
RC23385 (W0410-130) October 20, 2004
Computer Science

IBM Research Report

Multi-fault Diagnosis in Dynamic Systems

Natalia Odintsova, Irina Rish, Sheng Ma
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Multi-fault Diagnosis in Dynamic Systems

Natalia Odintsova, Irina Rish, Sheng Ma
IBM T.J. Watson Research Center
19 Skyline Drive, Hawthorne, NY 10532
{nodints,rish,shengma}@us.ibm.com

Abstract
In this paper, we address the problem of diagnosing multiple faults in dynamically chang-
ing systems. Currently used popular techniques such as codebook and active probing
suffer from limitations imposed by their ”static”, non-temporal nature, and single-fault
assumptions. We propose a very simple, linear-time multifault scheme, capable of track-
ing system changes and diagnosing multiple faults much more accurately than previously
used approaches. We provide empirical results demonstrating the advantages of our ap-
proach and analyze the effect of test set quality on the diagnostic accuracy.

Keywords
real-time diagnosis, multi-fault diagnosis, change detection, event correlation

1. Introduction

In this paper, we consider the task of real-time event correlation and problem diagnosis.
We present a novel approach that extends commonly used diagnostic techniques (such as
codebook [5] and active probing [8]) to allow change detection and continuous monitor-
ing of multiple failures in dynamically changing systems. Particularly, we focus on the
following important issues.

1. Change detection.Currently existing approaches to event correlation and diagnosis
typically assume that the state of the system does not change during diagnosis cycle, and
thus the incoming events and measurements are treated as symptoms of same problem.
Clearly, this assumption is often violated in dynamically changing environments where
problems occur sequentially, and thus the symptoms arriving at different times may be
inconsistent with each other. ’Static’ approaches to diagnosis such as codebook method
[5] are unable to detect such changes and treat inconsistent symptoms as ’noise’ in obser-
vations, which results into diagnostic errors.

2. Handling multiple faults. In a large, multi-component system the probability of
encountering multiple problems at a time (e.g., failures of several system components) in-
creases with increasing number of components, assuming the probability of a single prob-
lem (e.g. fault of a component) is fixed. Thus, a typical ”static” diagnostic engine (e.g.,
codebook or similar approaches) must be able to diagnose such multiple faults simulta-
neously. However, multiple-fault diagnosis in a system with large number of components
is known to be computationally challenging; for example, using a codebook approach
we will have to enumerate an exponential number of possible fault combinations and
provide their symptoms (columns in the codebook table). Similar complexity issues are
encountered by other approaches such as constrained-based multi-fault diagnosis (see [2])

and probabilistic methods using Bayesian networks: in general, multiple-fault diagnosis
in such frameworks yields NP-hard inference problems. On the other hand, a diagnostic
engine that tracks system’s changes over time can handle multiple faults incrementally,
one at a time, which yields significant computational savings (assuming, of course, that
the changes happen at some reasonable frequency so that the diagnostic engine can pro-
cess them sequentially; however, in general, multiple-fault situations cannot be avoided
completely).

3. Diagnostic capability of available measurements. Finally, an important issue affect-
ing the quality of diagnosis (i.e., its speed and accuracy) is the quality, or ”diagnostic
power” of the available symptoms, measurements, or events. Most of the current research
on problem determination is focused on developing various diagnostic algorithms. How-
ever, we should not expect diagnosis to be accurate, no matter how sophisticated is the al-
gorithm, unless we provide a set of measurements or events that have enough ”diagnostic
power”, i.e. contain enough information about the problem (otherwise, we get a ”garbage
in, garbage out” situation). Also, the more problem combinations are possible in a system
(e.g., due to multiple faults), the more powerful measurement set we may need. We will
identify a phenomenon calledshieldingwhen one component’s failure makes it impos-
sible to obtain information about some other components (”shields” those components).
For example, a failure of a router on the path to a server will shield the server, if all avail-
able measurements of web performance are end-to-end transactions (e.g., ping, web-page
access) going through this router. This paper focuses on the issues described above and
makes several contributions:

1. first, standard codebook approach is extended to a simple, linear-time multifault algo-
rithm (generic multifault) that returns an upper bound (a superset) of faulty nodes; the
approach is still ’static’ as it does not handle system changes;

2. next, generic multifault is further extended to track faults and repairs in a dynamic sys-
tem; the resultingsequential multifaultalgorithm can efficiently handle multifault situ-
ations, significantly reducing diagnostic error of codebook approach, while at the same
time avoiding exponential complexity of common multifault diagnosis approaches;

3. finally, we provide an empirical study demonstrating the advantages of the proposed al-
gorithms over commonly used ”static” approaches (such as codebook and active prob-
ing), and analyze empirically how the measurement set selection affects the quality of
diagnosis. Our evaluation on both synthetic and real-life problems demonstrate that,
in dynamic systems, the proposed method is significantly more accurate than its com-
petitors.

2. Current Approaches and Their Limitations

We adopt a commonly used problem-determination framework known ascodebook[5]
(also calleddependency matrix[1, 8]). The codebook, or dependency matrix,D = [dij]
is a 0/1 matrix where columns correspond to possible problems, and rows correspond to
observations (events, measurements). In the matrix,dij = 1 if problempj causes eventei

to happen, anddij = 0 otherwise. Assuming the list of problems is complete, i.e. there
are no other unknown problems that could cause same events to happen in the absence

of given problems (so-called ”closed world assumption”), we can use the combinations
of events corresponding to columnj as asymptom, or codeword, for the problempj . The
problems are uniquely diagnosable if all columns are different.

The dependency matrix can be also interpreted as a collection of propositional formu-
las, one per row, of the formei → pj1 ∨ ... ∨ pjk

, wherej1, ..., jk correspond to nonzero
entries in rowi, i.e. to the problems affecting eventei. This interpretation is natural in the
context of diagnosis byprobing [1, 9, 8] where columns correspond to particular com-
ponents in a system (e.g. nodes in a computer network, such as routers and servers, or
software components such as web- and database applications), and rows correspond to
end-to-end transactions, calledprobes, which involve (”go through”) subsets of system
components. Boolean variablepj denotes a problem, or failure, at componentj (pj = 1
if component failed andpj = 0 otherwise), and eventei denotes outcome of a probei
(ei = 1 if probe fails and 0 otherwise). Clearly, a probe is a disjunctive test, since it fails
if and only if at least one of its components fails. For example, a transaction ”open web
page” is successful if and only if the web server is OK and all routers are OK on the path
from probing station, where the transaction is initiated, to the web server (again, assuming
there are no other unexpected problems - otherwise they must be included in dependency
matrix or treated as ”noise”). Let us consider a simple example in Figure 1a. A network
on the left contain five nodes, where two nodes (X1 and X2) are probe stations, nodes X4
and X5 are servers, and node X3 is a router; the dependency matrix on the right shows
a set of available probes, e.g. web page request going from X1 to X5, SQL query going
from X2 to X4, and direct tests of probe stations themselves. Note that all columns are
distinct, and thus any single fault is uniquely diagnosable.

There are two kinds of diagnostic approaches that are based on dependency matrix, de-
pending on whether the observations (events, probes) are passively observed, or actively
selected. The originalcodebookalgorithm [5], as well as earlier work on probing [1, 9],
passively observe all available events or probe outcomes, and match the vector of obser-
vations to the columns of the matrix (if there is no match, the codebook approach returns
the closest column in Hamming distance). Recently, a more efficient version, calledac-
tive probing[8], has been proposed. Instead of gathering all available probes, this method
selects probes on demand, choosing most-informative next probe depending on the out-
comes of the previously observed probes. Active probing often demonstrates significant
savings, often up to 70%, in the total number of probes and diagnosis time. However, both
active and passive approaches assume that: (a) there is a single problem (single failed
component); (b) no changes occur in a system while the events or probes are collected.

2.1 Limitations of Current Approaches

As any approach, codebook and probing techniques have their limitations due to assump-
tions the make, such as single-fault and static system, which lead to diagnostic errors.

Handling Multiple Faults

Let us consider several examples showing limitations of codebook and similar ap-
proaches in multifault scenarios. First, a combination of multiple faults may produce a
symptom that will be confused with another single fault symptom. Consider the network

(a) (b)

Figure 1: (a) A simple network and its dependency matrix; several examples of multi-
fault situations that cause errors in codebook approach. (b) Dynamically changing system:
sequential faults and repairs cause changes in probe outcomes and must be detected and
properly diagnosed.

in Figure 1a and assume that two nodes, X4 and X5 fail. Then both Probe1 and Probe2
fail, yielding a symptom vector (1,1,0,0). However, this is the symptom of X3 failure, i.e.,
the intersection of two failed probes, and there is no way to distinguish its failure from
simultaneous failure of X1 and X2 given the current probe set. Thus, codebook approach
will make three mistakes: miss two faults (2 false-negative errors) and blame ”innocent”
node X3 (1 false-positive).

Another erroneous situation occurs when a multifault symptom simply does not exist
in the codebook, as for example, column (1,1,0,1) that corresponds to failure of X1 and
X4. Codebook approach will again return X3 as a failure, since its symptom is the closest
to (1,1,0,1) in Hamming distance.

It can be argued that we simply should include columns corresponding to all possible
fault combinations. But this is clearly intractable since there are up to2n different
fault combinations in a system withn components. Another problem is that not all
combinations of probe outcomes are even realizable, for example due to topological
and other constraints. Thus, some multifault situations can be inherently unrecognizable
because some components may become ”shielded” by the failures of other components.

Definition: A component X isshieldedby the failure of the component Y if all probes
going through X go through Y as well.

For example, in Figure 1a, failure of node X3 shields both X4 and X5, and there is
no way to find out if both X4 and X3 failed, or just X3. However, assume that X4 failed
before X3; an algorithm capable of tracking system changes would diagnose X4 failure

first, andthendiagnose failure of X3 when it happened (of course, if X3 failed before X4,
even such sequential diagnosis would not be able to guarantee correct diagnosis of X4
since it will be already shielded by X3).

Various approaches to multifault diagnosis has been considered, especially in AI
literature. A ”classical” model-based approach views diagnosis as logical inference,
or, in general, a constraint satisfaction problem, where diagnosis consists in finding a
satisfying assignment to system’s components (indicating OK or failure state), given a
set of constraints describing the system (e.g., in our case the set of propositional formulas
implied by the dependency matrix), and a set of observations (e.g. see [2]). Similarly, a
probabilistic approach, such as Bayesian networks [6], describes a probabilistic model
of a system and uses it to find most-likely diagnosis. However, the problem with these
type of approaches is their computational complexity, since, in general, both logical and
probabilistic diagnosis are NP-hard problems. Thus, handling multiple faults usually
requires some kind of approximation [7, 10].

Handling system changes

Another limitation of existing approaches is their inability to track changes which
results into higher errors due to possibly contradictory observations collected before and
after the change. For example, consider a very simple dynamic system containing two
components, A and B (see Figure 1b), and 3 probes: Probe1 is a transaction involving
both components (e.g., opening a web page on a web server which requests data from
a database server), while Probe2 and Probe3 areping commands testing server A and
server B, respectively. Initially, both A and B are OK (A=0 and B=0), and the Probe2 and
Probe3 executed at this time both return OK. Next, node B fails; Probe1 that was executed
after the B’s fault returns failure, which corresponds to(A∨B) and contradicts previous
observations. Diagnostic engine must detect this contradiction, identify the change in the
system and report it (i.e., ’A or B failed’). Clearly, in realistic scenarios, there could be
multiple probes involving different intersecting subsets of nodes, so that change detection
will require more complex inference.

Note that existing approaches to multiple fault diagnosis in communication networks
and distributed computer systems, such as those using Bayesian networks [3, 7, 10] and
other probabilistic dependency models [4], typically do not track system changes and
therefore may have an unnecessarily high error due to contradictory evidence.

3. Our Approach

In this section we describe two multifault algorithms: a very simplegeneric multifaultand
its extension to more advancedsequential multifaultalgorithm for dynamic systems.

3.1 Generic Multifault

This algorithm makes no assumptions on the number of faults in the system. However,
it still assumes that the system is static - that is, no changes happen during the diagnosis
cycle, and thus all probe results must be consistent with each other. Given the dependency
matrix and the probes outcomes, the algorithm proceeds as follows:
1. Find OK nodes: these are all the nodes through which at least one OK probe passed.

2. Find failed nodes: these are the nodes through which any failed probe passed such that
all other nodes on its path are OK nodes, as determined in step 1.
3. Findshieldednodes: these are the nodes through which no probe goes other than those
that go through any of already failed nodes. Thus, all those probes will return ’failure’
and it is impossible to determine the state of such nodes, or, in other words, the nodes are
’shielded’ by the failures of nodes found in step 2.
4. The remaining nodes are ”possible failures”, in the sense that certain combinations of
their failures can produce the given set of probe outcomes. In principle, we can enumerate
all such combinations. However, it may be computationally complex, and impractical. In
our implementation, we simply report all these nodes as (possible) failures.

We illustrate this algorithm on a simple example. Suppose we have the following de-
pendency matrix and set of probe outcomes (here we use ”1” to indicate probe’s failure,
and ”0” for probe’s success):

A B C D E F Probe outcomes
Probe 1 1 1 0 0 0 0 1
Probe 2 0 1 1 1 0 1 1
Probe 3 1 0 1 0 0 0 0
Probe 4 0 0 0 0 1 1 1

1. Since probe 3 is OK, nodes A and C are OK. There are no more OK probes here.
2. We now remove rows and columns corresponding to probe 3, and nodes A and C:

B D E F Probe outcomes
Probe 1 1 0 0 0 1
Probe 2 1 1 0 1 1
Probe 4 0 0 1 1 1

Since probe 1 failed, and has only one node on its path, this node (B) has failed.
3. Further, removing column B and the rows corresponding to the probes going through

B, we get:
D E F Probe outcomes

Probe 4 0 1 1 1
Now node D doesn’t have any probes going through it that would not go through B, so

D becomes shielded by B’s failure.
4. The remaining nodes E and F are possible failures. The outcome of probe 4 can be

explained by failure in E, or in F, or in E and F together. We will add E and F to the set of
failed nodes. Thus, the output in this example will be: OK nodes: A, C; Failed nodes: B,
{E, F}; Shielded nodes: D.

Without any assumptions on the number of failures in the system, we cannot make
any further conclusions given the current probe observations. Clearly, the accuracy of
the algorithm is affected by the quality of the available probe set. If the shielded nodes
are interpreted as failures, the algorithm’s false-negative error (missed faults) is zero. Its
false-positive error (OK nodes misdiagnosed as failures), however, can be high if a lot of
shielding occurs in the system. Constructing the probe set so that to minimize shielding
of nodes by other nodes’ failure will significantly improve the algorithm’s performance.

Generic multifault that reports shielded nodes as failed does not miss any faults, al-
though its false-positive error (the amount of OK nodes reported as faulty) can be high

for certain dependency matrices. We will refer to this algorithm as ”safe”, oppose to
”non-safe” that reports shielded nodes as OK. In fact, the generic multifault algorithm
acknowledges the shielded nodes, and it is up to the user to decide how to interpret them.
We will show in empirical section that, depending on the probability of fault in a system,
we should prefer ”safe” or ”non-safe” version.

Due to its simplicity, the generic multifault algorithm has low computational complex-
ity – it is linear in the number of probes, and the number of nodes, while other commonly
used algorithms such as Bayesian inference and constraint satisfaction approaches can be
worst-case exponential in the number of nodes. However, there is no ”free lunch”: while
such exact approaches can find the most probable combination of faults, or all minimal
fault combinations explaining the probe outcomes, the simplistic generic multifault only
finds a superset containing all faulty nodes (an ’upper bound’) and may have a high false
positive error. Also, the algorithm assumes that the system did not change while the probe
outcomes where obtained, and thus there are no possible contradictions in the probe out-
comes. In other words, the algorithm still cannot handle system changes.

3.2 Sequential Multifault

In this section, we extend the generic multifault approach to handle dynamically changing
system. This algorithm is still linear in the number of probes, and yet it is able to diagnose
multiple-fault situations. Unlike generic multifault algorithm, the sequential multifault
algorithm handles dynamic environment by keeping track of changes in the system, as
they occur. The algorithm does not assume the incoming probe results are consistent with
each other; moreover, such inconsistency helps to detect a change in the system. The
algorithm does not restrict the amount of faulty components in the system, but it assumes
that only one change can happen at a time (i.e., failure or repair of one component),
and that processing of each change is fast enough so that no other change occurs while
the current change is being processed. Such assumptions allow computationally efficient
processing of multiple failures in the system by applying single-fault diagnosis approach
to localize each of the faults sequentially. At a very high-level, the algorithm performs the
following monitoring loop:

initialize-system-state;
while (true)

if current observation contradicts previous observations {
diagnose change;
report results;

}

Particularly, the algorithm monitors changes in the system’s states using two sets of
probes: set for fix (i.e., repair) detection to monitor nodes that are known as failed,
and set for failure detection to monitor nodes that are known to be OK. If no change
in the system has occurred, the probes from the first set are expected to continue
returning ”failure”, whereas the probes from the second set are expected to continue
returning OK. A probe outcome different from the one expected indicates a change in
the system. When the algorithm detects a change, it diagnoses (locates) the changed
component. Since the algorithm tracks the changes sequentially, it requires to be given

an initial system state. If the initial system state is not known, it can be determined
by applying the generic multifault algorithm. After a change has been located and
processed, the algorithm updates its set of measurements - probe sets for fix and failure
detection. It also determines the set of shielded nodes - the nodes that are shielded by
the current set of failures. Below is the pseudocode for the sequential multifault algorithm.

Sequential Multi-Fault (SMF) algorithm

Input: Dependency matrix, probe outcomes as they arrive,

initial system’s state
Output: diagnosed system state

Initialize nodes according to the initial system state
while (true) { // endless loop, i.e. continuous monitoring

shielded nodes = shielded(set of current failures);
probesForFixDetection F = setForFixDetection();
probesForFailureDetection D = setForFailureDetection();

change = "no change"
while(change = "no change") {

receive outcome of a probe P
if(outcome(P) = OK and P belongs to F) change = "repair"

else if (outcome(P) = FAILED and the P belongs to D)
change = "failure"

} //end while
if (change = "repair") {

move all nodes belonging to P to OK set
} else if (change="failure") {

fault = DiagnoseSingleFault(probe)
move fault to the fail set

} // end if
Output: OK nodes, failed nodes, shielded nodes

}

The shielded nodes are determined by removing from the dependency matrix the rows
corresponding to the probes that go through any of the failed nodes. These are the probes
that constitute probe set for failure detection - the expected outcome of these probes is
’failure’, and their success indicates a change in the system (i.e., repair of a previously
failed node). This set can be further optimized - for example, if a failed node has later
become shielded by another node’s failure, we will not be able to detect its repair until
the node that caused the shielding is repaired. Thus, we may monitor only this cause, and
then check the status of the shielded node after it becomes reachable again.

Next, given the remaining probes (i.e., the ones left after excluding probes going
through any of the failed nodes), we use a greedy search approach in order to select a

(a) (b)

(c) (d)

(e) (f)

Figure 2: Illustration of sequential multifault algorithm.

minimal subset of probes for failure detection. If there is no change in the system, we
expect these probes to be OK. If at least one of them fails, indicating that a new fault
occurred in the system, we can diagnose (localize) the fault by using any single-fault di-
agnosis algorithm, such as, for example, codebook or active probing (which will be called
by subroutine DiagnoseSingleFault() in the pseudocode) on the remaining subset of the
dependency matrix - that is, on the matrix that results after crossing out columns corre-
sponding to failed nodes and rows corresponding to all the probes going through any of
the failed nodes. In our implementation, we use active probing algorithm; as shown be-
fore [8], active probing can significantly reduce the average number of probes required to
localize a fault when compared with passive probing, or codebook approach.

We now give an example illustrating the sequential multifault algorithm (see Figure
2). In this example, we assume that there is no failed nodes in the initial system state.

1. All nodes are functioning properly; all probes return OK(Figure 2a).
Since there are no failures at the current state, probe set for fix detection is empty. Probe
set for failure detection consists of the longest probe that covers all nodes, pWS.

2. Node WS failed, probe pWS failed(Figure 2b).
We locate the fault (WS) by active probing algorithm, update the diagnosed system’s state,
and delete WS and all probes going thorough it from the dependency matrix. We see that
the failure of WS doesn’t shield any nodes, because all remaining nodes still have some
1’s in their columns.

3. Node HAS failed, probe pAS returns failed(Figure 2c).
After locating the fault (HAS) and modifying the dependency matrix, we see that HAS’s
failure has shielded node AS. Note also, that the failed node WS has also become shielded
by this failure. So we don’t include the probe pWS in the set for fix detection. Rather, we
can check the status of WS after HAS has got repaired.

4. Node HDBS failed, probe pDBS failed(Figure 2d).
The faulty node in this case is HDBS. Its failure shielded one more node - DBS. Probe
set for failure detection consists of a single probe - pingWS - that covers both of the
remaining OK nodes (HWS and R). For fix, we monitor only HAS and HDBS; the failed
node WS is shielded.

5. Node HAS repaired, probe pingAS returns OK(Figure 2e).
Success of probe pingAS indicates that HAS has repaired. However, we see that none of
the shielded nodes became unshielded, because they all are still shielded by HDBS. Node
WS is also shielded, so we don’t include pWS into the probe set for fix detection.

6. Node R failed, probe pingWS returns failure(Figure 2f).
Active probing finds that R is down. R’s failure has shielded all the nodes. Now the probe
set for failure detection is empty - we don’t have any probe not going through a failed
node. Probe set for fix detection consists of the single probe - pingR, that monitors node
R for repair. We say that R is the bottleneck, because we cannot update information about
other nodes’ state before R has got fixed.

The sequential multifault algorithm has both false-positive and false-negative errors.
It assumes the shielded nodes are OK unless they had failed before they became shielded.
Clearly, this may lead to a false-negative error (i.e. some faults will be missed if they
occurred at shielded nodes). In our example, after R is repaired, the shielded nodes HWS

and HAS will return to the OK set, when in fact they may have failed while R was down.
Also, if they probe set is insufficient, certain combinations of faults can result in the
remaining dependency matrix that is used to locate the next (single) fault (i.e., the matrix
that remains after removing faulty nodes and all the probes going through them) that does
not provide unique diagnosis (that is, the matrix that has two or more identical columns).
In case when one of the undistinguishable nodes is actually down, declaring the whole
group of undistinguishable nodes as failures yields false-positive error.

An alternative approach is to treat all shielded nodes as faulty; this will eliminate the
false-negative error, i.e. no fault will be ever missed. We will call this version ”safe”
sequential multifault, as opposed to ”unsafe” version described above. The price we pay
for zero false-negative error is an increase in the false-positive error, which may become
significant when faults are rare, and when there are many shielded nodes.

4. Empirical Results

In this section, we evaluate the performance of both generic and sequential multifault
algorithms, and compare these algorithms with the single-fault active probing approach
(which is practically equivalent to codebook in diagnostic ability, but is more efficient
due to active probe selection). The experiments are performed on randomly generated
networks with 50 nodes and on a real-life router-level network obtained from a large
company. We vary the number of probe stations, also calledsources, and expect that
increasing number of sources will decrease the amount of shielded nodes, since nodes
may become reachable from multiple sources, and thus improve the accuracy of diagnosis.

For synthetic networks, the probe sets were constructed by randomly choosing sources
and then constructing shortest paths from each source to every other node. The number
of probe stations varied from 1 to 10. The results were averaged over 30 trials for each
number of sources. The simulations were run on sequences of 100 consecutive changes
in the nodes’ states, which were generated randomly, one change at a time (i.e., at each
step, only one node can change its state). At each step, the change type - failure or repair
- was chosen according to a ”fault density” parameter that took values from 0 to 1 (fixed
for each sequence, independent on the current system’s state), which allowed to vary the
average number of faults in the system over the whole sequence. We present results for the
fault densities 10% and 50% (that is, when 10% and 50%, correspondingly, of all nodes
were down on average).

The error of the single-fault algorithm is close to the number of faults in the system.
If there are N faults in the system, the single-fault algorithm will either find one of them,
and miss all the others, or miss all of them, and instead diagnose some OK node as fail-
ure (as in example shown in Figure 1a). In the first case, its false-negative error is N-1,
with positive error being zero. In the second case, its false-negative error is N, and false-
positive error is 1. So the lower bound on average total error is N-1, and the upper bound
is N+1, where N is the number of actual faults in the system. This estimation holds for
any implementation of the single-fault algorithm (active probing or codebook).

Suppose nodes A and C are down. Both probes return failure. Since the closest match is
column B, node B will be misdiagnosed as a failure. As we can see in Figure 3a, the false-

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

of probe stations

er
ro

r
%

Single−fault active probing: Error at 10% fault rate

false−positive error
false−negative error
total error

1 2 3 4 5 6 7 8 9 10

5

10

15

20

of probe stations

er
ro

r
%

Error rates of various diagnosis algorithms at 10% fault rate

single−fault active probing
"safe" sequential multifault
"non−safe" sequential multifault
"safe" generic multifault
"non−safe" generic multifault

(a) (d)

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

of probe stations

er
ro

r
%

False−negative error at 10% fault rate

single−fault active
"non−safe" sequential multifault

1 2 3 4 5 6 7 8 9 10

10

15

20

25

30

35

40

45

of probe stations

er
ro

r
%

Error rates of various diagnosis algorithms at 50% fault rate

single−fault active probing
"safe" sequential multifault
"non−safe" sequential multifault
"safe" generic multifault
"non−safe" generic multifault

(b) (e)

1 2 3 4 5 6 7 8 9 10

0.5

1

1.5

2

2.5

of probe stations

er
ro

r
%

Sequential "non−safe" multifault: Error at 10% fault rate

false−positive error
false−negative error
total error

1 2 3 4 5 6 7 8 9 10

5

10

15

20

25

of probe stations

sh
ie

ld
ed

 n
od

es
 %

Percentage of shielded nodes at 10% fault rate

(c) (f)

Figure 3: Left column: error rates of the single-fault algorithm versus ”non-safe” se-
quential multifault algorithm for the 10% fault density: (a) single-fault algorithm; (b)
false-negative error of the both algorithms; (c) sequential multifault algorithm. Right col-
umn: error rates of the different algorithms (d) at 10% fault density and (e) 50% fault
density; (f) the fraction of shielded nodes at 10% fault density.

negative component constitutes the larger part of the total error for the single-fault active
probing algorithm. Increase in the number of sources does not yield any error reduction.

Sequential multifault (in its ”non-safe” version) also has both error components, al-
though it misses notably fewer faults than the single-fault algorithm does (Figure 3b).
Also, unlike single-fault, increasing the number of sources allows to reduce both false-
negative and false-positive errors (Figure 3c).

Choosing ”safe” or ”non-safe” version of multifault algorithms should depend on the
anticipated fault density. When the fault density is relatively low (10% in our case), the
”non-safe” sequential algorithm yields the best results (Figure 3d) with the total error
rate more than 3 times less than that of the single-fault algorithm, even for the case of a
single source. The error decreases even more with the increase in the number of sources.
The error rate of the ”safe” multifault algorithms is relatively high when the number
of sources is small, but, unlike single-fault and ”non-safe” multifault algorithms, ”safe”
multifault algorithm does not miss any faults (its false-positive error is zero). Increasing
the number of sources to four produced the drastic error reduction, making the error of
the ”safe ” multifault algorithms lower than that of the single-fault algorithm, whose error,
moreover, is mostly composed of the missed faults (that is, whose false-negative error is
high). In fact, the error curves for ”safe” multifault algorithms mimic the change in the
amount of shielded nodes with the increase in number of sources (Figure 3)e. This suggest
that constructing the probe set so that to minimize the shielding of nodes by other nodes’
failure will help significantly improve the resolution of the ”safe” multifault algorithms.

When the fault density is high (50% in our case), any of the multifault algorithms per-
forms better than the single-fault algorithm (Figure 3f), with the ”safe” versions yielding
the best results. So at such fault rates it is better to interpret the shielded nodes as failed,
rather than OK. It is interesting to note that, unlike low fault density, at high fault densi-
ties sequential ”non-safe” multifault produces notably lower error than generic ”non-safe”
multifault algorithm. This difference can be explained by the fact that the sequential al-
gorithm keeps track of the fault history, so if a node had failed and then later became
shielded, sequential algorithm would ”remember” this failure, rather than ”blindly” de-
clare all shielded nodes as OK, as the ”non-safe” version of the generic multifault algo-
rithm would do.

Finally, Figure 4 demonstrates the results for a real-life network at a large company.
The network contains 65 nodes at a router level. We simulated a sequence of faults at 10%
fault rate (i.e. 6.5 faults on average), and compared both ”safe” and ”non-safe” versions
of generic and sequential algorithms versus single-fault active probing. The results are
very similar to the ones obtained for random networks at 10% fault rate, which is not too
surprising as it turns out the structure of this network (e.g., node degree distribution) was
close to the structure of a random graph, and we used same fault rate of 10% for both
simulations.

5. Conclusions

In this paper, we address the problem of diagnosing multiple faults in dynamically chang-
ing systems. Currently used popular techniques such as codebook and active probing
suffer from limitations imposed by their ”static”, non-temporal nature, and single-fault

1 2 3 4 5 6 7 8 9 10

2

4

6

8

10

12

14

16

18

of probe stations

er
ro

r
%

Error rates of various diagnosis algorithms for a real−life network

Figure 4: Error rates of different algorithms on a real-life network.

assumptions. We propose a very simple, linear-time multifault scheme, capable of track-
ing system changes and diagnosing multiple faults much more accurately than previously
used approaches. We provide empirical results demonstrating the advantages of our ap-
proach and analyze the effect of test set quality on the diagnostic accuracy.

References
[1] M. Brodie, I. Rish, and S. Ma. Optimizing probe selection for fault localization. InDis-

tributed Systems Operation and Management, 2001.
[2] J. de Kleer and B.C. Williams. Diagnosing Multiple Faults.Artificial Intelligence, 32(1),

1987.
[3] JF. Huard and A.A. Lazar. Fault isolation based on decision-theoretic troubleshooting. Tech-

nical Report 442-96-08, Center for Telecommunications Research, Columbia University, New
York, NY, 1996.

[4] I.Katzela and M.Schwartz. Fault identification schemes in communication networks. In
IEEE/ACM Transactions on Networking, 1995.

[5] S. Kliger, S. Yemini, Y. Yemini, D. Ohsie, and S. Stolfo. A coding approach to event correla-
tion. In Intelligent Network Management (IM), 1997.

[6] J. Pearl.Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.
[7] I. Rish, M. Brodie, and S. Ma. Accuracy vs. efficiency trade-offs in probabilistic diagnosis. In

Proceedings of the The Eighteenth National Conference on Artificial Intelligence (AAAI2002),
Edmonton, Alberta, Canada, 2002.

[8] I. Rish, M. Brodie, N. Odintsova, S. Ma, and G. Grabarnik. Real-time Problem Determination
in Distributed Systems using Active Probing. InProceedings of 2004 IEEE/IFIP Network
Operations and Management Symposium (NOMS 2004), Seoul, Korea, 2004.

[9] Irina Rish, Mark Brodie, and Sheng Ma. Intelligent probing: a Cost-Efficient Approach to
Fault Diagnosis in Computer Networks.IBM Systems Journal, 41(3):372–385, 2002.

[10] M. Steinder and A. S. Sethi. End-to-End Service Failure Diagnosis Using Belief Networks.
In Proceedings of Network Operations and Management Symposium (NOMS), Florence, Italy,
2002.

