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Latent Class Regression on Latent Factors
Yasuo Amemiya, IBM T. J. Watson Research Center

Melanie M. Wall and Jia Guo, University of Minnesota

Abstract

There are two types of latent variable modeling of-
ten used in health sciences research; structural equa-
tion modeling with continuous factors, and latent
class analysis with unordered-categorical latent seg-
ments. This paper develops a statistical methodol-
ogy for a more general model with both continuous
and categorical latent variables. Observed measure-
ment types are allowed to include continuous and
ordered categorical responses. Model fitting meth-
ods and associated statistical inference procedures
are discussed. This methodology can be useful in
health science applications, where a health condi-
tion outcome variable is a latent classification, and
some of possible predictor variables are psycholog-
ical/behavioral constructs. An example relating a
underlying eating disorder condition to a physical
appearance satisfaction construct is presented.

Keywords: latent class model, structural equation
analysis, categorical response, latent health condi-
tion, psychological construct

1. Introduction

In the research of public health, psychology, and so-
cial sciences, it is very common to have variables or
constructs that cannot be measured directly by a
single observable variable but instead are hypothe-
sized to be the driving force underlying a series of
observed variables. The underlying or unobservable
variables are called latent variables and a long litera-
ture exists and is evolving of methods for measuring
them and examining relationships among them (for
a brief history see Bartholomew and Knott, 1999).
Just as observed variables can be characterized as
continuous or categorical, so can latent variables.
Latent class analysis (Lazarsfeld and Henry, 1968;
Clogg, 1995; Hagenaars and McCutcheon, 2002)
considers models for measuring latent categorical
variables hypothesized to take on a finite number
of values which partition the population into a fi-
nite number of discrete groups. Factor analysis or
general latent factor (trait) analysis (Lawley and
Maxwell, 1971; Moustaki and Knott, 2000) con-
siders models for measuring continuous latent vari-
ables.

Many research questions propose to investigate the
relationship between a categorical response variable
and continuous predictors. Logistic regression is

the obvious technique to use when both the out-
come and the predictors are observed directly. But,
when either the categorical outcome or the contin-
uous predictors cannot be observed directly, differ-
ent methods are needed. If the response variable is
measured via a latent class model and the predic-
tors are observable, the approach called latent class
regression can be applied to analyze the relationship
(Dayton and Macready, 1988, Bandeen-Roche, et al.
1997). Another case is where the predictors are la-
tent factors and the categorical response variable is
observable. This case may be considered as a kind
of errors-in-variables problem (Fuller, 1987; Carroll,
et al., 1995). In particular since the outcome is cate-
gorical, this would be a nonlinear errors-in-variables
problem and has been extensively studied with sev-
eral methods proposed (Burr, 1988; Carroll, et al.,
1995). Following the above reasoning, the need re-
mains to develop a model and method for includ-
ing both categorical and continuous latent variables,
which will be the focus of this paper.

To motivate the need for such an analysis technique,
we consider an example from a project conducted
to study adolescent nutrition and obesity called
Project EAT (Neumark-Sztainer, et al., 2002). One
research question of interest is whether an adoles-
cent girl’s body satisfaction could predict her eat-
ing disorders risk class. Body satisfaction had been
hypothesized by the researchers to be a continuous
latent factor measured by a battery of self report
Likert items related to satisfaction with different
parts of one’s body (e.g. hips, shoulders, waist,
etc.). The outcome variable of interest, eating dis-
orders risk class, was hypothesized to be a categor-
ical latent variable. The researchers hypothesized
that there were different types of eating disorders
risk related to girls engaging in purging vs. those
engaging in restriction behaviors. A checklist of 9
unhealthy weight control behaviors was asked on the
questionnaire. No absolute classification rule based
on the checklist of 9 behaviors exits, but a latent
class model can be used to measure the different la-
tent classes of eating disorders risk. In section 6,
this example will be examined further in particular
the modeling of the relationship between the latent
body satisfaction and eating disorders risk.

The paper is organized as follows. In section 2,
we review the latent factor model, the latent class



model, the latent class regression model and intro-
duce notation. In section 3, based on the mod-
els in section 2, we propose a new model for the
case when both the categorical response and con-
tinuous predictors are latent variables. In section
4, the maximum likelihood method is considered
and two different computational algorithms are pro-
posed. In particular, the Monte Carlo Expectation
and Maximization (MCEM) algorithm is demon-
strated with flexible assumptions of the distribution
of the latent factors and the Gaussian quadrature
approximation followed by quasi-Newton maximiza-
tion method is proposed for the case when the latent
factors are normally distributed (implementable in,
e.g., SAS PROC NLMIXED). In section 5, we apply
this model to the Project EAT data to analyze the
relationship between body satisfaction and the char-
acteristics of the latent classes for eating disorders
risk formed in the data.

2. Motivating Models
2.1 Latent factor analysis model

Suppose we have a data set with n individuals. Let
Xi = (Xi1, . . . , XiP )T be a P dimensional vector of
continuous observations for each individual i (i =
1, . . . , n). The factor analysis model (Lawley and
Maxwell, 1971) assumes there are Q (Q < P ) latent
factors fi = (fi1, . . . , fiQ)T , which relate to Xi in
the following way,

Xi = µ + Γfi + εi. (1)

Here the P dimensional vector µ and P ×Q matrix
Γ contain known and unknown scalars and εi is a P
dimensional vector of random error with E(εi) = 0,
V ar(εi) = Ψ, and εi is assumed independent of fi.
Furthermore, Ψ is assumed to be diagonal, which
implies along with the assumption that εi and fi
are independent, that any correlations found be-
tween the elements in the observed vector Xi are
due to their relationship with common fi and not
due to some spurious correlation between εi. As is,
model (1) is not generally identifiable and so the
following error-in-variables parametrization will be
considered,

Xi =
(

λ0

0

)
+

(
Λ
I

)
fi + εi, (2)

where I is a Q × Q identity matrix, 0 is a Q di-
mensional vector of zero, λ0 and Λ are known or
unknown scalars. This form allows straightforward
interpretation of fi and does not lose the generality
of model (1). A measurement model of the form

(2) possibly after reordering the elements of Xi and
centering all qualities is widely used in practice (see
e.g. Fuller, 1987; Jöreskog and Sorbom, 1996).

Estimation and inference for model (2) have been
considered in many different ways relying on varying
assumptions of the distributions of fi and εi (Bollen,
1989). Under the assumption that fi and εi are nor-
mally distributed, the maximum likelihood method
is commonly used to estimate λ0, Λ and Ψ because
of its optimal properties. Furthermore, it has been
shown (Anderson and Amemiya, 1988; Browne and
Shapiro, 1988) that the estimators for model (2) us-
ing the maximum likelihood method assuming nor-
mality are asymptotically consistent even if the nor-
mality assumptions for fi and εi are violated. All
estimation methods are based on the number of fac-
tors Q being fixed and known. A common technique
for choosing the number of factors in the exploratory
model (i.e. where the elements of Λ are freely esti-
mated) is to examine a screen plot of the eigenvalues
of S, i.e. the covariance matrix for X. The num-
ber of factors can be chosen to be the number of
eigenvalues before the elbow in the plot.

More recently the latent factors model has been con-
sidered in the following more general form,

f(Xi) =
∫

f(Xi|fi)f(fi)dfi. (3)

Assuming f(Xi|fi) ∼ N

((
λ0

0

)
+

(
Λ
I

)
fi,Ψ

)

and f(fi) ∼ N(µf ,Φ), this is just the normal
factor analysis model (2). In the form (3), more
flexible distributions can be assumed for f(Xi|fi),
e.g. any exponential family (Moustaki and Knott,
2000; Sammel, et al., 1997, Dunson, 2000 and 2003).

2.2 Latent Class model

Let Yi = (Yi1, . . . , YiJ )T denote the vector of the
observed variables for each individual i, the basic
finite mixture model (McLachlan and Peel, 2000)
is,

f(Yi) =
K∑

k=1

f(ci = k)fk(Yi|ci = k). (4)

Here K is the number of latent classes, ci is the la-
tent class variable, fk(Yi|ci = k) is the class-specific
distribution for Yi, and πk ≡ f(ci = k) denotes the
marginal probability of belonging to latent class k
such that

∑K
k=1 πk = 1.

The special case of model (4) when all elements
of Yi are binary variables is often called the “la-
tent class model” in the literature (Clogg, 1981 and



1995). Moreover, in the latent class model it is gen-
erally assumed that the elements of Yi are mutually
independent within classes. The latent class model
is then,

f(Yi) =
K∑

k=1

πk

J∏
j=1

π
Yij

j|k (1 − πj|k)1−Yij , (5)

where πj|k ≡ Pr(Yij = 1|ci = k) is the probability
that Yij = 1 when the ith individual is in the latent
class k. Although it is possible to constrain certain
parameters πj|k to zero, it is most common to allow
them to be freely estimated by the data. Given
a fixed number of classes K, maximum likelihood
estimates can be obtained straightforward by the
EM algorithm. It is common to fit models with
different numbers of classes and compare them by
BIC values and choose the model with the smallest
BIC (Collins, et al., 1993).

2.3 Latent Class Regression model

Latent class regression models (Dayton and
Macready, 1988; Bandeen-Roche, et al. 1997) build
a relationship between a latent class variable and
other observable continuous or categorical predic-
tor variables of interest. Consider again the latent
class model (5), it may be thought of as a measure-
ment model relating Yi to ci. That is, a model for
how ci is measured by Yi. Now consider additional
observed covariates Xi where it is of interest to in-
vestigate if Xi can directly effect the latent class
membership, i.e. if Xi can be a good predictor for
the latent classes. It will be assumed that Yi is
conditionally independent of Xi given ci. That is,
intuitively the model assumes the only reason that
Xi is related to Yi is because it is related to ci. The
following is the latent class regression model,

f(Yi|Xi) =
K∑

k=1

f(ci = k|Xi)
J∏

j=1

π
Yij

j|k (1−πj|k)1−Yij .

(6)
Bandeen-Roche, et al. 1997 assumed a generalized
logit model for f(ci = k|Xi) given by

Pr(ci = k|Xi) = exp(Xo
i
T βk)/

K∑
k=1

exp(Xo
i
T βk)

k = 1, · · · ,K,

where Xo
i = (1,Xi1, · · · ,XiP )T and βk =

(β0k, β1k, . . . , βPk)T are P + 1 dimensional vectors.
In the above equation, the Kth class is taken as the
reference class, i.e. βK = (0, 0, . . . , 0)T . Then, sim-
ilar to the latent class model, given the number of

classes K fixed, estimates can be obtained by the
EM algorithm.

3. Latent Class Regression on Latent Factors

In the previous section, we have introduced three
models that construct relationships between latent
variables and observed variables. As an extension to
these models, we will build on the idea of latent class
regression and introduce a new model that consid-
ers the structural relationship between a latent class
variable and latent factors.

Let ci be a latent class variable with K categories
and Yi = (Yi1, . . . , YiJ )T be a J dimensional ob-
served vector with binary elements, which is used
to measure ci via the latent class model (5). Let
Xi = (Xi1, . . . , XiP )T be a P dimensional observed
vector with continuous elements used to measure a
Q dimensional latent factor fi via the latent factor
model (2) or more generally (3).

Similar in spirit to latent class regression model (6),
our new model considers regressing the latent class
ci on the latent factors fi. One of the fundamental
assumptions of this new model is that Yi is condi-
tionally independent of Xi given the latent variables
ci and fi. This means that the model assumes Yi

and Xi are only related because the variables they
are measuring are related. This is a natural assump-
tion when modeling relationships between variables
measured with error, i.e. we want to model the re-
lationship between the underlying variables, not the
ones with error. Thus we consider the joint distri-
bution of Yi and Xi to be

f(Yi,Xi) = (7)
K∑

k=1

∫
f(Yi|ci = k)f(Xi|fi)f(ci = k|fi)f(fi)d fi,(8)

where

(latent class model)

f(Yi|ci = k) =
J∏

j=1

π
Yij

j|k (1 − πj|k)1−Yij ,

(latent factor model)

f(Xi|fi) ∼ Np

((
λ0

0

)
+

(
Λ
I

)
fi,Ψ

)
,

(generalized logit model)

f(ci = k|fi) = πk(fi) =
exp(fo

i
T βk)∑K

k=1 exp(fo
i

T βk)
,



(specified latent factor distribution)
f(fi) ∼ F (Φ).

The parameters πj|k, λ0, λ1 and Ψ are all as de-
fined before in section 2. While most commonly the
distribution F (Φ) for the underlying factors will be
normal, it is not necessary so we present it here to
be any specified distribution with unknown param-
eters Φ. Note that like the latent class regression
model in section 2.3, we use the generalized logit
link, i.e. log

(
πk(fi)
πK(fi)

)
= fo

i
T βk, where fo

i = (1, fi)T ,

βk = (β0k, β1k, · · · , βQk)T and βK = (0, 0, · · · , 0)T

indicating class K as the reference class. The pa-
rameter βk is a Q + 1 dimensional vector relating
the latent factors to the probability of being in a
particular latent class. The big difference between
this model and that in section 2.3 is that here fi is
not observed directly. In this model, the parame-
ters of interest are the vector βk’s, which describe
the relationship between the latent factors and the
latent classes.

4. Maximum Likelihood Estimation

Given the parametric model (7) and the i.i.d. data
(Yi,Xi), for i = 1, . . . , n, estimation of the model
parameters can proceed via the maximum likelihood
method. Let Zi = (Yi,Xi), di = (ci, fi), and
θ = ({πj|k},λ0,Λ,Ψ, {βk},Φ) is the vector of pa-
rameters relating Zi and di. Thus the likelihood
function for the model (7) can be written as

Lo =
n∏

i=1

f(Zi;θ) =
n∏

i=1

∫
f(Zi,di;θ)d di, (9)

where the notation for the integral over di is
taken very generally to include the continuous
integral for fi and the summation over ci. This
likelihood function is hard to maximize due to the
integration of the latent variables for which there
is no closed form solution. Hence two numerical
methods for performing the full maximum likeli-
hood are described in this section: Monte Carlo
Expectation and Maximization algorithm (MCEM)
and Gaussian quadrature followed by quasi-Newton
algorithm.

4.1 MCEM Algorithm

It is natural to consider the latent variables, di, as
missing data and implement the EM algorithm for
maximizing (9). Instead of working with the ob-
served data likelihood Lo, we consider the complete

data likelihood

Lc =
n∏

i=1

f(Zi,di;θ).

The E-step obtains the expectation of the log com-
plete data likelihood given the observed data and
the current parameter estimates, i.e. θl.

E(log Lc|Z1, . . . ,Zn;θl) =
n∑

i=1

∫
log f(Zi,di;θ)f(di|Zi;θl)ddi

≡ gθl
(θ;Z).

For the latent class regression on latent factor model
(7), unfortunately we do not have a closed form
for f(di|Zi;θl) and consequently we do not have
a closed form solution for the integral in gθl

(θ;Z).
Hence, we propose to use the Monte Carlo method
to obtained an approximation to gθl

(θ;Z). First
note that

gθl
(θ;Z) =

n∑
i=1

∫
log f(Zi,di;θ)f(di|Zi;θl)ddi

=
n∑

i=1

∫
log f(Zi,di;θ)f(Zi|di;θl)∫
f(Zi|di;θl)f(di;θl)ddi

f(di;θl)ddi.

Hence, given the current θl, a Monto Carlo sample
(d1

i , . . . ,d
M
i ) is generated from f(di;θl), and the

expectation can be approximated by an average

gθl
(θ;Z) ≈

n∑
i=1

1
M

M∑
m=1

[log f(Zi,dm
i ;θ) Wm

i ]

≡ gMC
θl

(θ;Z),

where

Wm
i =

f(Zi|di;θl)
1
M

∑M
m=1 f(Zi|dm

i ;θl)
.

Note that the same Monte Carlo sample is used
to evaluate the integral in the denominator of the
weights in the expectation. Now we note that
log f(Zi,dm

i ;θ) can be factorized into four parts cor-
responding to the four parts of the model (7), i.e.,

log f(Zi,dm
i ;θ) = log f(Yi|cm

i ; {πj|k})
+ log f(Xi|fm

i ;λ0,Λ,Ψ)
+ log f(cm

i |fm
i ; {βk}) + log f(fm

i ;Φ).

The M-step is to maximize gθl
(θ;Z) with respect

to θ. Based on (10), we see that gθl
(θ;Z) has four

parts with distinct parameters associated with each.



Hence, we can maximize each component separately
as a straightforward weighted regression (weighted
by Wm

i ) in order to obtain θl+1.

The MCEM algorithm will iterate between the E-
step and M-step until the parameter estimates con-
verge according to some criteria. In order to de-
crease the Monte Carlo error at the E-step, a large
M should be used. But it has been pointed out
that it is inefficient to choose a large M when θl is
far from the ML estimate (Wei and Tanner, 1990;
Booth and Hobert, 1999). Following recommenda-
tion, it is preferable to start with a small M and in-
crease it for each iteration to Ml = M0 + T l, where
Ml is the sample size for the Monte Carlo step at the
lth iteration and M0 and T are positive constants.
We monitor the convergence of the EM algorithm
by plotting θl versus the iteration l.

Standard Error Estimates of the parameter esti-
mates from MCEM can be obtained by inverting
the information matrix of the log likelihood func-
tion based on the observed data. We apply Louis’
formula (Louis, 1982)

IZ(θ) = Ed

(
−∂2Lc(Z,d;θ)

∂θ∂θT

)

− V ard

(
∂Lc(Z,d;θ)

∂θ

)
,

evaluated at the maximum likelihood estimate
θ̂. The expectation and variance are taken with
respect to the conditional distribution of the latent
variable d = (d1, . . . ,dn)T given the observed data
Z = (Z1, . . . ,Zn)T and parameter θ. These condi-
tional expectations are difficult to evaluate because
as before in the EM algorithm the conditional
distribution of d given Z is unavailable. Hence we
cannot sample from the conditional distribution or
get the closed forms for the expectations. By a
similar method described for the parameter estima-
tion, we can switch the conditional expectation to
a weighted unconditional expectation with respect
to d and then use the Monte Carlo method to
approximate the expectation. Here a large M is
used as it is unnecessary to iterate.

4.2 Gaussian quadrature with quasi-Newton al-
gorithm

We note that the MCEM algorithm introduced
above is flexible with regard to the assumptions of
the distribution of the latent factors. That is, it was
not necessary to assume fi as normally distributed.
Consider again the likelihood function Lo associated
with model (7). Because the latent classes are dis-

crete, it can be written as

Lo =
n∏

i=1

K∑
k=1

∫
f(Yi|ci = k)f(Xi|fi)

f(ci = k|fi)f(fi)d fi.

We note that the observed data likelihood is a func-
tion of the integral of the latent factors fi. In the
special case, when the fi is normally distributed, this
can be approximated by adaptive Gaussian quadra-
ture method (Golub and Welsch 1969, or Table
25.10 of Abramowitz and Stegun 1972). Then given
a closed form approximation to the integral involv-
ing the normal factors fi, the observed likelihood
can then be approximate in a closed form. With
the closed form approximation for the likelihood,
the maximization of it can be carried out through a
quasi-Newton algorithm.

In fact, this method of Gaussian quadrature approx-
imation followed by quasi-Newton maximization can
be implemented using the “general” likelihood func-
tion in PROC NLMIXED in SAS. Appendix A gives
code demonstrating how this can be done.

Although detailed investigation of the computa-
tional speed and accuracy of this method as com-
pared to MCEM is beyond the scope of the current
paper, the estimation for the example considered
herein takes 5 times longer using MCEM. It should
also be noted that for increasing numbers of factors,
the integration in both methods may be computa-
tionally prohibitive.

5. Example

Project EAT (Neumark-Sztainer, et al., 2002) is
a comprehensive study of adolescent nutrition and
obesity. Self-report survey data were collected from
students in 7th and 10th grade at 31 Twin Cities
schools in the 1998-99 school year. A portion of the
survey data collected for the 2113 girls in Project
EAT is used in this current example. The particu-
lar relationship of interest in this study is that be-
tween body satisfaction (a latent factor) and eating
disorders risk (a latent class).

In the Project EAT data set, for each individual
i (i = 1, . . . , 2113) let Yi = (Yi1, . . . , Yi9)T be
the 9 dichotomous questionnaire items indicating
the self-reported use of unhealthy weight control
behaviors within the past year (i.e. “Have you
done any of the following things in order to lose
weight or keep from gaining weight during the
past year: fasting, eating very little food, taking



diet pills, making myself vomit, using laxatives,
using diuretics, using food substitute, skipping
meals, smoking more cigarettes?”). Furthermore,
let Xi = (Xi1, . . . , Xi5)T indicate the five items
measuring body satisfaction (i.e., “How satisfied
are you with your: body shape, waist, hips, thigh,
stomach?”). Each element was measured on a 5
point Likert scale where the anchors were 1=“very
dissatisfied” and 5=“very satisfied”. Despite the
discrete nature of these Likert responses, we will
treat Xi as a continuous variable in this data
analysis and center each element to mean zero.

5.1 Exploratory data analysis

Assume that underlying the observed responses Yi

is a latent class variable ci with categories repre-
senting different typologies of eating disorders risk.
In practice, we will not know the “correct” num-
ber of latent classes in the model. The number of
latent classes K needs to be investigated before fit-
ting the relationship between latent variables. Here
we present the exploratory latent class analysis of
the 9 observed indicators asking which unhealthy
weight control behaviors had been used within the
past year. Table 3 shows the estimated latent class
model parameters and associated BIC values. The
3-class model shows the best BIC fit value. Ex-
amining the {πj|k} for the 3-class model leads to
a class of girls who are basically not doing any of
the behaviors (56.4%), a class who are doing just
the restricting behaviors (i.e. eating very little and
skipping meals) (35.2%), and a high risk class who
have high probability of doing everything (8.4%).
The 4-class model reveals a classification worth dis-
cussing. In the 4-class model, the high risk group
has been split into girls who are more likely to be
using external substances (i.e. diet pills, laxatives,
diuretics, food substances) to lose weight separate
from girls who are restricting food intake and vom-
iting as well as smoking cigarettes to lose weight.
This 4-class model did not match the researchers’
theory as well as the 3-class model and since the
3-class model empirically fitted the best, it will be
used for the latent class regressed on a latent factor
model.

Now we explore the observed body satisfaction
variables Xi as measurements of a latent factor fi.
The researchers hypothesize that these questions
are measuring one dimension of body satisfaction.
The correlations between the variables in Xi range
between 0.57 and 0.75. The eigenvalues of the
covariance matrix are (3.703, 0.476, 0.362, 0.261,
0.198), which indicates that 1-dimension is well

described by these variables providing empirical
support for the 1-factor model. Thus, we will
consider the body satisfaction, a 1-dimensional
continuous latent factor fi underlying the observed
Xi.

5.2 Model Fitting

Consider the parametric model (7), where P = 5,
Q = 1, J = 9 and K = 2, 3 for the example data
set. Note, although the 3 latent class outcome model
was chosen based on exploratory data analysis, the
2 latent class outcome is shown for comparison. Ta-
ble 1 shows the parameter estimates and their stan-
dard errors for different models, where the “low”
eating disorders risk class is treated as the reference
class 0. The AIC and BIC values indicate the model
with 3-class outcome fits the data better. The es-
timates of the log ORs for class 1 (β11) and class 2
(β12) are negative and statistically significant, which
are interpreted as the effect of a 1-unit increase in
body satisfaction on the log odds of being in class
k(k = 1, 2) rather than class 0. It makes sense that
these are negative since as a girl’s satisfaction with
body increases, she would be less likely to be in one
of the high eating disorders risk classes. The inter-
cepts represent the log odds of being in class k rather
than class 0 for a girl with body satisfaction at the
center of the scale, i.e. 0, since the elements of Xi

have been centered. These are related to the over-
all prevalence in each class where we see that the
prevalence in class 2, the high risk class, is small.

Table 1: Estimation results for Project EAT data
Model Para. Est. SE AIC BIC
2-class β01 -0.400 0.065 20180 20350

β11 -1.018 0.064
3-class β01 -0.952 0.092 20062 20294

β02 -1.201 0.108
β11 -0.921 0.080
β12 -1.147 0.093
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