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ABSTRACT

A detailed cause-and-effect stochastic model is developed to relate the

type, size, location, and frequency of observed defects to the final yield

in IC manufacturing. The model is estimated on real data sets with

a large portion of unclassified defects and uninspected layers, and in

presence of clustering of defects. Results of this analysis are used for

evaluating kill ratios and effects of different factors, identifying the most

dangerous cases and the most probable causes of failures, forecasting the

yield, and designing optimal yield-enhancement strategies.

Key words: diagnostics, EM algorithm, factors, goodness of fit, inspec-

tion, likelihood, outliers

1 Introduction

Our main objective is building a cause-and-effect model explaining the pat-

terns of failing chips in terms of observable defects. Fitting such a model to
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training data sets allows further factorial analysis, i.e., estimation and compar-

ison of effects of different factors, detection of influential cases and the most

probable causes of failures, etc. Given a detailed estimated model, forecasting

of the yield at any time during the manufacturing cycle becomes straightfor-

ward, and also, accurate yield predictions can be made for future modifications

of the production process, resulting in the optimal choice of yield-enhancing

strategies.

A number of models for failing chips on a wafer has been proposed, con-

centrating on modeling the total number of failures (e.g., [6], [7], [17], [18],

[19], [20], [24]), spatial dependence of failing chips on a wafer ([1], [5], [8], [10],

[21]), modeling the yield per each produced layer ([22], [23]), modeling the

yield based on critical area summary curves ([4], [11], [14], [22]), and defect

counts per each defect type ([12], [13], [15], [16]).

Comparing with its predecessors, the model proposed here incorporates

detailed information on the observed defects, in order to predict and explain

the final yield. Defect types (codes), sizes, frequencies, and locations (layers

or operations) play the role of covariates. The study involving nearly 1,000

lots and millions of chips of different grades and designs showed significance

of each mentioned factor. Further, the standard chi-square analysis of the

log-likelihood showed significance of interaction terms between the defect type

and the layer where the defect occurred. To avoid over-parameterization of

the model, similarly composed layers were combined into groups, and only

interactions between defect types and groups of layers were included.

As a result, the proposed model contains a large number of parameters:

effect of each defect type and effect of each layer, interactions, defect frequen-

cies, and also, effects of other causes. Apparently, some failed chips had no

defects on any of their layers. Such chips were killed by causes other than

observable defects. The corresponding effect is lot-specific because all wafers

in a lot are produced simultaneously (unless it is decided to split a lot).
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An EM algorithm ([9], [25]) is proposed, with some modifications, to handle

this multi-scale estimation problem. The introduced modification is essentially

an extra step during each cycle, in addition to the standard E-step and M-step,

that accelerates the numerical routine and prevents its convergence to possible

local extrema. It is shown that the new step can only improve the algorithm’s

performance.

It is important to notice that a bulk of information gathered on chips is

always missing. For reasons of economy, vast majority of detected defects is

unclassified. In addition, only selected layers are inspected on each wafer. No

usable information is available for the remaining uninspected layers, although

they may certainly contain fatal defects, i.e., the chip killers. Nevertheless, a

carefully applied formula of total probability allows to include all the collected

pieces of information (e.g., sizes and locations of unclassified defects) into the

likelihood.

As mentioned in [16], due to extremely complex designs and delicate tech-

nology, the defect information gathered on chips is not perfectly clean and not

perfectly reliable. Realizing this issue, the estimation routine is accompanied

by the diagnostics module aimed to assess the goodness of fit and to detect

probable outliers and influential single chips and whole wafers.

After cycles of data cleaning, parameter estimation, and diagnostics, one

obtains a set of parameter estimates that explains the impact of various factors

on the final yield. The estimated model is then used

– to forecast the yield at any time during the production process,

– to evaluate kill ratios, that is, probabilities for defects of a certain types

on certain layers to be chip killers,

– to compute and compare effects associated with each defect type and

each layer,
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– to identify the most dangerous combinations of defect type, size, and

location,

– to find, on low-yield wafers, the most probable sources of chip killers and

the most probable causes of failures,

– to compare the influence of layers,

– to evaluate significance of other causes,

– to predict results of any yield-improving modification of the manufac-

turing process, in terms of the expected change in the final yield,

– to find the optimal strategies to increase the yield.

The paper is organized as follows. The stochastic model relating observable

defects and chip failures is developed in Section 2. Parameter estimation and

model diagnostics tools are derived in Section 3. Applications of the model

for yield forecasting and yield improvement are discussed in Section 4. Proofs

and lengthy derivations are given in Appendix.

All the results are stated for applications in semiconductor industry. How-

ever, the proposed methods of estimation, forecasting, factorial and influential

data analysis can be applied to any manufacturing environment with a large

number of parameters of different types and under a significant portion of

missing information.

Acknowledgment. This project was completed during the first author’s

one-year visit to IBM Research Division. We are thankful to our colleagues at

IBM who made this collaboration possible, for their support and encourage-

ment.
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2 Model Building

Let us introduce the following notation. Throughout the paper, index k rep-

resents a defect, j is a defect type, s is a defect size, l is a layer, i is a chip, w

is a wafer, and m is a lot. Thus, jk is the type of the k-th defect, lk is a layer

on which it occurred, etc. The number of chips, wafers, layers, etc. is denoted

by the corresponding capital letters, I, W , L, and so on.

Next, C and U will denote the set of classified and the set of unclassified

defects, respectively. Likewise, Clw is the set of classified defects on layer l of

wafer w. The number of classified defects (of type j on layer l) is denoted by

d (djl) whereas the number of unclassified defects (on layer l) is u (ul). The

total number of defects on layer l is then Nl = ul +
∑
j djl.

Also, let ξi be a binary variable representing the quality of chip i; ξi = 1

if the chip is good, 0 otherwise. At the same time, φi will be the probability

for chip i to survive, given all its defects and other causes. Thus, each ξi is a

Bernoulli random variable with parameter φi.

Finally, let Lw be a set of layers that were inspected on wafer w. For any

layer l ∈ Lw, all the defects are counted and measured, although only a small

portion of them is classified. No information is available about defects on the

remaining, uninspected layers l 6∈ Lw. Layers are inspected by wafer, hence,

under normal circumstances, each layer either inspected on all chips i ∈ w or

uninspected on all chips.

Parameters of the proposed model are:

– r(j) for j = 1, . . . , J is the effect of defect type j,

– a(l) for l = 1, . . . , L is the effect of layer l,

– b(m) for m = 1, . . . ,M is the effect of other causes for lot m,

– λ(j, l,m) is the frequency of defects of type j on layer l of lot m, i.e., the

expected number of such defects per chip.
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We start building the likelihood from a single defect. Suppose a defect of

type j occurred on layer l of chip i. What is the probability for the chip to

survive this defect? A number of competing models can be proposed, such as:

P {survival} = exp {−r(j)a(l)g(s)} (multiplicative model), (1)

P {survival} = exp {− [r(j) + a(l)] g(s)} (additive model),

P {survival} = exp {−r(j)g(s) − a(l)} (simplified additive model),

and others. According to our experiments, model (1) dominated and provided

the best fit and the most accurate forecasts. Therefore, the rest of the paper

is based on the multiplicative model.

However, no theory can guarantee that the multiplicative model will con-

tinue to dominate for future chip designs. Thus, it is natural to keep a bank

of plausible models that can be compared for each new mode of production,

so that the model with the best fit can always be chosen. All the proposed

methods and the implemented routines can be used for each proposed model,

and only minor changes in the computer code will be necessary.

Further, the interaction terms, or the joint effects of a defect type and

a layer, were found significant and significantly improving the fit, based on

a large number of lots spanning several types of production. To avoid over-

parameterization of the model that would immediately impede its predictive

power, we only include interactions of each defect type with each group of

layers. Layers are grouped by similarity into brightfield, darkfield, light metal,

and other groups. Such a grouping of layers appears sufficient to improve the

accuracy of yield prediction and the overall fit. In the sequel, we will not

change the introduced notation and will let the index j run through the set

of observed pairs of defect types and groups of layers. Only a portion of such

pairs actually occurs.

The function g(s) in (1) represents the transformation of the defect size,

most suitable to enter the model equation. Comparison of various functions
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of size showed that the logarithmic transformation

x = g(s) = log(1 + s) (2)

provides the best fit. Hence, we will use it here and below.

First, consider an idealized situation where all layers are inspected on all

wafers, and all the detected defects are classified. Then, assuming indepen-

dence of effects, as in [22] and [23], and including the effect of other causes,

the survival probability for chip i of lot m is

φi = e−b(m)
L∏

l=1

J∏

j=1

∏

k∈Cijl

e−r(j)a(l)xk .

Further, assume independence of ξi which only means that each chip failure is

caused by its own defects or other causes, but not by the condition of other

chips. Then, one immediately constructs the binomial-type likelihood

L(a, b, r) =
M∏

m=1

∏

w∈m

∏

i∈w

φξii (1 − φi)
1−ξi , (3)

and, for example, maximizes it with respect to unknown parameters r =

(r(1), . . . , r(J)), a = (a(1), . . . , a(L)), and b = (b(1), . . . , b(M)). Although (3)

in fact represents only a portion, or a conditional likelihood function, given

the number of defects of each type on each layer, its omitted terms do not

contain the parameters of interest, hence, they drop as constant coefficients.

However, the situation is different due to a large number of unclassified

defects. Only the size s and location (layer or operation) l are known for such

defects. Therefore, a chip survives an unclassified defect k with probability

P {ξ = 1 | xk} =
J∑

j=1

P {jk = j | xk}P {ξ = 1 | jk = j, xk}, (4)

according to the formula of total probability. Essentially, the expectation is

taken with respect to an unknown defect type j. In (4), the conditional survival

probabilities, given jk = j, are obtained from (1), and probabilities of different
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defect types can be computed using the Bayes rule,

P {jk = j | xk = x} =
P {jk = j} π(x | jk = j)∑

j′

P {jk = j ′}π(x | jk = j ′)
,

where

P (jk = j) =
λ(j, lk, mk)

λ(lk, mk)

is the corresponding proportion of defect frequencies,

λ(lk, mk) =
∑

j

λ(j, lk, mk),

and

πj(x) = π(x | jk = j)

is the distribution of (transformed) defect sizes which of course differs from

one defect type to another. Given a large data set of sizes of classified defects,

we decided to estimate the sizes non-parametrically (we could mention that a

parametric option is, in principle, also possible).

Given a large database of classified defects, we estimated the distributions

πj nonparametrically by computing histogram density estimates ([3]), however,

a parametric approach is, in principle, also possible. Dependence of the size

distribution on the defect type was evident.

As a result, the probability of surviving an unclassified defect is now ex-

pressed as

P {ξ = 1 | xk} =

∑

j

λ(j, lk, mk)πj(xk)e
−r(j)a(lk)xk

∑

j

λ(j, lk, mk)πj(xk)
. (5)

The other source of missing information relates to the practice of selective

inspection schemes that leave a large number of uninspected layers. Many

wafers have only one inspected layer, and only a few have more than 75% of

their layers inspected. At the same time, an uninspected layer may contain

fatal defects that cause the chip failures and affect the final yield.
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The effect of uninspected layers can also be included into the likelihood

through the formula of total probability. Since all the information on such

layers is hidden, expectations should be taken over the number of defects of

each type as well as their sizes. A Poisson(λ(j, l,m)) number of defects Nijlm

of type j on layer l of chip i of lot m is assumed. Then,

P {ξ = 1 | uninspected layer l}

=
∏

j

P { all type j defects on layer l are not fatal}

=
∏

j

ENijlm (P {a defect of type j is not fatal})Nijlm

=
∏

j

exp {−λ(j, l,m) (1 − ψjl)} , (6)

where

ψjl = Ex
j e

−r(j)a(l)x =
∫
e−r(j)a(l)tdπj(t) (7)

is the moment generating function of size x, by defect type and layer.

Notice that (7) is the probability of surviving a defect j (of a random size)

on layer l. Thus, (1−ψjl) represents the kill ratio, the probability for such a

defect to kill a chip, which is the quantity of primary interest to practitioners.

As we notice, probabilities (5) and (6) of surviving unclassified defects and

uninspected layers contain unknown defect frequencies λ = {λ(j, l,m)} that

are now included into the overall likelihood as parameters. As a result, parts

of the likelihood characterizing occurrence of defects of each type are no longer

constant; now they contain unknown parameters. Hence, now

L(a, b, r,λ) (8)

= P {defects}P {classified defects | defects}P { failures | defects}

=
∏

m

∏

w∈m

∏

l∈Lw

∏

i∈w

e−λ(l,m)λ
Nil(l, m)

Nil!

∏

j

(
λ(j, l,m)

λ(l, m)

)dijl

φξii (1 − φi)
1−ξi ,

where

log φi = −b(m) −
∑

l∈Lw

∑

k∈Cijl

r(jk)a(l)xk

9



+
∑

l∈Lw

∑

k∈Uil

log

∑
j λ(j, l)πj(xk)e

−r(j)a(l)xk

∑
j λ(j, l)πj(xk)

−
∑

l 6∈Lw

∑

j

λ(j, l) (1 − ψjl) .(9)

This survival probability consists of four parts representing four sources of fail-

ing chips. It reflects the fact that in order to function, a chip needs to survive

other causes (the first term), all classified defects on it (second term), all un-

classified defects (the third term), and all the uninspected layers (fourth term).

Then, equation (9) represents a cause-and-effect relation between defects and

chip failures.

3 Parameter estimation, goodness of fit, and

diagnostics

This section proposes the parameter estimation and model adequacy evalua-

tion routines. In practice, one would apply this scheme to most recent training

data sets, first, to update the parameter estimates that are used for effect com-

parison and yield prediction, and second, to test whether the chosen model

continues to be adequate for the current production.

3.1 Modified EM algorithm

Given the explicit form of the likelihood function (8), it is the first impres-

sion that maximum likelihood estimation is natural and straightforward. The

problem is in a very large dimension of the parameter space. Indeed, besides

tens of defect type effects r(j), tens of layer effects a(l), and hundreds of lot-

specific other causes effects b(m), one has to estimate the defect frequencies

λ(j, l,m) for j = 1, . . . , J , l = 1, . . . , L, m = 1, . . . ,M . Because of the latter,

the total number of parameters often approaches 100,000, immediately making

the “brute-force” optimization of the likelihood computationally infeasible.

On a side note, let us mention that estimation of defect frequencies is the
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problem of its own keen interest. Reduction of the frequencies λ(j, l) of the

most dangerous defects is a viable yield increasing strategy. On the other

hand, a strategy directed towards elimination of the most significant defects

may not be yield efficient if these defects have negligibly low frequencies. For

this reason, in addition to kill ratios, practitioners often consider weighted

defect densities

λ(j, l)P { defect of type j on layer l is fatal }

that evaluate effects of defect types taking into account both their probabilities

to kill and their frequencies.

The EM algorithm ([9], [25]) offers an iterative computational method that

converges to the maximum likelihood estimator (see [2]). It allows to split the

set of parameters into two groups and estimate each group separately during

each iteration, by an M-step and an E-step, conditionally on the other group.

Each M-step represents usual maximum likelihood estimation and involves a

moderate group of parameters that can be handled by the chosen optimization

routine. During each E-step, the remaining parameters are treated as missing

values. Being such, they are estimated by conditional expectations given their

old values, obtained from the previous cycle, and the refined first group of

parameters. A large number of parameters can be re-estimated by means of

the E-step. In view of this, a natural split for model (8) is to estimate effects

of defect types, layers, and other causes during the M-step, and to estimate

the defect frequencies during the E-step.

3.1.1 Initialization of parameter estimates

A meaningful initial point in the iterative numerical routine may accelerate the

entire scheme and prevent it from converging to local extrema. Here we pro-

pose simple choices for the initial values of parameter estimates, a(0), b(0), r(0),

and λ(0).
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Initially, it is natural to set intensities of defects of different types to be

proportional to the corresponding numbers of classified defects, i.e.,

djlm/dlm = λ
(0)
jlm/λ

(0)
lm .

Then, the cumulative frequency of all defects on each inspected layer l can be

estimated as

λ
(0)
lm =

dlm + ulm
| {i ∈ m : l ∈ Li|}

,

and thus, all the frequencies are initialized as

λ
(0)
jlm =

(
djlm
dlm

)
λ

(0)
lm .

Next, without any additional information at the initial step, suppose that

r(j) ≡ r, b(m) ≡ b, and a(l) ≡ 1 (we notice that al are multipliers in model

(1), hence they are determined only up to a constant coefficient). Replacing,

for a rough approximation, transformed defect sizes xk by their average x̄, we

obtain from (9) that

∑

i

φi
·
≈ Ie−b

∏

j,l

exp
{
−r(j)a(l)x̄λ̄

}
= I exp

{
−b− JLrx̄λ̄

}
.

Equating, by the method of moments, the expected and the actual yield,
∑
φi

and
∑
ξi, one obtains,

r(0) = −
log(

∑
ξi/I) + b(0)

JLx̄λ̄(0)
= −M

log(
∑
ξi/I) + b(0)

x̄
∑∑∑

λ(0)(j, l,m)
, (10)

an equation connecting the initial choice of the averaged effect of a defect, and

the averaged effect of other causes, where M is the number of lots, and I is

the number of chips.

3.1.2 M-step

Available optimization routines can handle the optimization problem arising

during the M-step. Certainly, one can equivalently maximize the log-likelihood
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function, where only a part containing a, b, and r needs to be maximized.

Thus, the problem is to maximize

∑

i

{ξi logφi + (1 − ξi) log(1 − φi)} , (11)

with log φi given in (9). The speed and accuracy of the algorithm depends on

the chosen optimization routine and convergence criteria. Also, the following

two remarks allow to reduce the number of elementary operations significantly.

Remark 1. Since only a few layers are inspected on each wafer, there

is a large number, often a vast majority, of chips without a single detected

defect. Within each wafer, such chips share the same value of φi. Thus the

corresponding terms of (11) can be computed only once for each wafer (but

distinguish between good chips with no defects and bad chips with no defects).

Remark 2. It is easy to compute and supply the analytic gradient of (11);

for details, see Section 5.1. Thus, it is recommended to include it into the

routine instead of forcing its estimation by finite differences. Supplying the

Hessian would be efficient too although it is cumbersome.

Even with these recommendations, the M-step is the most computer inten-

sive in the entire scheme.

3.1.3 E-step

An unbiased estimator of defect frequencies λ(j, l,m) is

λ̂(j, l,m) = I−1
m E {Njlm | d,u,x, ξ,a, b, r,λ} , (12)

where Im is the total number of chips on lot m, and vectors d, u, x, ξ, a, b, r,

and λ represent, respectively, the number of classified and unclassified defects,

their sizes, the quality of chips, and the current refined values of all estimated

parameters. Frequencies can be re-estimated for each lot separately, thus we

will omit the lot index m. As a result, we obtain the refining equation (for
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details, see Section 5.2)

λ̂(j, l) = I−1



djl +

∑

i:l∈Li


 1 − ξi

1 − φi

∑

k∈Uil

vjk
vk

+
ξi − φi
1 − φi

∑

k∈Uil

wjk
wk




+λ(j, l)
∑

i:l 6∈Li

(
1 − ξi
1 − φi

+
ξi − φi
1 − φi

ψjl

)
 , (13)

where

vj,k = λ(j, lk)πj(xk), vk =
∑

j

vjk, (14)

and

wj,k = vj,ke
−r(j)a(l)xk = λ(j, lk)πj(xk)e

−r(j)a(l)xk , wk =
∑

j

wjk. (15)

During the E-step, each frequency is recomputed once, and no iterations

are involved. Therefore, the E-step is much faster and computationally cheaper

than the M-step, where a numerical optimization routine is used to maximize

the likelihood under fixed λ.

3.1.4 Modification

The EM algorithm posesses a number of appealing properties ([9], [25]), how-

ever, in a wide range of practical problems (specifically, those dealing with a

large number of parameters and large data sets) its performance can typically

be improved via suitable modifications. The problem described in this paper

is not an exception.

Under the conditions of our problem, it is beneficial to terminate the M-

step under rather mild convergence criterion, since high-precision optimization

is inefficient in intermediate stages.

We also introduced an additional step that enables one to achieve a size-

able improvement in the speed of convergence. This step essentially tries to

guess the correct search direction for the maximum of the likelihood function

L(a, b, r,λ). When it succeeds, it starts making increasingly larger steps in
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that direction preventing the routine from too many iterations in the area

where the likelihood is increasing slowly. Otherwise, it is skipped at this cycle,

and the standard EM algorithm is followed.

The step is described as follows. It starts by analyzing results of the latest

E-step and M-step. Let θ0 be the vector of parameter estimates (â, b̂, r̂, λ̂)

obtained as a result of the previous cycle, and θ1 be the refined vector. That

is, the latest E-step and M-step transformed θ0 into θ1. If the chosen global

convergence criterion is met, then the last cycle failed to improve the value

of L(θ) by more than ε, and the entire routine stops. In all other cases, we

obtain that L(θ1) > L(θ0) + ε, hence, the likelihood function is seemingly

increasing in the direction of

∆θ = θ1 − θ0.

We now follow this direction and check if the likelihood continues to increase.

Also, each time we increase the step, therefore, shaking the system and disal-

lowing it to converge to a local extremum. That is, we consider a sequence of

vectors {θn} defined recursively as

θn = θn−1 + γ(n)∆θ, n ≥ 2,

where γ(n) is a chosen increasing function of n (polynomial or even exponen-

tial). The value of L(θn) is calculated for each n = 2, 3, ..., the algorithm

proceeds if it this value is improved and stops at the time

T = min {n ≥ 2 : L(θn) < L(θn−1)} .

Then, θT−1, the best set of parameter estimates obtained so far, serves as an

initial point of the next EM-iteration.

Clearly, this step is activated only if it leads to larger values of L(θ).

Otherwise, it is skipped, and the routine proceeds to the next EM-iteration.

Thus, it will generally result in an equal or higher value of the likelihood.
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And above all, it is computationally the cheapest of all three steps, requiring

only computation of the likelihood function, but no optimization or gradient

evaluation.

Based on our experience, insertion of this step into the EM algorithm

always resulted in the same or, even more often, higher value of the maximum

likelihood. It always accelerated the EM algorithm in the beginning by making

aggressive steps and saving a considerable number of EM-iterations. During

the late iterations, it rarely went farther than θ2.

3.2 Assessment of the goodness of fit

Repeatedly applying the described three steps until the convergence criterion

is met (which is inevitable because each cycle improves the likelihood by at

least ε), we obtain the set of parameter estimates (â, b̂, r̂, λ̂). How good are

these estimates, and how adequate is our model? From a practical stand-

point, how useful is it for yield prediction, evaluation of kill ratios, designing

new strategies, and other objectives? We propose two general goodness-of-fit

assessment tools.

1. Standard goodness-of-fit tests (e.g., the chi-square test) compare the

expected and observed values. In our case, it is a comparison of

Ŷm = actual yield =
∑

i∈m

ξi

and

Ym = predicted yield =
∑

i∈m

Eφi
(ξi) = φi

for each lot or each wafer. One can evaluate the closeness of Ŷm to Ym by the

standard chi-square statistic, or even by the correlation coefficient between

Y and Ŷ . Along with the graph of actual and predicted proportional yield

(ym, ŷm) = I−1
m (Ym, Ŷm) for m = 1, . . . ,M , it provides a simple illustration of

the predictive power.
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2. Even if the actual and predicted yields above are found close to each

other, it may happen that the right yield was predicted by wrong reasons.

Say, one could (at least, theoretically) predict a high yield on actually failed

chips and a low yield on good functioning chips that in combination returned

a prediction close to Y .

Therefore, it is elucidating to compute predicted yield separately for good

chips and for bad chips. The actual numbers of good and bad chips are differ-

ent, therefore, the only fair comparison is based on proportional yields

ŷg = P̂ { predicted good | actually good } =

∑
i φiξi∑
i ξi

and

ŷb = P̂ { predicted good | actually bad } =

∑
i φi(1 − ξi)∑
i(1 − ξi)

.

The model obtains predictions ŷg and ŷb from the observed defects only,

without seeing the actual failures. Ideally, we would certainly wish to predict

a 100% yield on good chips and a 0% yield on bad chips. However, this

is not possible. One reason for that is existence of pairs of chips with an

identical defect situation, whereas one chip in a pair is good and the other is

bad. Moreover, there are failed chips that are exposed to other causes only

and chips that survived not only the other causes but also many defects on

different layers.

Then, how well can the model separate ŷg and ŷb, and what difference

between them should be considered satisfactory, or a good fit? The following

theoretical result answers this questions.

Lemma 1 Let {φi, i = 1, . . . , I} be independent identically distributed ran-

dom variables with the distribution F (φ). For each i, consider ξi, a Bernoulli

variable with parameter φi, and let ξi be independent.

Let ŷg =

∑
i φiξi∑
i ξi

and ŷb =

∑
i φi(1 − ξi)∑
i(1 − ξi)

.
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Then the strong law of large numbers holds for ŷg and ŷb, and

lim
I→∞

ŷg =
EFφ

2

EFφ
and lim

I→∞
ŷb =

EFφ− EFφ
2

1 − Eπφ
,

with probability 1, where EF represents the expectation over the distribution

F . Also,

lim
I→∞

(ŷg − ŷb) =
VarF (φ)

EFφ(1 − EFφ)
, a.s. (16)

Applying this lemma to defects and failures, we define φi as the probability

that chip i is good, given its defects, and ξi ∼ Bernoulli(φi) as the binary

variable that equals 1 if the chip is good. For each i, the value of φi is a

function of the number, types, locations, and sizes of defects occurring on chip

i, as in (9). In turn, all these factors are random variables that collectively

determine the distribution F of φi.

Lemma 1 explains the limitations in the desirable separation of predicted

yield among good and among bad chips. Under no circumstances can we

achieve ŷg ≈ 100% and ŷb ≈ 0%. As an extreme situation, suppose that all

the defects are getting eliminated by constant modification and improvement

of the manufacturing line. Then φ ↑ 1, and both ŷg and ŷb approach 1.

Conversely, if φ ↓ 0 then both ŷg and ŷb approach 0, and in both cases the

difference between them vanishes.

The proof of Lemma 1 is given in Appendix, Section 5.3.

3.3 Clustering and rare defects

In practical implementations it is important to take into account a number

of special properties of defects that require adjustments of the modeling and

estimation procedures. In this section we discuss two properties of this type:

a tendency of defects to cluster and defect rarity.

1. Clustering. Consider a chip with 8,000 detected defects. Under any

plausible model, including three models mentioned in Section 2, the probability
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for such a chip to fail is practically 1. However, it is not unusual to see such

a chip that is recorded as good! Proportion of such chips is low, but keeping

them in the overall likelihood without any correction has a strong influence

on final results. The model tries to explain their yield, and the only way this

yield can be positive is when each defect type seen on a chip so many times

has zero effect.

Investigating situations involving thousands to hundreds of defects ob-

served on the same chip, we found that the vast majority of these defects

occur on the same layer and belong to the same defect type or remain unclas-

sified. Also, in all such cases, these defects were marked as clustered. Survival

of chips containing such clusters indicates that the effect of a cluster of defects

is weaker than the mutual effect of the same number of individual defects.

Clusters of different sizes, from just a few defects to thousands of defects, are

registered on a large portion of chips, thus such chips cannot be ignored or

deleted.

There are different ways the effect of a cluster can be modeled. A plausible

way is to treat a cluster as a single defect whose size (before the transformation

(2) is applied) equals the sum of their individual sizes. In all the cases such

modeling provided better fit comparing with the scheme that treats chips

with unusually high number of defects as outliers, deletes them, and applies

the uncorrected model to the remaining chips.

2. Rare defects. A considerable number of defect types are seen rather

rarely, say, 1-5 times per 10,000 chips. Even if their effect on the quality of

a chip is strong, they do not affect the remaining vast majority of chips, and

therefore, the final yield is not affected by such “rare” defect types.

Since for some chips rare defects appear to be the cause of failure, they

cannot be simply ignored. Other defects would then be classified as chip

killers, introducing a bias in parameter estimates. In view of their small effect
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on the final yield, all such defect types can be combined, so that only their

average effect and their cumulative frequency is estimated. This reduces the

overall number of estimated parameters, leading not only to acceleration of

the numerical routine, but also to a higher predictive power of the model.

3.4 Diagnostics and outlier detection

Besides situations described in the previous section, large data sets may con-

tain chips, wafers, or even lots, that “do not belong there” and should be

treated as outliers. Several outlier detection methods are proposed in this

section.

Typically, a certain portion of data can be deleted from the study immedi-

ately by means of a simple inspection. This includes wafers with approximately

zero yield, chips with hundreds of non-clustered defects, inspected layers with

no detected defects on an entire lot (paradoxically!), etc. Such cases are usually

results of various errors in data records.

After this inevitable data cleaning, we identify “suspicious” wafers and lots

by answering the following two questions:

1. How different would the results be if obtained from this wafer (lot) only?

2. How different would the results be if obtained without this wafer (lot)?

To address these questions, we use four types of diagnostics.

1. Likelihood-based diagnostics. The general model (8) is estimated

separately for each lot m, providing its own maximum value Lm(θ(m)) of the

likelihood of this lot. It is always higher than the value of Lm(θ) based on the

global estimators θ obtained by means of the modified EM algorithm described

above. If the difference is significant, it means that the global estimators do

not fit to lot m; its likelihood can be increased significantly given its own

parameters.
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To find a fair measure of significance of
{
logLm(θ(m)) − logLm(θ)

}
, we

notice that letting each lot have its own parameters increases the total number

of parameters in the model from (M+L+J+JLM) to (M+LM+JM+JLM),

where M is the number of lots, J is the number of defect types, and L is the

number of layers. This constitutes (J + L)(M − 1) additional parameters.

According to [26], the test statistic

2
M∑

m=1

logLm(θm) − 2 logL(θ) (17)

has asymptotically χ2 distribution with (J + L)(M − 1) degrees of freedom

if expanding the parameter space is not significant. Hence, if a lot is not an

outlier, and the global parameters fit it well, one should expect its two-log-

likelihood to increase approximately by a χ2 variable with (J + L)(1 − 1/M)

degrees of freedom. Exceeding the critical value of χ2
α automatically puts a lot

into the list of suspicious ones.

Further, the test statistic (17) consists of the sum of differences, by wafer,

and thus, the largest summand points to the most outlying wafer that is re-

sponsible for the large difference.

Remark. Even for large data sets, it is typically feasible to conduct separate

estimation for each lot. In the process of such estimation, the global parameter

estimates θ are very helpful, because because they can serve as initial values

in estimation for each lot. Notice that the purpose of this analysis is to find

significant deviations from the global results. If a lot is well explained by the

global model, such a deviation is small, and starting from θ, the algorithm

will converge quickly.

2. Parameter-based diagnostics. Continuing the likelihood-based di-

agnostics, one can compare the lot-specific estimates θm with the global esti-

mates θ. Under the null hypothesis, or in the absence of outliers, vectors θm,

obtained from similar lots with the same number of inspected layers, are i.i.d.,
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and their mean vector and covariance matrix can be estimated by standard

methods. This provides a null multivariate normal distribution (according to

the asymptotic normality of maximum likelihood estimators), against which

the differences (θm − θ) can be compared.

3. Prediction-based diagnostics.

A different way to identify lots that do not agree with the global model is

to analyze the yield predictions for each lot. A good model should separate

the predicted yield on good and on bad chips ŷg and ŷb, as shown in Lemma 1.

According to (16), the difference between ŷg and ŷb should be positive, provided

a good fit. Otherwise, the model appears not to have a good predictive power

on such a lot. Then it should be deleted from the estimation routine, as long

as the parameter estimates are used for prediction on future lots. Typically,

however, most of these lots appear to be already deleted by the two diagnostics

tools described above.

4. Cross-validation.

In cross-validation, each lot is deleted, one at a time, and the model param-

eters are estimated without it. Again, the global parameter estimates θ can

be used as initial values for the EM-algorithm. Then, predictions are made on

the deleted lot and compared with its actual yield.

All the proposed methods can be applied to either lots or wafers. The latter

is recommended for wafers with sufficiently many inspected layers. We have

seen a number of cases where an outlying lot was classified as such only due to

one outlying wafer on it. Applying the diagnostics tools on a wafer level would

in general delete fewer units. On the other hand, wafers with only one or two

layers inspected may provide a rather small sample of defects. Inference made

on such a wafer separately from other wafers in diagnostics tools 1–3 will not

be reliable.

22



After the “suspicious” lots (wafers) are identified, it is very useful and

strongly recommended to conduct an in-depth analysis of each case. In our

application, it resulted in a number of “discoveries”. Almost every critical case

was attributed to a special cause, such as error in data collection and data

recording, spontaneous change in the sensitivity of the inspection instrument,

scrapped wafer or reworked layer.

4 Yield forecasting, kill ratios, and other ap-

plications

The described cycle of data cleaning, model fitting, model diagnostics, outlier

detection, and most likely, model refitting and refinement results in a estimated

model and a set of parameter estimates. This section concerns immediate

applications of this analysis, usable information and interpretation that can

be drawn from it.

1. Yield forecasting. One of the obvious practical by-products of our

modeling is the possibility to predict the yield for each lot and each wafer.

Indeed,

φi = E {ξi | defects on chip i)}

is the expected yield, or number of good chips, out of one chip i. Then

ŶI =
∑

i∈I

φi (18)

is the expected yield that can be computed for any set of chips I, which may

be a wafer, a lot, a number of lots, or an entire grade. Thus ŶI serves as the

yield forecast, and it is based on the observed defects on I and the parameter

estimates obtained from the training data.

Using this method, the yield can be predicted at the end of the production

cycle, after all layers have been processed but before the final testing. It can
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also be used to predict the yield at earlier stages of the production line. Layers

that have not been processed are then treated as uninspected. If a low yield

is predicted on some wafer or lot, a decision may be made about terminating

its production at an early stage, or a layer at fault can be reworked.

2. Kill ratios and weighted defect densities. Next, we will derive the

kill ratios and related probabilities, such as the probability for a certain defect

to be fatal, the probability for a certain defect type or layer to contain the

chip killer, etc. These probabilities are computed for a generic typical chip,

and therefore, the chip index i will be omitted. For the sake of simplicity,

we will also omit the conventional “hat” and keep in mind that all the used

parameters are in practice replaced by the computed estimates.

Let Djl be the total number of (classified and unclassified, including un-

observed ones) defects of type j occurring on a layer l of some chip. By

Dj = ∪lDjl, Dl = ∪jDjl, and D = ∪jDj we will denote the total number of

type j defects on a chip, the total number of defects of all types on layer l,

and the overall number of defects on that chip, respectively.

Also, let Ak be the event that a defect k is fatal, and let A(0) be the event

that the chip is killed by other causes. Then, for example, ∪{Ak, k ∈ Dl} is the

event of at least one fatal defect occurring on layer l, and ∪{Ak, k ∈ D} \A(0)

is the event that a chip is killed by observable defects but not by other causes.

Notice that a chip may contain more than one fatal defect, and thus, the kill

ratios considered here cannot be treated as probabilities of a failure due to

defect k only. The latter probabilities are derived further below.

We start by computing the kill ratio, or the probability that a type j defect

on layer l is fatal,

pKRjl = P {Ak | k ∈ Djl} = 1 − ψjl = 1 − Ex
j exp {−r(j)a(l)x} . (19)

The expectation in (19) can be estimated if a parametric model is assumed

for the defect sizes x for each defect type j. For an alternative nonparametric
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method of estimating ψjl, see (39) in Section 5.1.

Further, one computes the probability for a defect of type j to be fatal,

pKRj = P {Ak | k ∈ Dj} =
∑

l

λ(j, l)

λ(j)
pKRjl , (20)

by the formula of total probability. This is a proportion of type j defects that

appear fatal for a chip. Analysis of large data sets showed that estimator (20)

is more accurate than the kill ratios computed from defect counts only ([12],

[15]). Similarly, one computes the probability for a defect on layer l to be a

chip killer,

pKRl = P {Ak | k ∈ Dl} =
∑

j

λ(j, l)

λ(l)
pKRjl , (21)

which is a proportion of fatal defects on layer l. Finally,

pKR = P {Ak | k ∈ D} =
∑

j

∑

l

λ(j, l)

λ
pKRjl (22)

is the overall proportion of fatal defects. Generalizations used in pKRl , pKRj ,

and pKR, are helpful to compare kill ratios of across defect types and across

layers.

Expressions (20)–(22) are based on the products λ(j, l)pKRjl that are called

weighted defect densities by practitioners. Combining the probability to kill

with the defect frequency, these quantities are often used to measure the ad-

verse effect of each group of defects on the final yield.

The next four probabilities, or group kill ratios, describe the kill ratios of

certain groups of defects. We consider grouping by defect type and by layer,

but other interesting groups can be considered similarly, for instance, a group

of large type j defects, all defects on the lowest 5 layers, etc.

As above, we assume Poisson distribution of the number of defects Njl =

|Djl|. The probability of at least one chip killer among all type j defects on

layer l is

pGKRjl = P {∪Ak, k ∈ Djl} = 1 − ENjlP
{
∩Āk, k = 1, . . . , Njl

}
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= 1 − ENjlψ
Njl

jl = 1 − exp {−λ(j, l)(1 − ψjl)} . (23)

Using this equation, the probability of at least one chip killer among all type

j defects is

pGKRj = P {∪Ak, k ∈ Dj} = P {
⋃

l

⋃

k∈Djl

Ak} = 1 −
∏

l

(1 − pGKRjl ), (24)

the probability of at least one fatal defect on layer l is

pGKRl = P {∪Ak, k ∈ Dl} = P {
⋃

j

⋃

k∈Djl

Ak} = 1 −
∏

j

(
1 − pGKRjl

)
, (25)

and the probability of at least one fatal defect on a chip is

pGKR = P {∪Ak, k ∈ D} = 1 −
∏

l

∏

j

(
1 − pGKRjl

)
. (26)

The latter is also the probability for a chip to fail not (or not only) because of

other causes.

3. Causes of failures.

In this section, we consider chips that are known to have failed. Can the

model pinpoint the cause of their failure?

We start by computing the probability for a randomly selected chip to

survive all its defects and other causes,

p1 = P {ξ = 1} = P {Ā(0)
⋂

(
⋂

k∈D

Āk)} = e−b
(
1 − pGKR

)
.

This probability is different from our predicted yield Ŷ that is computed for

the given dataset based on its observed defects. In comparison, p1 estimates

the proportional yield for the entire mode of production (grade). Similarly,

p0 = 1 − p1 estimates the overall proportion of failed chips.

Then, the probability for a failed chip to be killed by a type j defect on

layer l is

pCFjl = P {
⋃

k∈Djl

Ak | ξ = 0} =
P {∪Ak, k ∈ Djl}

p0

=
pGKRjl

1 − e−b (1 − pGKR)
, (27)
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and similarly, the probability for a failed chip to be killed by a type j defect is

pCFj =
pGKRj

1 − e−b (1 − pGKR)
, (28)

the probability for a failed chip to be killed by some defect on layer l is

pCFl =
pGKRl

1 − e−b (1 − pGKR)
, (29)

and the probability for a failed chip to be killed by some defect (and not, or

not only, by other causes) is

pCF =
pGKR

1 − e−b (1 − pGKR)
. (30)

The last probability also represents the proportion of failed chips that contain

fatal observable defects, and (1 − pCF ) is the proportion of failed chips that

are killed by other causes.

4. Single cause of failure. Based on the probabilities computed above,

should defects with the highest chance of being fatal be regarded to as most

dangerous, and should the reduction of such defects be given the highest pri-

ority?

Noticeably, even having such a defect on some layer, a failed chip may have

been killed by other defects. In view of this, for example, it would be wrong to

attribute the proportion of pCFj of failed chips to defects of type j only. And

if so, then what proportion of failed chips is due to defects of type j?

Here we compute probabilities for a group of defects on a failed chip and

nothing else to cause its failure. Thus, such probabilities are also proportions

of failed chips that can be attributed to the considered defects only, making

such a group a single cause of failure.

The probability that a chip failed due to defects of type j on layer l only is

pSCFjl = P






⋃

Djl

Ak


⋂


 ⋂

(j′,l′)6=(j,l)

⋂

Dj′l′

Āk


⋂ Ā(0) | ξ = 0




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= p−1
0 pGKRjl e−b

∏

(j′,l′)6=(j,l)

(
1 − pGKRj′l′

)

=

(
p1

p0

)(
pGKRjl

1 − pGKRjl

)
=
pCFjl − pGKRjl

1 − pGKRjl

. (31)

Similarly, we compute the probability that all fatal defects on a failed chip are

of type j,

pSCFj =

(
p1

p0

)(
pGKRj

1 − pGKRj

)
=
pCFj − pGKRj

1 − pGKRj

, (32)

the probability that the chip failed due to defects on layer l only,

pSCFl =

(
p1

p0

)(
pGKRl

1 − pGKRl

)
=
pCFl − pGKRl

1 − pGKRl

, (33)

and the probability that a failed chip was killed by defects but not by other

causes,

pSCF = e−bpCF . (34)

Notice that the sum of probabilities in each equation (31)–(33) is less than

1. Each equation deals with probabilities of mutually exclusive but not ex-

huastive events because several types of defects or several layers may be at

fault for the chip failure.

5. Influential layers. If an unusually low or unusually high yield is pre-

dicted for some lot, a simple method can be proposed to find the main reason

of the unusual prediction. Typically, the reason for an unusual prediction is an

unusual situation that occurred on some inspected layer (of course, no surprise

can be found on uninspected layers). It is then straightforward to evaluate the

contribution of each layer into the prediction.

Moving sequentially through all the inspected layers on a lot or a wafer,

consider one inspected layer at a time. Recompute predicted yield ŷm with this

layer being hidden, or uninspected. This operation does not require additional

computer code or much of the computer time. As a result, we obtain the

difference in predicted yield which shows how much of the yield is lost or

gained due to the defects observed on this layer.
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Not only this measures the influence of each inspected layer on the final

yield, but also it points to practitioners a good direction of their possible yield

improving effort.

6. Sensitivity analysis. When choosing an efficient yield improving

strategy, one would be interested to predict, what changes in the final yield

such a strategy will bring. For example, if one manages to reduce the number

of type j defects by 10%, how strongly will this affect the yield? Is it worth

the effort, and is there a more efficient strategy? In other words, how sensitive

is the yield to certain changes in frequencies or sizes of defects?

To answer these questions for relatively small percentage reduction in fre-

quencies and/or sizes of defects, we compute the corresponding elasticities, or

derivatives of logarithms. Since (log f)′ = df/f is the proportional change of

a function f , each computed elasticity will show the proportional yield change

caused by the given proportional change in the parameters.

We recall that the proportional yield is computed as

y = P {ξ = 1} = exp



−b−

∑

j

∑

l

λjl(1 − ψjl)



 , (35)

so that
∂ log y

∂λjl
= −(1 − ψjl),

Hence, sensitivity of yield to the frequency of type j defects on layer l is

measured by the following elasticity,

ejl =
∂ log y

∂ logλjl
=

∂ log y

∂λjl/λjl
= −λjl(1 − ψjl). (36)

For example, a 5% reduction in the number of type j defects on layer l results

in the yield improvement by 5ejl%.

Next, suppose that a certain modification of the production process can

reduce the size s of type j defects on layer l by 100(∆s)%. As a result, the

transformed size x = g(s) reduces by ∆x ≈ sg′(s)∆s, the corresponding kill
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ratio changes by (−∆ψjl), and the log-yield, according to (35), changes by

∆ log y = λjl∆ψjl

= λjlE
x
j (exp {−r(j)a(l)[x− sg′(s)∆s]} − exp {−r(j)a(l)x})

= λjlE
x
j exp {−r(j)a(l)x} (exp {r(j)a(l)sg′(s)∆s} − 1)

= λjlr(j)a(l)∆sE
x
j exp {−r(j)a(l)x} sg′(s) + o(∆s), as ∆s→ 0.

(37)

Hence, the proportional change in yield due to a small reduction of sizes

of type j defects on layer l is

∂ log y

∂s
= λjlr(j)a(l)E

x
j exp {−r(j)a(l)x} sg′(s).

For the chosen in (2) transformation x = g(s) = log(s + 1) and for relatively

large sizes s, it equals

∂ log y

∂s
= λjlr(j)a(l)E

x
j

(
s

s+ 1
exp {−r(j)a(l)x}

)
≈ λjlr(j)a(l)ψjl. (38)

7. Summary. In general, one computes (18) to forecast the yield under

the current conditions. Then, (19)–(34) show the most dangerous defects

and defect type–layer combinations, the most probable causes of failures, and

influential layers that had the highest impact on the final yield. When choosing

an efficient strategy, modifying the production process and resulting in reduced

numbers or reduced sizes of such defects, one uses equations (36)–(38) to

predict possible outcomes. In practice, the expected gain from such a strategy

will then be weighed against its expected costs, and based on this balance, a

business decision regarding its implementation will be made.
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5 Appendix

5.1 Gradient of the log-likelihood for the M-step

Here we derive analytic expressions for ∇L that are used by the optimization

routine during the M-step. It is seen from (8) and (11) that for any parameter

θ ∈ {a(1), . . . , a(L) ; b(1), . . . , b(M); r(1), . . . , r(J)},

∂ logL

∂θ
=
∑

i

(
ξi − φi
1 − φi

)
∂ log φi
∂θ

.

Thus, it remains to compute the partial derivatives of φi for each chip i. One

has

∂ logφi
∂b(m)

=





−1 if chip i belongs to lot m

0 otherwise;

∂ logφi
∂a(l)

= −
∑

k∈Cil

r(jk)xk −
∑

k∈Uil

xk
∑

j

r(j)wjk/wk

for any layer l inspected on the chip i (the quantities wjk and wk are defined

in (15));
∂ log φi
∂a(l)

=
∑

j

λ(j, l,mi)
∂ψjl
∂a(l)

for all layers l that are not inspected on chip i; and

∂ log φi
∂r(j)

= −
∑

k∈Cij

a(lk)xk −
∑

k∈Uil

a(lk)xkwjk/wk +
∑

l∈Li

λ(j, l,m)
∂ψjl
∂r(j)

.

The last two expressions contain partial derivatives of the moment generating

function (7) of the distribution of defect sizes. They will certainly depend on

the model used for this distributions. However, simple nonparametric estima-

tors for these partial derivatives are available, as well as for ψjl itself.

Indeed, since ψjl = Ex
j e

−a(l)r(j)x, it has partial derivatives

∂ψjl
∂a(l)

= −r(j)Ex
jxe

−a(l)r(j)x and
∂ψjl
∂r(j)

= −a(l)Ex
jxe

−a(l)r(j)x.

All three sets of quantities can be estimated by the method of moments from

the classified defects,

ψ̂jl =
1

djl

∑

k∈Cjl

e−a(l)r(j)xk ; (39)
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∂̂ψjl
∂a(l)

= −r(j)
1

djl

∑

k∈Cjl

xke
−a(l)r(j)xk ;

∂̂ψjl
∂r(j)

= −a(l)
1

djl

∑

k∈Cjl

xke
−a(l)r(j)xk .

This completes the computation of the analytic gradient that is supplied to the

optimization routine that maximizes the log-likelihood function with respect

to a, b, and r during the M-step.

5.2 Derivation of the E-step

In this section, we derive the rules for refinement of estimators of λ(j, l,m)

during the E-step and prove equation (13).

The expected number of (j, l)-defects in (12) consists of three parts. Namely,

these are all detected defects classified to type j on layer l, a suitable portion

of unclassified defects that “should” be attributed to type j, and a portion of

(j, l)-defects that is expected on wafers where layer l is uninspected. That is,

λ̂j,l = I−1


dj,l +

∑

k∈Ul

P {jk = j | xk, ξi} +
∑

i:l 6∈Li

E {Nijl | ξi}


 . (40)

We compute these three terms separately. The first term is simply the

observed number of classified type j defects observed on layer l. For the

second term, consider two cases, when the chip containing defect k is good

and when it is bad.

Suppose for a moment that an unclassified defect k in fact has type j, and

consider the conditional probability

φi(j, k) = P {ξ = 1 | jk = j, xk} . (41)

The only difference between log φi(j, k) and log φi in (9) is caused by this defect

appearing in the set Cijl instead of Uil. Hence,

log φi(j, k) − log φi = −r(j)a(lk)xk − log

∑
j′ λ(j ′, l)πj′(xk)e

−r(j′)a(lk)xk

∑
j′ λ(j ′, l)πj′(xk)

,
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so that

φi(j, k) = e−r(j)a(lk)xkφi/ρk,

where

ρk =
wk
vk

=

∑
j′ wj′,k∑
j′ vj′,k

is the probability for a chip to survive an unclassified defect k, which is inde-

pendent of the (in fact, unknown) defect type j, and vjk, vk, wjk, wk are defined

in (14) and (15).

Then, for an unclassified defect k ∈ Ul occurring on a good chip i,

P {jk = j | xk, ξi = 1}

=
P {jk = j} π(xk | jk = j)P {ξi = 1 | jk = j, xk}∑
j′ P {jk = j ′} π(xk | jk = j ′)P {ξi = 1 | jk = j ′, xk}

=
[λ(j, lk)/λlk ]πj(xk)φi(j, k)∑
j′ [λ(j ′, lk)/λlk ] πj′(xk)φi(j

′, k)

=
vjke

−r(j)a(lk)xkφi/ρk∑
j′ vj′,ke−r(j

′)a(lk)xkφi/ρk
=

wjk
wk

.

Similarly, for an unclassified defect k occurring on a bad chip i,

P {jk = j | xk, ξi = 0} =
[λ(j, lk)/λlk ] πj(xk) [1 − φi(j, k)]∑
j′ [λ(j ′, lk)/λlk ] πj′(xk) [1 − φi(j

′, k)]

=
vjk

[
1 − e−r(j)a(lk)xkφi/ρk

]

∑
j′ vj′k [1 − e−r(j′)a(lk)xkφi/ρk]

=
vjk − wjkφi/ρk
vk − wkφi/ρk

=
vjk − wjkφi/ρk
vk(1 − φi)

=
vjk/vk − φiwjk/wk

1 − φi
.

Hence, the second term of (40), the expected number of type j defects

among unclassified defects on layer l, equals

∑

k∈Ul

P {jk = j | x, ξ} =
∑

i:l∈Li

∑

k∈Uil

{
ξi
wjk
wk

+ (1 − ξi)
vjk/vk − φiwjk/wk

1 − φi

}

=
∑

i:l∈Li





1 − ξi
1 − φi

∑

k∈Uil

vjk
vk

+
ξi − φi
1 − φi

∑

k∈Uil

wjk
wk



 . (42)
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Finally, we compute the expected number of type j defects on an unin-

spected layer l. This expectation is not just the ratio of corresponding defect

frequencies. Although the defect situation on an uninspected layer is hidden,

the quality of a chip (ξi) is still known, and it should be used in our computa-

tion.

Similarly to (41), we define φin(j, l) to be the probability for chip i to be

good, despite of its n type j defects on an uninspected layer l. Sizes of these

defects are hidden and thus replaced by the corresponding expectation as in

(7). Then, logφin(j, l) can be obtained from log φi by moving the effect of all

n type j defects from the set {k ∈ i, l 6∈ Li} of defects on uninspected layers to

the set Cijl of classified defects, replacing, by the formula of total probability,

their missing sizes by expectations ψjl. That is,

log φin(j, l) = log φi + λ(j, l)(1 − ψjl) + n logψjl.

Then, the expected number of type j defects on an uninspected layer of a

good chip i equals

E {Nijl | ξi = 1} =
∞∑

n=0

nP {Nijl = n | ξi = 1}

=
∑

n

n
φin(j, l)e

−λ(j,l)λn(j, l)/n!

φi

=
∞∑

n=0

n
(
eλ(j,l)(1−ψjl)ψnjl

) (
e−λ(j,l)λn(j, l)/n!

)

=
∞∑

n=0

ne−λ(j,l)ψjl (λ(j, l)ψjl)
n /n!

= λ(j, l)ψjl. (43)

Similarly, for a bad chip i,

E {Nijl | ξi = 0}

=
∞∑

n=0

nP {Nijl = n | ξi = 0}

=
∑

n

n
[1 − φin(j, l)] e

−λ(j,l)λn(j, l)/n!

1 − φi
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=
1

1 − φi

∞∑

n=0

n
(
1 − φie

λ(j,l)(1−ψjl)ψnjl
)
e−λ(j,l)λn(j, l)/n!

=
1

1 − φi

(
∞∑

n=0

ne−λ(j,l)λn(j, l)/n! −
∞∑

n=0

nφie
−λ(j,l)ψjl(λ(j, l)ψjl)

n/n!

)

=
1

1 − φi
(λ(j, l) − φiλ(j, l)ψjl)

=
λ(j, l)(1 − φiψjl)

1 − φi
. (44)

Combining (43) and (44), we obtain the third term of (40),

∑

i:l 6∈Li

E {Nijl | ξ} =
∑

i:l 6∈Li

{
ξiλ(j, l)ψjl +

1 − ξi
1 − φi

λ(j, l)(1 − φiψjl)

}

= λ(j, l)
∑

i:l 6∈Li

(
ξi − φi
1 − φi

ψjl +
1 − ξi
1 − φi

)
. (45)

Finally, using (42) and (45) in (40) and adding the classified type j defects,

we obtain the expression for the refined frequency estimator,

λ̂(j, l) = I−1



djl +

∑

i:l∈Li


 1 − ξi

1 − φi

∑

k∈Uil

vjk
vk

+
ξi − φi
1 − φi

∑

k∈Uil

wjk
wk




+λ(j, l)
∑

i:l 6∈Li

(
1 − ξi
1 − φi

+
ξi − φi
1 − φi

ψjl

)
 .

Such a refinement of λ(j, l,m) for all defect type, layers, and lots completes

the E-step.

5.3 Prediction on good and on failed chips. Proof of

Lemma 1.

Since ξi ∼Bernoulli(φi), we have E {ξ | φ} = φ. Unconditionally, ξi are i.i.d.

random variables with the compound distribution,

P {ξ = 1} =
∫
φdF (φ), P {ξ = 0} =

∫
(1 − φ)dF (φ).
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By the strong law of large numbers,

ŷg =

I∑

i=1

φiξi

I∑

i=1

ξi

→
E(φξ)

E(ξ)
=

E(φ; ξ = 1)

P {ξ = 1}
= E {φ | ξ = 1} . (46)

By the Bayes formula,

dF (φ | ξ = 1) =
P {ξ = 1 | φ} dF (φ)∫
P {ξ = 1 | φ} dF (φ)

=
φ dF (φ)

EF (φ)
. (47)

Objectively, we deal with a Bayesian model, where F (φ) is a prior distribu-

tion of φi. Then, taking expectation over the posterior distribution of φ, and

combining it with (46), we obtain

lim
I→∞

ŷg = E {φ | ξ = 1} =
∫
φ

φ

EF (φ)
dF (φ) =

EF (φ2)

EF (φ)
.

The posterior distribution of φi given a bad chip, ξ = 0, is considered

similarly. In this case, we have

F (φ | ξ = 0) =
P {ξ = 0 | φ} F (φ)
∫

P {ξ = 0 | φ} dF (φ)
=

(1 − φ)F (φ)

1 − EF (φ)
,

so that

lim
I→∞

ŷb = E {φ | ξ = 0} =
∫
φ

(1 − φ)

1 − EF (φ)
dF (φ) =

EF (φ) − EF (φ2)

1 − EF (φ)
.

References

[1] M. Baron, C. K. Lakshminarayan and Z. Chen. Markov random fields

in pattern recognition for semiconductor manufacturing. Technometrics,

43:66–72, 2001.

[2] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incom-

plete data via the EM algorithm. J. Royal Statist. Soc. B, 39(1):1–38,

1977.

36



[3] L. Devroye and L. Györfi. Nonparametric density estimation. The L1

view. Wiley, New York, 1985.

[4] A. V. Ferris-Prabhu. Modeling the critical area in yield forecast. IEEE

J. Solid-State Circuits, SC-20:878–880, 1985.

[5] M. H. Hansen, V. N. Nair and D. J. Friedman. Circuit fabrication pro-

cesses for spatially clustered defects. J. Amer. Statist. Assoc., 39:241–253,

1997.

[6] R. S. Hemmert. Poisson process and integrated circuit yield prediction.

Solid-State Electronics, 24:511–515, 1981.

[7] M. B. Ketchen. Point defect yield model for wafer scale integration. IEEE

Circuits and Devices, 1:24–34, 1985.

[8] M. D. Longtin, L. M. Wein and R. E. Welsch. Sequential screening in

semiconuctor manufacturing, I: Exploiting spatial dependence. Operations

Research, 44:173–195, 1996.

[9] G. J. McLachlan and T. Krishnan. The EM Algorithm and Extensions.

Wiley, New York, 1997.

[10] F. J. Meyer and D. K. Pradhan. Modeling defect spatial distribution.

IEEE Trans. Computers, 38:538–546, 1989.

[11] L. S. Milor. Yield modeling based on in-line scanner defect sizing and a

circuit’s critical area. IEEE Trans. on Semiconductor Manufacturing, 12

(1):26–35, 1999.

[12] P. Mullenix, J. Zalnoski, and A. J. Kasten. Limited yield estimation for

visual defect sources. IEEE Trans. on Semiconductor Manufacturing, 10

(1):17–23, 1997.

37



[13] R. Ott, H. Ollendorf, H. Lammering, T. Hladschik, and W. Haencsh.

An effective method to estimate defect limited yield impact on mem-

ory devices. Proc. IEEE/SEMI Advanced Semiconductor Manufacturing

Conference, pages 87–91, 1999.

[14] E. Papadopoulou and D. T. Lee. Critical area computation via Voronoi

diagrams. IEEE Trans. on Computer-Aided Design of Integrated Circuits

and Systems, 18 (4):463–474, 1999.

[15] O. D. Patterson and M. H. Hansen. The impact of tolerance on kill ratio

estimation for memory. IEEE Trans. on Semiconductor Manufacturing,

15 (4):404–410, 2002.

[16] S. L. Riley. Limitations to estimating yield based on in-line defect mea-

surements. In Proc. 1999 IEEE International Symposium on Defect and

Fault Tolerance in VLSI Systems, pages 46–54, 1999.

[17] J. Shier. A statistical model for integrated-circuit yield with clustered

flaws. IEEE Trans. Electron Devices, 35:524–525, 1988.

[18] C. H. Stapper. On yield, fault distributions, and clustering of particles.

IBM J. Res. Develop., 30:326–338, 1986.

[19] C. H. Stapper. Large area fault clusters and fault tolerance in VLSI

circuits: A review. IBM J. Res. Develop., 33:162–173, 1989.

[20] C. H. Stapper, F. M. Armstrong and K. Saji. Integrated circuit yield

statistics. Proc. IEEE, 71:453–470, 1983.

[21] W. Taam and M. Hamada. Detecting spatial effects from factorial exper-

iments: an application from integrated-curcuit manufacturing. Techno-

metrics, 35:149–160, 1993.

38



[22] A. Venkataraman and I. Koren. Determination of yield bounds prior to

routing. In Proc. 1999 IEEE International Symposium on Defect and

Fault Tolerance in VLSI Systems, pages 4–13, 1999.

[23] I. A. Wagner and I. Koren. An interactive VLSI CAD tool for yield

estimation. IEEE Trans. on Semiconductor Manufacturing, 8:130–138,

1995.

[24] R. M. Warner. Applying a composite model to the IC yield problem.

IEEE J. Solid-State Circuits, SC-9:86–95, 1974.

[25] M. Watanabe and K. Yamaguchi. The EM Algorithm and Related Statis-

tical Models. Marcel Dekker, New York, 2003.

[26] S. S. Wilks. The large-sample distribution of the likelihood ratio for

testing composite hypotheses. Ann. Math. Statist., 9:60–62, 1938.

39




