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Annotation-Based Finite State Processing
in a Large-Scale NLP Architecture

BRANIMIR K. BOGURAEV

IBM T.J. Watson Research Center

Abstract
There are well-articulated arguments promoting the deployment of
finite-state (FS) processing techninques for natural language pro-
cessing (NLP) application development. This paper adopts a point
of view of designing industrial strength NLP frameworks, where
emerging notions include a pipelined architecture, open-ended in-
tercomponent communication, and the adoption of linguistic anno-
tations as fundamental analytic/descriptive device. For such frame-
works, certain issues arise — operational and notational — concern-
ing the underlying data stream over which the FS machinery oper-
ates. The paper reviews recent work on finite-state processing of
annotations and highlight some essential features required from a
congenial architecture for NLP aiming to be broadly applicable to,
and configurable for, an open-ended set of tasks.

1 Introduction

Recent years have seen a strong trend towards evolving a notion of ro-
bust and scalable architectures for natural language processing (NLP).
A quick browse through, for instance, (Cunningham 2002, Ballim & Pal-
lotta 2002, Patrick & Cunnigham 2003, Cunnigham & Scott 2004), shows a
broad spectrum of engineering issues identified within the NLP commu-
nity as essential to successful development and deployment of language
technologies. Without going into any detail, it is illustrative to list a rep-
resentative sample of them.

With growing use of XML as data modeling language and analysis
interchange transport, uniform document modeling addresses concerns of
widely variegated natural language text sources and formats; this in-
cludes, as we will see, strategies for representing analysis results in XML
too. For incremental development and reusability of function, componen-
tised architecture is becoming the accepted norm. Overall system recon-
figurability is facilitated by component inter-operability; components are
managed either by integrating them within a framework, or by exporting
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functionality packaged in a toolkit. Broad coverage, typically requiring
streamlined utilisation of background knowledge sources, is achieved by
transparent access to resources, using common protocols.

Such principles of design, while beneficial to the overall goal of build-
ing usable systems, pose certain constraints on system-internal data struc-
tures and object representation, and ultimately affect the algorithmic em-
bodiment(s) of the technologies encapsulated within.

A core characteristic of present day software architectures is that they
all appeal to a notion of annotation-based representation, used to record,
and transmit, results of individual component analysis. (For consistency,
and to reinforce the uniformity of annotation-based representation, we
will refer to such architectural components as “annotators”.) A detailed
description of general-purpose annotation formats can be found in (Bird
& Liberman 2001). Specific guidelines for a linguistic annotation frame-
work have recently been formulated by Ide & Romary (Forthcoming);
for a representative sample of architecture-level considerations, and mo-
tivations, for adopting annotations as the fundamental representational
abstraction, see, for instance, (Grishman 1996), and more recently, (Cun-
ningham et al. 2002, Bunt & Romary 2002, Neff et al. Forthcoming).

The case for annotations has been made, repeatedly, and any of the
publications cited above will supply the basic arguments, from an archi-
tectural point of view. There are, however, additional arguments which
derive from observing a larger set of contexts in which NLP architec-
tures have been put to use. Overall, these are characterised by situations
where a particular technology needs to be used well outside the environ-
ment where it was developed, possibly by non-experts, maybe even not
NLP specialists. Examples of such situations can easily be found in large
research laboratories, and in corporate environments where technologies
developed in the laboratories are incorporated in custom ‘solutions’. Fer-
rucci & Lally (Forthcoming) describe an architecture for unstructured in-
formation management, which is largely informed by considerations of
smooth exchange of research results and emerging technologies in the
NLP area. Such an architecture would be deployed, and would require
to be configured, within the organisation, not only by hundreds of re-
searchers who will need to understand, explore, and use each other’s re-
sults, but by non-specialists too.1 It is in contexts like these that questions

1 A recent article in The Economist (June 19th, 2003), “Is Big Blue the Next Big Thing?”,
makes a related point that ‘front-line’ users of emerging technologies — including
NLP — are information technology specialists and consultants who would be work-
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of uniformity, perspicuity, and generality of the underlying representa-
tion format become particularly relevant.

Annotations — when adorned with an appropriate feature system
(Cunningham et al. 2002), and overlayed onto a graph structure (Bird
& Liberman 2001) — combine simplicity of conceptualisation of a set
of linguistic analyses with representational power (largely) adequate for
capturing the intricacies of such analyses. The question still remains,
however, of providing a capability (within the architecture) for exploring
this space of analyses. As we will argue below, finite-state (FS) match-
ing and transduction over annotations provides such capability, together
with flexibility and convenience of rapidly configuring custom analysis
engines which can use any, and all, analyses derived by a diverse set of
upstream annotators.

There are yet other considerations arising specifically from concerns
of industrial-strength NLP environments including, for instance: effi-
ciency, both of the prototyping process, and at run time; reconciling dif-
ferent I/O behaviour from different, yet functionally identical, compo-
nents; and ability to layer progressively more complex linguistic analyses
on top of simpler annotation mark-up.

Typically, and even more so recently, when efficiency is brought up
as a concern, the answer more often than not is “finite-state technology”.
This is not surprising, as many well-articulated arguments for finite-state
processing techniques focus largely on the formal properties of finite-
state automata, and the gains in speed, simplicity, and often size reduc-
tion when an FS device is used to model a linguistic phenomenon (Kart-
tunen et al. 1996, Kornai 1999). Much rests on a particularly attractive
property of FS automata, namely that after combining them in a variety
of ways, the result is guaranteed to be an FS automaton. The combina-
tions are described by regular expression patterns (van Noord & Gerde-
mann 2000, Beesley & Karttunen 2003), and the use of such patterns in
NLP is becoming the de facto abstraction for conceptualising (and using)
finite-state subsystems. This is reinforced by the clean separation of the
algorithmic aspects of FS execution (which are hidden from the user), and
the purely declarative statement(s) of configurational patterns which un-
derlie a linguistic analysis.

In the same spirit of observing that “there is a certain mathematical
beauty to finite state calculus” (Beesley & Karttunen 2003), there is also

ing with customers on developing solutions that incorporate these technologies.
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beauty in the ease and perspicuity of rule writing (especially if rules
appeal to familiar regular expression notational conventions). If a rule-
based system designed on top of FS principles, were to target an annota-
tions store, it would facilitate both the exploration of analyses space and
rapid configuration of ‘consumers’ of the analyses inside an arbitrarily
configured instance of an NLP architecture. It is this observation alone
that ultimately underpins the notion of finite-state processing over arbi-
trary annotations streams. It is also the case, however, that manipulating
annotations within a finite-state framework offers transparent solutions
to many problems referred to above, like reconciling outputs from differ-
ent annotators and constructing, bottom-up and incrementally, elaborate
linguistic analyses.

These kinds of observations motivate the use of FS technology in a
number of contemporary NLP toolkits and architectures. The following
sections discuss a variety of situated frameworks which incorporate FS
techniques.

2 Finite-state technology and annotations

Broadly speaking, FS technology can be embedded in an NLP architec-
ture in one of two ways. Conventionally, a functional component in-
side the architecture would be built on top of a generic finite-state trans-
duction (FST) toolkit. As an example, consider the function of a part-
of-speech (POS) tagger, a fairly common tool in most text processing
pipelines. Both (Roche & Schabes 1995) and (Kempe 1997), for example,
develop methods for modeling the tag disambiguation task by means of
a finite-state device. Tagging, of course, is not the only function which
can be realised through FS methods: see, for instance, (Pereira & Wright
1997) for FS approximations to phrase structure grammars, or (Abney
1996) and (Ait-Mokhtar & Chanod 1997) for finite state approaches to
syntax.

Such encapsulation of FS technology contributes very little, architec-
turally, to a general purpose capability for manipulating annotations by
means of FST. The fact that an FS toolkit is used to implement a particu-
lar component function does not necessarily make that toolkit naturally
available to all components in the architecture. Of more interest to this
discussion are the methods developed for packaging an FS toolkit as a
generic annotator inside of an NLP architecture, a module which traf-
fics in annotations and which can be configured to perform annotation
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matching at any point of a pipeline.
The examples above are realised, ultimately, as character-based FST

systems. If these realisations were to be packaged for incorporation in an
architectural pipeline, certain transformations would need to be carried
out at the interfaces between the overall data model — e.g., of a token/
lemma/POS internal object — and a character string encoding (later in
this section we elaborate on general strategies for, and shortcomings of,
such mappings).

Furthermore, while finite-state operations are defined over an (unam-
biguous) stream of input, conventionally characters, the set of annota-
tions at any arbitrary point of a processing pipeline is typically organised
as a lattice, with multiple ways of threading a passage through it. To the
extent that an FS subsystem explicitly employs a notation for specifying
FS rules over annotations, such as for instance that in (Wunsch 2003), the
question of picking a particular route through the lattice is not addressed
at all (we will return to this in Section 3 below).

Cunningham et al. (2000) claim that notwithstanding the non-determi-
nism arising from such a traversal, “...this is not the bad news that it seems
to be....” Maybe so, but the reason is due to the fact that many grammars
targeting certain annotations configurations tend to be written to exploit
a carefully designed system of annotations which model relatively flat
analyses. The statement will not necessarily hold for grammars written
to explore an annotations store, without prior knowledge of which anno-
tator deposited what in there. Also, in ‘tightly designed’ systems anno-
tations tend to be added, monotonically, on top of existing annotations,
with longer spans neatly covering shorter ones. When such a configura-
tional property holds, it is possible to design a grammar in a way which
will match against all annotations in the (implied) tree. This is, in fact, a
crucial assumption in systems like Abney’s (1996) CASS and SRI’s FASTUS

(Hobbs et al. 1997).
Such an assumption, however, will not necessarily be true of systems

where a diverse set of annotators may populate the annotations store
with partially overlapping and/or non-contiguous annotations. Note
that a number of componentised, distributed architectures used in di-
verse application environments (as the ones discussed in Section 1) fall
in that category.

Still, it is not uncommon to use a character-based FS toolkit to explore
some annotation spaces. In essence, the basic idea is first to flatten an
annotation sequence into a character string, ‘exporting’ relevant proper-



6 BRANIMIR K. BOGURAEV

ties of the annotations into the string image, and then run suitably con-
figured transducers over that string. Matching over an annotation of a
certain type would be by means of defining a ‘macro’, which is sensitive
to the string characterisation of the relevant annotation type (label) and
property (or properties): thus, for example, test for a POS tag of a token
annotation could be realised as a regular expression skipping over what
are known to be the token characters and focusing instead on the tag
characters, identified by, say, some orthographic convention (see below).
A successful match, when appropriate, would insert a pair of begin-end
markers bracketing the span, possibly adorned with a label to indicate a
newly created type. New types can be enriched with features, with val-
ues computed during the composition of the subsumed types. Higher-
level abstractions can be created then by writing rules sensitive to such
phrase markers and labels. After a sequence of transducers has run, the
resulting string can be ‘parsed’ back into the annotations store, to absorb
the new annotations and their properties from the markers, labels, and
feature-values.

Without going into details, the following illustrates (assuming some
relatively straightforward regular grammars defining contours for noun
and verb groups) the result of a transduction which maps a string derived
from part-of-speech annotations over text tokens into a string with de-
marcated syntactic noun and verb groups, with instantiated morphosyn-
tactic properties.

"The/DT Russian/JJ-C-S executive/JJ-C-S branch/NN sees/VB+3S an/DT
opportunity/NN to/TO show/VB+I Russia/NP ’s/POS relevance/NN"

"[NG:sng The/DT Russian/JJ-C-S executive/JJ-C-S branch/NN NG]
[VG:+3S sees/VB+3S VG] [NG:sng an/DT opportunity/NN NG]
[VG:inf to/TO show/VB+I VG]
[NG:sng:poss Russia/NP ’s/POS relevance/NN NG]"

This kind of process builds upon ideas developed in (Grefenstette 1999)2

and (Ait-Mokhtar & Chanod 1997), with the notion of special ‘markers’
to constrain the area of match originally due to Kaplan & Kay (1994).
Boguraev (2000) develops the strategy for using the transduction capa-
bilities of a character-based FS toolkit (INTEX; Silberztein 1999) inside of
a general-purpose NLP architecture with an abstract data model, in me-
diating between an annotations store and a character string.

A number of problems arise with this approach. Some affect ad-
versely the performance (which is an issue for successful deployment):

2 Grefenstette’s term for this is “light parsing as finite-state filtering.”
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character input/output is massively inefficient, and (logical) match against
a high-level constituent — consider, in the above example, rules to match
an NG or a VG — requires scanning over long character sequences, with
cumulative expense costs. Other problems arise from cumbersome over-
heads: decisions need to be made concerning the (sub-)set of features to
export; extra care has to be taken in choosing special characters for mark-
ers3 which will be guaranteed not to match over the input; custom code
has to be written for parsing the output string and importing the results
into the annotations store, being especially sensitive to changes to its ini-
tial (pre-transduction) state; no modifications should be allowed to the
character buffer underlying the input text, as chances are that all annota-
tions in the system are defined with respect to the original text.

Fundamentally, however, this approach breaks down in situations
where the annotations are organised in a lattice, as it requires commit-
ting to a particular path in advance: once an annotation sequence has
been mapped to a string, traversal options disappear. Also, to the extent
that ambiguity in the input is to be expected, a mapping strategy like the
one outlined above can handle category ambiguity over the same input
segment (such as part-of-speech ambiguities over tokens), but not differ-
ent partitioning of the input, with segments of different length competing
for a ‘match’ test at any point in the lattice traversal.

3 Pattern matching over annotations

The strategy for adapting a character-based FS framework to an annota-
tions store outlined in the previous section offers a way of ‘retro-fitting’
FS operations into an annotations-based architecture. As we have seen,
this does not meet the goal of having an infrastructure which, by design,
would treat structured annotations as input ‘symbols’ to a finite-state cal-
culus, and would be programmable to control the non-determinism aris-
ing from the lattice-like nature of an arbitrary annotations store.

A number of recent architectural designs incorporate a pattern match-
ing component directly over annotations. Typically, this operates as a
rule-based system, with rules’ left-hand-side (and, possibly, right-hand-
side too; see 3.3 below) specifying regular expressions over annotation se-
quences. The recognition power of such systems is, therefore, no greater

3 In contrast, consider Kaplan & Kay’s "<" and ">", which are truly special, as they
are external to the alphabet.
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than regular.
Annotations are assumed to have internal structure, defined as clus-

ters of property-value pairs. (As we will see later, where special purpose
notations are developed to define annotation ‘symbols’ to a grammar
rule, annotation structures tend to be flat, without embedding of lower
level annotations as values to properties of higher level ones.) Both an-
notations and properties can be manipulated from the rules. Appealing
to the formal notion of composition of FST’s, patterns (or pattern gram-
mars) can be phased into cascades. The underlying interpretation engine
can be instructed to operate in a variety of matching/control regimes.

3.1 Finite-state cascades: Background

Organising grammars in sequences (cascades) for finite-state parsing is
largely associated with the work of Hobbs et al. (1997) and Abney (1996),
but finite-state methods were applied in this domain as early as 1958
(Joshi & Hopely). Abney’s CASS develops a notation for regular expres-
sions directly over syntactic categories, specifically for the purpose of
partial parsing by finite-state cascades; his rewrite rules are thus defined
in syntactic terms, and there is only a conceptual mapping between a
grammar category and a linguistic annotation. CASS is not an architec-
ture for NLP, and it would be hard to argue that the notation would gen-
eralise. The FASTUS system, on the other hand, as developed by Hobbs et
al. is closer to the focus of this paper: the TIPSTER framework motivated
one of the earlier definitions of annotations-based substrate of an NLP
architecture (Grishman 1996), and within that framework, the insights
gained from developing and configuring FASTUS were incorporated in
the design of a Common Pattern Specification Language (CPSL; Cowie &
Appelt 1998).

CPSL evolved as a pattern language over annotations, and does not
fully map onto a functionally complete finite-state toolkit. In particu-
lar, there is the question whether the formalism is declarative: the lan-
guage allows for function invocation while matching. Also, the provisions
for specifying context as pre- and post-fix constraints, coupled with the
way in which rulesets are associated with grammar ‘phases’ (a ruleset
for phase is considered as a single disjunctive operation), suggests that
there is no compilation of a single automaton for the entire ruleset. Fur-
thermore, there is no notion of transduction, as an intrinsic FS operation;
instead, similar effect is achieved by binding matched annotations, on
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the left hand side (LHS), and using the bound annotations on the right
hand side (RHS).4 However, the decoupling of binding from subsequent
use, and the non-declarative nature of rules, additionally compounded
by some syntactic ambiguity in the notation, introduces semantic prob-
lems for caching annotations.

Altogether, CPSL is tailored to the task of matching over linear se-
quences of annotations (as opposed to exploring tree-shaped annotation
structures) and layering progressively more structured annotations over
simpler ones; even so, there are limits to the complexity (or expressive-
ness) of the system: annotations cannot be values to other annotations’
attributes.

For a while, CPSL was widely available5, thus promoting the idea
of finite-state operations over annotations with some internal structure,
without having to ‘bolt’ such operations on top of popular character-
based FST toolkits. For some interesting extensions to CPSL see, for in-
stance, the BRIEFS project (Seitsonen 2001): regular expression matching
over tokens is added to the language (useful if the architecture does not
support tokenisation), wild carding over category/annotation attributes
is supported, and most importantly, the need for matching over trees is
motivated, and defined (even if in somewhat rudimentary form) as an
operation within the notation.

3.2 Matching over annotations mark-up

A recent trend in NLP data creation and exchange — the use of explicit
XML markup to annotate text documents — offers a novel perspective on
structured annotation matching by finite-state methods. XML naturally
traffics in tree structures, which can be viewed as explicit representations
of text annotations layered on top of each other. To the extent that a sys-
tem can be assumed not to require partially overlapping, or stand-off,
annotations, it is possible to make use of XML (with its requisite support-
ing technology, including e.g., schemas, parsers, transformations, and so
forth) to emulate most of the functions of an annotations store. In such
an approach, annotation properties are encoded via attributes; the tree
configuration also supports an encoding whereby annotations can be, in
effect, viewed as properties of other (higher level) annotations. It is not
too hard then to conceive of a combination of some finite-state machin-
4 CPSL does not provide a facility for deleting annotations either.
5 Courtesy of Doug Appelt: http://www.ai.sri.com/∼appelt/TextPro/
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ery, tailored to annotations, with a mechanism for traversing the XML tree
as enabling technologies for flexible matching over annotation sequences
— and, indeed, tree shapes — in an annotations store.

This is the insight underlying the work of Grover et al. (2000) and
Simov et al. (2002). In essence, the notion is to develop a framework
for defining and applying cascades of regular transducer grammars over
XML documents. The components of such a framework are an XML parser,
a regular grammar interpreter, a mechanism for cascading grammars, a
set of conventions of how to define and interpret an input stream for a
particular grammar in a cascade, and a way of traversing the document
tree so as to identify and focus on the next item in that stream.

Grover et al.’s approach emphasises the utility of a general purpose
transducer, fsgmatch, for analysis and transformations over XML doc-
uments. fsgmatch uses a grammar notation defined to operate over
XML elements, viewing them both as atomic objects (manipulated as an-
notation configurations) and as strings (as targets to regular expression
matches). The notation further incorporates primitives for identifying el-
ements of interest, at a specific level and position in the XML tree, and
for specifying how a new XML markup element — in effect, a new an-
notation — is to be created from the components of a successful match.
fsgmatch is embedded, with other tools, inside of a toolkit for encod-
ing and manipulating annotations as XML markup over documents; the
tools operate over XML files, and are combined in a pipeline. One partic-
ular rendering of such a pipeline can be viewed as a cascade of regular
grammars. A core part of the toolkit is a query language which medi-
ates, external to any tool, the target element/sub-tree which constrains
the grammar application.

Even if somewhat rudimentary in this particular approach, the intro-
duction of such a query language in an annotations-matching framework
marks an important extension of the notion of FS processing over annota-
tions: in addition to allowing querying of left/right context for a rule (via
a mechanism of ‘constraints’), rules can also be made sensitive to (some
of the) ‘upper’ context of the element of interest (by targeting a grammar
to a subset of all possible sub-trees in the XML document).

Simov et al.’s CLaRK system facilitates corpus and processing, simi-
larly starting from the position that linguistic annotations are to be rep-
resented by means of XML markup. Like fsgmatch, the regular gram-
mars in CLaRK operate over XML elements and tokens; unlike fsgmatch,
CLaRK offers a tighter integration of its FS operations. This is manifested
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in the uniform management of hierarchies of token (and element) types,
and in the enhancement of the underlying finite-state engine for regular
grammar application and interpretation, with native facilities for com-
posing grammars in a cascade and for navigating to the element(s) of
interest to any particular grammar (rule). CLaRK’s insight is to use XPath
— a language for finding elements in an XML tree — as the mechanism
both for specifying an annotation of interest to the current match, and
for mapping that into an arbitrarily detailed projection of that annotation
and its properties: a projection which can take the form of one or more
character string sequences.

Still, this kind of mapping is established outside of the grammar; in
order to specify a rule correctly, one needs to have detailed grasp of XPath
to be able to appreciate the exact shape of the element and value stream
submitted to the grammar. Furthermore, since the input stream to a rule
is now a sequence of strings, a grammar rule is far from perspicuous
in conceptualising the precise nature of the match over the underlying
annotation.

And that, fundamentally, is the problem with matching over annota-
tions represented by XML: at its core, the operation is over strings, and
similarly to the approach described in Section 2, it requires making ex-
plicit, in a string form, a particular configuration and contents of annota-
tions arising in a document processing pipeline at any moment of time.
In addition to opaque notational conventions, this calls for repeated XML
parsing, which may turn out to be prohibitively expensive in large scale,
production-level NLP architectures. And even if the XML-related process-
ing overheads were to be put aside, the fact that only non-overlapping,
strictly hierarchical, and in-line annotations can be rendered for matching
is limiting in itself.

3.3 Matching over structured annotations

A different class of systems, therefore, explicitly address the issues of
overlaying finite-state processing technology on top of structured anno-
tations which are ‘first-class citzens’ in their respective architecture envi-
ronments. The best known of these is GATE’s JAPE (Java Annotation Pat-
terns Engine; Cunningham et al. 2000). Derivative of CPSL, JAPE nonethe-
less stands in a class of its own: primarily because the architecture it is
embedded in promotes — in a systematic and principled way — the no-
tion of annotations as structured objects (Cunningham et al. 2002). Like
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CPSL, JAPE has notions like matching over linear sequences of annota-
tions, where annotations are largely isomorphic to a broadly accepted
format6 (Bird et al. 2000); manipulating annotations by means of named
bindings on the LHS of rules; and querying of left/right context. Beyond
CPSL’s core set of facilities, JAPE tightens up some ambiguitites in the
earlier notation specification, provides utilities for grammar partition-
ing and rule prioritising, allows for specification of different matching
regimes, and encourages factoring of patterns by means of macros.

JAPE acknowledges the inherent conflict between the descriptive pow-
er of regular expressions and the larger complexity of an annotations
lattice; this is characteristically reconciled by separating RHS activation
from LHS application,7 and by assuming that components ‘upstream’ of
JAPE will have deposited annotations so that the lattice would behave like
a flat sequence. As already discussed (Section 1), such an assumption
would not necessarily hold in large-scale architectures where arbitrary
number of annotators may deposit conflicting or partially overlapping
spans in the annotations store. To a large extent, JAPE’s infrastructure
(e.g., the mechanisms for setting priorities on rules, and defining different
matching regimes) is intended to minimise this problem. Additionally,
the ability to execute arbitrary (Java) code on the RHS is intended to pro-
vide flexible and direct access to annotations structure: operations like
attribute percolation among annotations, alternative actions conditioned
upon feature values, and deletion of ‘scratch’ annotations are cited in
support of this feature. These are clearly necessary operations, but there
are strong arguments to be made (see, for instance, the discussion of CPSL
earlier in this section, 3.2) against dispensing with the declarative nature
of a formalism, especially if the formalism can be naturally extended to
accomodate them ‘natively’ (see Section 4 below).

A particularly effective mix of finite-state technology and complex
annotation representations is illustrated by DFKI’s SPPC system (Shal-
low Processing Production Center; Neumann & Piskorski 2000, 2002). It
treats annotations with arbitrarily deep structures as input ‘atoms’ to a
finite-state toolkit, derived from a generalisation of weighted finite-state
automata (WFSA) and transducers (WFST; Mohri 1997). The toolkit func-

6 Annotation components include a type, a pair of pointers to positions inside of the
document content, and a set of attribute-value pairs, encoding linguistic information.
In GATE, attributes can be strings, values can be any Java object.

7 While maintaining recognition power to not beyond regular, this characterises JAPE
as a pattern-action engine, rather than finite-state transduction technology.
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tionality (Piskorski 2002) has been expanded to include operations of par-
ticular relevance to the realisation of certain text processing functions as
finite-state machines, such as, for instance, Roche & Schabes’ (1995) algo-
rithm for local extension, essential for Brill-style deterministic finite-state
tagging.

The breadth of the toolkit allows principled implementation of com-
ponent functions in a text processing chain: SPPC’s tokeniser, for instance,
defers to a token classifier realised as a single WFSA, itself derived from
the union of WFSA’s for many token types. By appealing directly to li-
brary functions exporting the toolkit functionality, the tokeniser produces
a list of token objects: triples encapsulating token start/end positions and
its type.

SPPC encapsulates a cascade of FSA’s/FST’s, whose goal is to con-
struct a hierarchical structure over the words in a sentence. The FS cas-
cade naturally maps onto levels of linguistic processing: tokenisation,
lexical lookup, part-of-speech-tagging, named entity extraction, phrasal
analysis, clause analysis. The automata expect a list of annotation-like ob-
jects — such as the token triples — as input, and are defined to produce
a list of annotation-like objects as output. The granularity and detail of
representation at different levels are, however, different: the lexical pro-
cessor, for instance, overlays a list of lexical items on top of the token list,
where a lexical item (annotation) is a tuple with references to its initial
and final token objects.

Thus, each cascade level is configured for scanning different lists, and
employs predicates (on its automata transition arcs) specific to each level.
The hierarchical structure constructed over the sentence words is main-
tained explicitly by means of references and pointers among the different
level lists. In fact, Neumann & Piskorki (2002) describe SPPC as oper-
ating over a complex data structure called text chart, and only upon ab-
stracting away from SPPC’s details it is possible to imagine this structure
being conceptually equivalent to an annotations store. It is important
to realise, however, that SPPC is not a text processing architecture, with
uniform concept of annotations and annotation abstractions specified on
arcs of FS automata. Instead, SPPC is an application, configured for a
particular sequence of text processing components with a specific goal in
mind, and whose custom data structure(s) are exposed to an FST toolkit
by appropriately interfacing to its library functions. In other words, while
SPPC demonstrates the elegance inherent to manipulating annotations by
means of FS operations, at the same time it falls short of encapsulating
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this in a framework which, by appealing to an annotations-centric nota-
tion would enable the configuration of arbitrary cascades over arbitrary
annotation types.

Similar shortcoming can be observed of a recent system, also custom-
tailored for a class of information extraction applications (Srihari et al.
2003). Like SPPC, InfoXtract maintains its own custom data structure,
a token list, which in reality incorporates a sequence of tree structures
over which a graph is overlaid for the purposes of relational information.
There is clearly an interpretation of the token list as an annotations store
(ignoring, for the moment, the relation encoding). For the purposes of
traversing this data structure, a special formalism is developed, which
mixes regular with boolean expressions. The notion is not only to be
able to specify ‘transductions’ over token list elements, but also to have
finer control over how to traverse a sequence of tree elements. This is
what sets InfoXtract apart: grammars in its formalism are compiled to
tree walking automata, with the notation providing, in addition to test/
match instructions, direction-taking instructions as well.

Certain observations apply to the approaches discussed in this sec-
tion. Not all configurations of annotations can be represented as hier-
achical arrangements: consequently, the range of annotation sequences
that can be submitted to an FS device is limited. Attempts for more com-
plex abstractions typically require ad-hoc code to meet the needs for ma-
nipulating annotations and their properties; even so, there are certain
limitations to the depth of property specification on annotations. This
leads to somewhat simplistic encapsulating of an ‘annotation’ abstrac-
tion, which even if capable of carrying the representational load of a
tightly coupled system, may be inadequate for supporting co-existing —
and possibly conflicting — annotations-based analyses from a multitude
of ‘third party’ annotators. While most systems cater for left/right con-
text inspection, examination of higher and/or lower context is, typically,
not possible. In general, there is no notion of support for directing a scan-
ner in choosing a path through the annotations lattice (apart from, per-
haps, extra-grammatical means for choosing among alternative matching
regimes).

4 A design for annotation-based FS matching

A particular design described here seeks to borrow from a combination
of approaches outlined in the previous section; the design is, however,
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driven by the requirements of robust, scalable NLP architecture (as pre-
sented in Section1), and described in (Neff et al. Forthcoming). Briefly,
the TALENT system (Text Analysis and Language ENgineering Tools) is
a componentised architecture, with processing modules (annotators) or-
ganised in a (reconfigurable) pipeline. Annotators communicate with
each other only indirectly, by means of annotations posted to, and read
from, an annotation repository. In order to strictly maintain this con-
trolled mode of interaction between annotators, the document charac-
ter buffer logically ‘disappears’ from an annotator’s point of view. This
strongly mandates that FS operations be defined over annotations and
their properties.

Essentially, annotations encapsulate data modeled as a typed feature
system. Types are partitioned into families, broadly corresponding to dif-
ferent (logical) levels of processing: tag markup (e.g., HTML/XML), docu-
ment structure, lexical (tokens or multi-words), semantic (e.g., ontologi-
cal categories), syntactic, and discourse. Features vary according to type,
and the system supports dynamic creation of new types and features.

Any configuration of annotations over a particular text fragment is al-
lowed, apart from having multiple annotations of the same type over the
same span of text. Annotations of different types can be co-terminous,
thanks to a priority system which makes nesting explicit, and thus facili-
tates encoding of tree structures (where appropriate).

A uniform mechanism for traversing the annotation repository is pro-
vided by means of custom iterators with a broad set of methods for mov-
ing forward and backward, from any given position in the text, with re-
spect to a range of ordering functions over the annotations (in particu-
lar, start or end location, and priority). In addition, iterators can be ‘fil-
tered’ by family, type, and location. As a result, it is possible to specify,
programmatically, precisely how the annotations lattice should be tra-
versed. This underlies one of the distinguishing features of our FST de-
sign: rather than rely exclusively (as, say, JAPE does) on specifying differ-
ent control regimes in order to pick alternative paths through a lattice, we
provide, inside of the FS formalism, notational conventions for directing
the underlying scan (which exploit the iterators just described). This is
similar to InfoXtract’s notion of directive control, but broadly defined in
terms of annotation configurations, uncommited to e.g., a tree structure.

Finite-state matching, as a system-level capability, is provided by pack-
aging FS operations within a (meta-)annotator: TALENT’s FS transducer
(henceforth TFST) encapsulates matching and transduction capabilities
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and makes these available for independent development of grammar-
based linguistic filters and processors. TFST is configurable entirely by
means of external grammars, and naturally allows grammar composi-
tion into sequential cascades. Unlike other annotators, it may be invoked
more than once. Communication between different grammars within a
cascade, as well as with the rest of the system (including possible subse-
quent TFST invocations) is entirely by means of annotations; thus, in com-
parison to mapping annotations to strings (cf. Sections 2 and 3 above),
there are no limitations to what annotation configurations could be in-
spected by an FS processor.

An industrial strength NLP architecture needs to identify separate
components of its overall data model: in TALENT, annotations are com-
plemented by e.g., a lexical cache, shared resources, ontological system
of semantic categories, and so forth; see (Neff et al. Forthcoming). In or-
der for the grammar writer to have uniform access to these, the notation
supports the writing of grammars with reference to all of the underlying
data model.

Trying to keep up with the breadth of data types comprising a com-
plex data model makes for increasingly cumbersome notational conven-
tions. Indeed, it is such complexities — aiming to allow for manipulating
annotations and their properties — that can be observed at the root of the
design decisions of systems discussed in Section 3. The challenge is to
provide for all of that, without e.g., allowing for code fragments on the
right-hand side of the rules (as GATE does), or appealing to ‘back-door’
library functions from an FST toolkit (as SPPC allows). Both problems,
that of assuming that grammar writers would be familiar with the com-
plete type system employed by all ‘upstream’ (and possibly third party)
annotators, and that of exposing to them API’s to an annotations store
have already been discussed already.

Consequently, we make use of an abstraction layer between an an-
notation representation (as it is implemented, in the annotation reposi-
tory) and a set of annotation property specifications which relate indi-
vidual annotator capabilities to granularity of analysis. Matching against
an annotation — within any family, and of any particular type — pos-
sibly further constrained by attributes specific to that type, becomes an
atomic transition within a finite state device. We have developed a no-
tation for FS operations, which appeals to the system-wide set of anno-
tation families, with their property attributes. At any point in the anno-
tations lattice, posted by annotators prior to the TFST plugin, the symbol
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for current match specifies the annotation type (with its full complement
of attributes) to be picked from the lattice and considered by the match
operator. Run-time behaviour of this operator is determined by a symbol
compiler which uses the type system and the complete range of annota-
tion iterators (as described above) to construct, dynamically (see below),
the sequence of annotations defined by the current grammar as a particu-
lar traversal of the annotations lattice, and to apply to each annotation in
that sequence the appropriate (also dynamically defined) set of tests for
the specified configuration of annotation attributes.

Within the notation, it is also possible to express ‘transduction’ op-
erations over annotations — such as create new ones, remove existing
ones, modify and/or add properties, and so forth — as primitive opera-
tions. By defining such primitives, by conditioning them upon variable
setting and testing, and by allowing annotations for successful matches
to be bound to variables, arbitrary manipulation of features and values
(including feature percolation and embedded references to annotation
types as feature values) are made possible. (This, in its own right, com-
pletely removes the need for e.g., allowing code fragments on the RHS of
grammar rules.) Full details concerning notation specifics can be found
in (Boguraev & Neff 2003).

The uniform way of specifying annotation types on transitions of an
FST graph hides from the grammar writer the system-wide design fea-
tures separating the annotation repository from other components of the
data model. For instance, access to conventional lexical resources, or to
external repositories like lexical databases or gazetteers, appears to the
grammar writer as querying an annotation with morpho-syntactic prop-
erties and attribute values, or looking for an annotation defined in terms
of a semantic ontology. Similarly, a rule can update an external resource
by using notational devices identical to those for posting annotations.

The freedom to define, and post, new annotation types ‘on the fly’
places certain requirements on the FST subsystem. In particular, it is
necessary to infer how new annotations and their attributes fit into an
already instantiated data model. The TFST annotator therefore incorpo-
rates logic which, during initialisation, scans an FST file (generated by an
FST compiler typically running in the background), and determines —
by deferring to the symbol compiler — what new annotation types and
attribute features need to be dynamically configured and incrementally
added to the model.

As discussed earlier, the implementation of a mechanism for picking
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a particular path through the annotations lattice over which any given
rule should be applied — an essential component of an annotation-based
regime of FS matching — is made possible through the system of itera-
tors described above. Within such a framework, it is relatively straight-
forward to specify grammars, for instance, some of which would in-
spect raw tokens, others would abstract over vocabulary items (some
of which would cover multiple tokens), yet others might traffic in con-
stituent phrasal units (with an additional constrain over phrase type) or/
and document structure elements (such as section titles, sentences, and
so forth).

For grammars which examine uniform annotation types, it is possible
to infer, and construct (for the run-time FS interpreter), an iterator over
such a type (in this example, as is the default, sentences). It is also pos-
sible to further focus the matching operations so that a grammar only
inspects inside of certain ‘boundary’ annotations. The formalism is thus
capable of fine-grained specification of higher and/or lower context, in
addition to left/right context — an essential component of lattice traver-
sal. In general, expressive and powerful FS grammars may be written
which inspect, at different — or even the same — point of the analysis an-
notations of different types. In this case it is essential that the appropriate
iterators get constructed, and composed, so that a felicitous annotation
stream gets submitted to the run-time for inspection; TALENT deploys a
special dual-level iterator designed expressly for this purpose.

Additional features of the TFST subsystem allow for seamless integra-
tion of character-based regular expression matching (not limited to to-
kens, and uniformly targeting the ‘covered string’ under any annotation),
morpho-syntactic abstraction from the underlying lexicon representation
and part-of-speech tagset (allowing for transparent change in tagsets and
tagger/models), and composition of complex attribute specification from
simple feature tests (such as negation and conjunction). Overall, such
features allow for the easy specification, via the grammar rules, of a va-
riety of matching regimes which can transparently query the results of
upstream annotators of which only the externally published capabilities
are known.

5 Conclusion

The TALENT TFST system described in the previous section has been im-
plemented in a framework with a fixed number of annotation families.
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While simplifying the task of the symbol compiler, this has complicated
the design of a notation where transduction rules need to specify just the
right combination of annotation family, type, and properties.

In order to be truly compliant with notions like declarative represen-
tation of linguistic information, representational transparencies with re-
spect to different components of a data model, and ability to support arbi-
trary levels of granularity of a set of analyses (which might have both po-
tentially incompatible, and/or mutually dependent, attribute sets), our
framework has recently adopted a system of typed feature structure-
based (TFS) annotation types (Ferrucci & Lally Forthcoming). A redesign
of the formalism, to support FS calculus over TFS’s, brings us close to
the definition of “annotation transducers”, introduced by Wunsch (2003),
where matching operations are defined over feature-based annotation
descriptions and the match criterion is subsumption among feature struc-
tures. This is, is itself, derivative of the SProUT system (Droẑdẑyński et
al. 2004). SProUT openly adopts full-blown TFS’s to replace regular ex-
pressions’ atomic symbols, with the matching operation itself defined as
unifiability of TFS’s. Feature structure expressions are also used to spec-
ify the shape and content of the result of a transduction operation which
is creating, conceptually, a new annotation type, constructed by unifica-
tion with respect to a type hierarchy.

The design of TFST has benefited greatly from the research described
in the first two sections of this paper. Extending this, we bring together
the advantages of a flexible, principled, rich and open-ended representa-
tion of annotations with novel mechanisms for traversing an annotations
lattice and deriving an annotation stream to be submitted to an FS device.
On the descriptive side, this makes it possible to develop grammars ca-
pable of examining and transforming any configuration of annotations in
an annotations store created under real, possibly noisy circumstances, by
potentially conflicting annotators. On the engineering side, the benefits
of TFS-based representations underlying non-deterministic FS automata
with unification — in particular, their compilability into super-efficient
execution devices — have already been demonstrated: see, for instance,
Brawer 1998, who reports matching speeds of up to 21 million tokens per
second.
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