simple function like λ. We will only give here schemes related to λ and to parameter
p of a binomial population with variable sample sizes. The reader will find it quite easy to use the
presented formulas to derive schemes for π̃ij and λi..

Suppose that the acceptable and unacceptable levels of λ are λ ≤ λ and λ ≥ λ, respectively
(λ < λ). Let us define the reference value kλ = (λ−λ)/(lnλ− lnλ) and let λ̂(m) = (1/m)

∑T
T−m+1 nt,

i.e., the average sample size for the last m tables. Then, one can show that the score is

D∗
m =




m[λ̂(m)(lnλ − lnλ̂(m)) − (λ − λ̂(m))] if λ̂(m) ≤ λ

m(ln λ − ln λ)(λ̂(m) − kλ) if λ < λ̂(m) ≤ λ

m[λ̂(m)(lnλ̂(m) − lnλ) − (λ̂(m) − λ)] if λ̂(m) ≥ λ

Since D∗
m ≤ 0 when λ̂(m) ≤ kλ, we can reduce the upper LR control scheme to the following form:

Upper LR scheme for λ : Trigger an out of control signal at time T if for some m ≥ 1

kλ ≤ λ̂(m) ≤ λ and m(ln λ − ln λ)(λ̂(m) − kλ) > hλ or
λ̂(m) ≥ λ and m[λ̂(m)(lnλ̂(m) − lnλ) − (λ̂(m) − λ)] > hλ,

(4.1)

where hλ is a suitably chosen signal level.
One can easily present the above scheme in an RLR form. Instead of doing this, we will give

a simplified version of this scheme, which uses the given acceptable and unacceptable regions only
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when computing scores based on m = 1. For m > 1 the score is computed based on the regions
collapsing into a single point, namely, Ω0 = {λ} and Ω1 = {λ}. This leads to what we call a mixed
scheme:

Mixed Upper RLR scheme for λ : Trigger an out of control signal when the process st defined
by

s0 = 0, st = max{0, st−1 + (nt − kλ)}, t = 1, 2, . . . (4.2)

exceeds the value h̃λ defined by h̃λ = hλ/(ln λ − ln λ). In addition, when λ < h̃λ + kλ, also trigger a
signal when nt > x(λ, hλ), where x(λ, hλ) is the solution of the equation

x(ln x − ln λ) − (x − λ) = hλ. (4.3)

This scheme is somewhat similar to a Cusum scheme supplemented with a Shewhart limit (see Lucas
(1982)) with one important difference: the need for supplemental Shewhart limit and its magnitude
are determined automatically from other parameters of the problem. Therefore, to design a mixed
scheme we need to adjust only one parameter, hλ.

The mixed procedure defined above is of Markovian type in the sense that under the assumption
of independence the values of the scheme form a Markov chain. Therefore, the ARL performance
of the scheme can be analyzed by using the theory of Markov chains, see Brook and Evans (1972).
Analysis of performance of the RLR scheme is more complex and will typically require simulation
runs.

Now consider the problem of monitoring a proportion of particles of a given type in a given area.
In essence, this is a problem of monitoring binomial proportions based on variable sample sizes. To
simplify the notation, we will denote the proportion of interest π and the sample sizes corresponding
to the combined data from last m tables by n(m). Let us denote the estimate of π based on the sample
size n(m) by π̂(m). Let us also define I(p, π) as the Kullback - Leibler distance between two binomial
distributions with probabilities of success p and π:

I(p, π) = pln(π/p) + (1 − p)ln[(1 − p)/(1 − π)]. (4.4)

Let the acceptable and unacceptable levels of π be π ≤ π and π ≥ π (π < π). Then, the score D∗
m is

given by

D∗
m =




−n(m)I(π̂(m), π) if π̂(m) ≤ π

n(m)[I(π̂(m), π) − I(π̂(m), π)] if π < π̂(m) ≤ π

n(m)I(π̂(m), π) if π̂(m) ≥ π

Define the reference value for π by

kπ =
ln[(1 − π)/(1 − π)]

ln[(1 − π)/(1 − π)] − ln(π/π)

Then, as before, the LR scheme can be reduced to a quite simple form:

Upper LR scheme for π : Trigger an out of control signal at time T if for some m ≥ 1

kπ ≤ π̂(m) ≤ π and n(m)

[
ln π

1−π − ln π
1−π

]
(π̂(m) − kπ) > hπ or

π̂(m) ≥ π and n(m)I(π̂(m), π) > hπ,
(4.5)

where hπ is a signal level.
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Now denote by {π̂t} the proportions corresponding to individual tables and by {nt} - the corre-
sponding sample sizes (n(m) =

∑T
T−m+1 nt). Then the mixed version of the scheme can be formulated

as follows:

Mixed Upper RLR scheme for π : Trigger an out of control signal when the process st defined
by

s0 = 0, st = max{0, st−1 + nt(π̂t − kπ)}, t = 1, 2, . . . (4.6)

exceeds the value h̃π defined by h̃π = hλ/
[
ln π

1−π − ln π
1−π

]
. In addition, when π < h̃π/nt + kπ, also

trigger a signal when pt > x(π, hπ), where x(π, hπ) is the solution of the equation

I(x, π) = hπ/nt. (4.7)

Design and analysis of the above mixed scheme is much easier than that of the RLR scheme and it
can be used not only as a scheme in its own right, but also as a tool to provide initial assessment
of the RLR scheme performance. It is closely related to the concept of Weighted Cusum Schemes
(see Yashchin (1989), Bissell (1973)). To design and analyze this scheme one will typically base
computations on a fixed (most prevalent) sample size.

4.2. Monitoring Functions of Parameters

A more complex situation arises when monitoring di, d or η because in these parameters are non-
trivial functions of the basic model parameters. Consider, for example, the parameter d and suppose
that the acceptable and unacceptable levels of this parameter are d ≤ d and d ≥ d̄, respectively
(d < d̄). Denoting the set of basic parameters by θ we will abbreviate the relationship (3.5) by
writing d = d(θ). Then Ω0 contains all the values θ for which d(θ) ≤ d and Ω1 - the values θ for
which d(θ) ≥ d.

A substantial simplification occurs here because one prove the following

Statement 4.1: If for the MLE θ̂ based on some data set we have d(θ̂) ≥ d then the maximum
value of likelihood in Ω0 is achieved for some value θ for which d(θ) = d. Similarly, if d(θ̂) ≤ d then
the maximum value of likelihood in Ω1 is achieved for some value θ for which d(θ) = d.

Now define the MLE of θ based on data for the last m periods by θ̂(m), the corresponding MLE
estimate d(θ̂(m)) of d – by d̂(m) and the corresponding maximal value Lm(θ̂(m)) of the log-likelihood
– by L∗

m. In light of Statement 4.1, the procedure for computing L∗
m0 and L∗

m1 for the problem of
monitoring d is then as follows:

(a) If d̂(m) ≤ d set L∗
m0 = L∗

m and L∗
m1 = maxd(θ)=d Lm(θ).

(b) If d ≤ d̂(m) ≤ d set L∗
m0 = maxd(θ)=d Lm(θ) and L∗

m1 = maxd(θ)=d Lm(θ).

(c) If d̂(m) ≥ d set L∗
m1 = L∗

m and L∗
m0 = maxd(θ)=d Lm(θ).

Once again, the optimization in the case (a) is unnecessary because in this case D∗
m < 0.

We shall illustrate application of the above procedures to monitor d and η. Since the di can be
considered as a special case corresponding to a single-row table, our ability to design a monitoring
scheme for d implies directly ability to design schemes for di as well.

Let us denote by nij(m) the counts corresponding to the combined data from last m tables. The
log-likelihood Lm of the data corresponding to the distribution {πij} is given (up to an additive
constant) by

Lm =
∑
i,j

nij(m)ln(πij). (4.8)
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Its maximum, L∗
m, is attained at the MLE estimates,

π̂ij(m) = nij(m)/
∑
i,j

nij(m). (4.9)

and the MLE estimate of d (i.e., d̂(m) = d(θ̂(m)) used in the above procedure for finding L∗
m0 and

L∗
m1) is obtained by substituting π̂ij(m) for πij in the formula (3.5).

To find the values L∗
m0 and L∗

m1 we must be able to solve the following problem:

Maximize Lm

Subject to:
∑

i,j πij = 1 and∑
i πi.exp(−di) = exp(−d),

(4.10)

where di are given by (3.2) and d is some fixed value. It follows from the Statement 4.1 that the
values L∗

m0 and L∗
m1 are either the maximum values of the objective function corresponding to the

solution of the above problem for d = d and d = d, respectively, or are equal to L∗
m. The outline of

the optimization process for the problem (4.10) is given in Appendix A.
An approach to monitoring the coefficient of association, η is quite similar. The acceptable and

unacceptable regions for this parameter are frequently of type η ≤ η and η ≥ η, respectively (η < η).
The MLE estimate η̂(m) is obtained by substituting (4.9) into (3.6) and the corresponding L∗

m is the
same as in the problem of monitoring d.

We obtain L∗
m0 = L∗

m when η̂(m) < η and L∗
m1 = L∗

m when η̂(m) > η. In other cases, we find the
values L∗

m0 and L∗
m1 by solving the problem:

Maximize Lm

Subject to:
∑

i,j πij = 1 and∑
i,j πijln(πij/πi.) = (1 − η)(

∑
j π.jln(π.j)),

(4.11)

for η = η and η = η. The outline of the optimization process for the problem (4.11) is given in
Appendix B.

In practical applications one may also want to consider some simpler procedures for monitoring
d and η. For example, one could consider a weighted Geometric Cusum (GC) scheme based on the
MLE estimates d̂t corresponding to individual tables Bt:

Upper GC scheme for d : Trigger an out of control signal when the process st defined by

s0 = 0, st = max{0, γst−1 + nt(
√

d̂t − kd)}, t = 1, 2, . . . (4.12)

exceeds the threshold hd.

In this scheme the reference value kd is chosen about midway between the acceptable and unac-
ceptable levels for

√
d and the parameter γ is typically between 0.7 and 0.9. The scheme (4.12) is

statistically less powerful than the RLR, but it is somewhat easier to design.
A procedure similar to (4.12) can also be used for monitoring η based on the estimates η̂t obtained

by substitution of the MLE estimates of {πij} into (3.6). As in (4.12), we recommend to use a square-
root transform to reduce skewness.
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5. AN EXAMPLE

Consider once again the situation described in Section 3. We will now describe a monitoring
system for the parameters discussed in this article. To simplify the presentation, we will limit
our attention to GC procedures only. As shown in Yashchin (1989), procedures of this type can
be deployed by either using schemes like (4.12) directly or via the V-mask approach that calls for
plotting weighted deviations from some centering constant (usually target) and triggering a signal
when a trajectory falls outside a V-mask. Our display will be based on the latter approach.

Let us suppose that the parameter values prevalent in the recent history are λi. = 70, 50 and 40
(for i = 1, 2, 3) and the prevalent proportions of particles of various types are π̃i = (0.4, 0.3, 0.2, 0.1),
for every area i. The prevalent values for

√
di are 0.1 for every i. We will use the above values as

centering constants in our charts. Note that these values are used exclusively for charting purposes
- they do not play a role in a detection scheme which is based on the acceptable and unacceptable
regions for each parameter. With γ = 0.8 the GC trajectories are shown in Fig. 5.1. Every chart
occupies a sector on this plot and an Exponentially Weighted Moving Average (EWMA) estimate
of the underlying parameter corresponds to the point on the scale to which the GC trajectory is
pointing. The abrupt changes, however, correspond to a change in slope of the trajectory (like as in
a Cusum display). Such form of display is called a Tunnel Chart.

For example, for a binomial proportion πt the corresponding plot contains at time T the points
(0, 0) and

{
t∑

r=1

γT−tnr,
t∑

r=1

γT−rnr(π̂r − t0)}, t = 1, 2, . . . , T, (5.1)

where t0 is the respective centering constant. For the counts nt (used to monitor λ) the GC plot is
analogous to (5.1), but there is no weighting by sample sizes. The plot labels give the total observed
and expected particle counts for each area.

We will not discuss deriving control schemes for the parameters of the individual areas. The only
scheme we will show is a GC (4.12) with hd = 0.15 and kd = 0.05 to detect a change in d (here the
acceptable and unacceptable levels of

√
d are taken to be d < 0.1 and d > 0.2, respectively. The

one-sided V-mask shown on the plot indicates an out of control signal. The on-target ARL of this
scheme is about 1000.

The plot indicates that there was a major change in d five days ago. This change is mostly
related to an increase in the proportion of OR particles at the expense of ML and OC particles
(the proportion of IC particles remains basically unchanged). Figure 5.1 shows that the impact of
the change is seen in every area, but individual area charts are not likely to detect it because these
changes do not appear high for the area sample sizes. The global chart, however, detects this change
and pinpoints its location. Since the chart for η remains below its target level, 0.1, the underlying
assignable cause tends to affect all three areas in about the same way.

Another event detected by the global chart is increase in the overall particle intensity, λ. For
illustrative purposes we show how one can also deploy an EWMA chart in which a signal is triggered
when the EWMA value exceeds a threshold. Since under target conditions the variance of the
EWMA is

√
160(1 − 0.8)/(1 − 0.8) = 4.22, the control limits corresponding to on-target ARL = 1000

are 160 ± (3.19)(4.22) = 160 ± 13.5. These bounds are shown on the plot for λ. The chart shows an
out of control condition associated with a change in λ that happened five days ago. This change also
affects all areas but is too small to be detected in every area individually.

The Area 1 data used in the Example is shown in Table 5.1. The data for other areas is omitted.
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Table 5.1. Particle Counts for Area 1

Date Total Metal Organic Inorgc Other

06/01/04 30 13 8 5 4
06/02/04 38 18 6 8 6
06/03/04 60 24 12 14 10
06/04/04 49 20 18 8 3
06/05/04 69 27 20 13 9
06/06/04 50 22 11 9 8
06/07/04 30 15 6 7 2
06/08/04 57 23 16 10 8
06/09/04 76 30 21 13 12
06/10/04 43 18 9 12 4
06/11/04 57 25 15 10 7
06/12/04 73 29 20 13 11
06/13/04 73 33 18 15 7
06/14/04 66 30 17 8 11
06/15/04 41 15 14 9 3
06/16/04 67 26 12 16 13
06/17/04 46 22 11 8 5
06/18/04 85 36 22 15 12
06/19/04 80 30 19 16 15
06/20/04 58 24 17 11 6
06/21/04 83 29 23 15 16
06/22/04 86 33 23 16 14
06/23/04 79 32 21 13 13
06/24/04 75 26 15 20 14
06/25/04 77 24 20 19 14

6. CONCLUSIONS

The problems of monitoring count data occur frequently in industrial applications. In many
practical situations the models that drive the data involve abrupt changes and can be handled by
methods especially developed for such models in the last decade.

In the area of detection, the Regenerative Likelihood Ratio technique looks very promising. This
technique combines the statistical power of inference based on Likelihood Ratios with practical con-
venience associated with an efficient mechanism for discarding older data that is no longer relevant
for the purpose of control. It can be applied to various types of data, including multivariate data
and serially correlated data.

In this article we showed how the RLR technique can be used to derive monitoring schemes for
parameters of categorical data that are of interest in many industrial applications. We also illustrated
how the technique can be used to derive simpler schemes (such as mixed schemes) that offer a
somewhat easier design process at the expense of some statistical power. In practical applications,
one may also want to implement a graphical display of a simpler scheme in combination with decision
- making based on the RLR.

Though our discussion has centered around two-way classifications, the methods can be gener-
alized to handle more complex contingency arrays - for example, the concept of the FRC class of
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models can be generalized for more complex arrays and the distance d from such a class makes sense
in many problems involving multi-way classifications. In many of these problems one will also find it
useful to monitor a generalized coefficient of association, η.

APPENDIX A: MAXIMIZING LIKELIHOOD UNDER CONSTRAINT ON d.

To maximize Lm given by (4.8) under the constraints in (4.10) we introduce the Lagrangian

G = ln Lm + α •

1 −

∑
i,j

πij


 + β •


∑

i

exp


−

∑
j

p̃ijln(p̃ij/πij)


 − c


 (A.1)

where, for reasons of convenience, we use the notation c = exp(−d). By setting the derivatives of G
by πij to zero we obtain a system of equations

∂G

∂πij
=

nij(m)

πij
− α + β


exp


−

∑
j

p̃ijln(p̃ij/πij)





 • p̃ij

πij
= 0, for every (i, j). (A.2)

This implies, for every (i, j), the relation

nij(m) = απij − βp̃ijπi.exp(−di), (A.3)

where di are defined by (3.2). Let us introduce the notation n =
∑

i,j nij(m) and ni. =
∑

j nij(m). By
adding all the equations in (A.3) we obtain α = n + βc, which enables us to represent the system
(A.2) in the form

nij(m) = (n + βc)πij − βp̃ijπi.exp(−di). (A.4)

After summing the above system by j we obtain, for every i,

βπi.exp(−di) = (n + βc)πi. − ni., (A.5)

and our system of equations can be written in the form

πij = πi.p̃ij + (nij(m) − p̃ijni.)/(n + βc), for every (i, j). (A.6)

The above equations show that the system (A.4) can be reduced to a much smaller system for finding
the marginal probabilities πi.. In particular, after substitution of (A.6) into (A.5) we obtain a system
of equations

Ψ(πi.) =
∑
j

p̃ij ln

[
πi. −

ni. − nij(m)/p̃ij

n + βc

]
− ln

(n + βc)πi. − ni.

β
= 0, for every i. (A.7)

The method for solving the above system is as follows: we perform a one-dimensional search for
β. For a given value of β we solve the equations of the system (A.7) one by one by using the
Newton-Raphson method with an initial point

πi.
(0) = ni./[n + β(c − 1)] (A.8)

obtained from the Taylor series expansion of the sum in (A.7). If it happens that the distance of the
distribution {π̂ij(m)} defined by the MLE’s (see (4.9)) from the FCR{p̃ij} family is exactly d then
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the only solution of the system is {π̂ij(m)} and it corresponds to β = 0. Otherwise, one can show
that there is only one value of β for which the solution of (A.7) satisfies the relation

∑
i πi. = 1, and

finding it solves our optimization problem; to get the complete set of {πij} we substitute the found
values of β and {πi.} into (A.6).

If the distance (3.5) of the two-way distribution {π̂ij(m)} from the FCR{p̃ij} family is less than d
then the solution is in the region β > 0; otherwise, it is in the region −(n/c) < β < 0. In both cases,
we recommend to start the search from β(0) = −n/(2c). The Newton-Raphson procedure for β is
greatly facilitated by the fact that we have a closed form expression for the derivative of the solution
πi. of (A.7) by β:

∂πi.

∂β
=

−1
n + βc

{
n

βΨ′(πi.)
+ cπi.

}
. (A.9)

APPENDIX B: MAXIMIZING LIKELIHOOD UNDER CONSTRAINT ON η.

To maximize Lm given by (4.8) under the constraints in (4.11) we introduce the Lagrangian

G = ln Lm + α •

1 −

∑
i,j

πij


 + β •


∑

i,j

πijln(πij/πi.) − (1 − η)(
∑
j

π.jln(π.j))


 . (B.1)

By setting the derivatives of G by πij to zero we obtain a system of equations

nij(m) = απij − βπij ln(πij/πi.) + β(1 − η)πij(1 + ln π.j), for every (i, j). (B.2)

After introducing the notation n =
∑

i,j nij(m), ni. =
∑

j nij(m) and adding all the equations in (B.2)
we obtain α = n − β(1 − η). Therefore, the system (B.2) can be written in the form

nij(m) = nπij − βπij ln(πij/πi.) + β(1 − η)πij ln(π.j), for every (i, j). (B.3)

It is not difficult to see that one solution of the system (B.3) is

β = 0, πij = π̂ij(m), (B.4)

where π̂ij(m) are the MLE’s given by (4.9); the corresponding MLE of η is η̂(m). If η̂(m) = η then
(B.4) is the only solution of (B.3) and it gives the solution to our optimization problem. Otherwise,
(B.4) corresponds to a saddle point and we must take special precautions to prevent our iterative
search procedure from converging to this point. One simple and robust procedure is to perform a one
- dimensional search by β until a value is found for which

∑
i,j πij = 1. This gives the solution to our

optimization problem (note that (B.3) implies that it also satisfies the second constraint of (4.11)).
One can show that if η̂(m) < η then the optimal Lagrange multiplier is in the region β > 0;

otherwise, it is in the region β < 0.
Consider first the case η̂(m) > η. Once can see that the optimal solution corresponding to the

constraint η = 0 is
π̄ij(m) = πi.(m)π.j(m), (B.5)

where πi.(m) =
∑

j π̂ij(m) and π.j(m) =
∑

i π̂ij(m). For other values of η we propose to use the initial
point

πij
(0) = aπ̄ij(m) + (1 − a)π̂ij(m), (B.6)
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where a is chosen so as to satisfy both constraints of the problem. The initial value β(0) is then chosen
as the least squares approximation to the solution of (B.3) corresponding to πij

(0). The proposed
iterative process for a fixed β is then

π
(k+1)
ij = nij(m)/n + (β/n)π(k)

ij

{
ln(π(k)

ij /π
(k)
i. ) − (1 − η) ln π

(k)
.j

}
, for every (i, j). (B.7)

The subsequent value of β is chosen to the left or right of the current value depending on whether
the sum of the two-way distribution obtained as the limit of (B.7) is less or greater than 1.

In the case η̂(m) < η one can use an initial approximation

πij
(0) = π̂i.(π̂ij(m))

a/
∑
i,j

(π̂ij(m))
a, (B.8)

where a > 1 is chosen so as to satisfy both constraints of the problem (this method will not work,
however, in cases where largest values of π̂ij(m) in every row all fall in the same column; in this case
one can simply start from the MLE’s). The initial value β(0) is then chosen as the least squares
approximation to the solution of (B.3) corresponding to πij

(0). The proposed iterative process for a
fixed β is

π
(k+1)
ij =

nij(m)

n − β ln(π(k)
ij /π

(k)
i. ) + β(1 − η) ln π

(k)
.j

, for every (i, j). (B.9)

Similarly to the previous case, the next value of β is chosen to the left or right of the current value
depending on whether the sum of the two-way distribution obtained as the limit of (B.9) is less or
greater than 1.

When β is in the vicinity of its optimal value, the processes (B.7) and (B.9) can be adjusted so as
to lead directly to the solution of the optimization problem. This is achieved by changing the value
of β as part of the iteration process. Specifically, after each iteration one can select new β equal to
the least squares approximation to the solution of (B.3) corresponding to π

(k)
ij .
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Figure 5.1. The tunnel charts for the Example.
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