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ERGODIC TYPE THEOREMS FOR ACTIONS OF FINITELY
GENERATED SEMIGROUPS ON VON NEUMANN ALGEBRAS

II

GENADY YA. GRABARNIK, ALEXANDER A. KATZ, AND LARISA SHWARTZ

Abstract. In the sequel, we continue the study initiated in: Grabarnik,

G.Ya., Katz, A.A., Shwartz, L., “Ergodic Theorems for Actions of Finitely-
Generated Semi-Groups on von Neumann Algebras, I”, Proceedings of the 3rd

Annual Hawaii International Conference on Statistics, Mathematics and Re-

lated Fields, Honolulu, Hawaii, USA. We obtain a non-commutative version of
Bufetov’s Ergodic Theorem for Skew Product.
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1. Introduction

First Ergodic Theorems for actions of arbitrary countable groups were obtained
by Oseledets [24], who followed an idea of Kakutani [15]. For actions of free groups
Guivarc’h [12] considered uniform averages over spheres of increasing radii in a
group and proved the related mean ergodic theorem. Grigorchuk [10] announced the
Pointwise Ergodic Theorem for Česaro averages of the spherical averages. Nevo [22]
and Nevo and Stein [23] published a proof of the Pointwise Ergodic Theorem. In [11]
Grigorchuk announced an Ergodic Theorem for Actions of Free Semigroups. In [3]
Bufetov generalized classical and recent Ergodic Theorems of Kakutani, Oseledets,
Guivarc’h, Grigorchuk, Nevo and Nevo and Stein for measure-preserving actions of
free semigroups and groups.

The first results in the field of non-commutative Ergodic Theorems were obtained
by Sinai and Anshelevich [26] and Lance [20]. Developments of the subject are
reflected in the monographs of Jajte [13] and Krengel [19].

Majorant ergodic theorem for the operators affiliated to tracial von Neumann
algebras was proved in [6].

In [7] the authors initiated study with the aim to generalize Bufetov’s results from
[3] to the non-commutative case to obtain non-commutative Ergodic Theorems for
the actions of finitely generated semigroups on von Neumann algebras with faithful
normal finite tracial state. In the sequel a non-commutative version of Bufetov’s
Ergodic Theorems for Skew Product is obtained.
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2. Preliminaries

Let us recall some notions ans results from [7].
Let the pair (A, τ) be a non-commutative probability space, where A is a

von Neumann algebra with a faithful, normal tracial state τ .
Let

α1, α2, ..., αm : A 7−→ A

be positive kernels

(2.1) (αi1 ≤ 1; τ◦αi ≤ τ).

All {αi} could be extended to the operators

L1(A, τ) 7−→ L1(A, τ),

which we will also call without the loss of generality {αi}.
Let

(2.2) Ωm = {ω = ω1ω2...ωn... : ωi = 1, ...,m}
be the space of all one-sided infinite sequences in the symbols 1, ...,m.

We denote by σm the shift on Ωm, defined by the formula

(2.3) (σmω)i = ωi+1.

Consider the set

(2.4) Wm = {w = w1w2...wn : wi = 1, ...,m}
of all finite words in the symbols 1, ...,m.

Denote by |w| the length of the word w. For each

w ∈Wm,

let
C(w) ⊂ Ωm

be the set of all sequences starting from the word w. For an arbitrary Borel measure
µ on Ωm, set

(2.5) µ(w) = µ(C(w)).

For each
w ∈Wm,

introduce the operator

(2.6) αw = αwn
αwn−1 ...αw1 .

Let µ be a Borel σm-invariant probability measure on Ωm. Consider the words
w with

(2.7) |w| = l

and the sum of the corresponding operators αw with the weights µ(w),

(2.8) sµ
l (α) =

∑
|w|=l

µ(w)αw.

Average sµ
l (α) over l = 0, ..., n− 1,

(2.9) cµn(α) =
1
n

n−1∑
l=0

sµ
l (α).
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Suppose µ is a σm-invariant Markov measure on Ωm. We will show that the
averages cµn(α)ϕ converge both double side almost everywhere and in L1(A, τ) for
any operator

ϕ ∈ L1(A, τ).

Definition 1. A matrix Q with non-negative entries is said to be irreducible if, for
some n > 0, all entries of the matrix

(2.10) Q+Q2 + ...+Qn

are positive (if Q is stochastic, then this is equivalent to saying that in the corre-
sponding Markov chain any state is attainable from any other state).

Definition 2. A matrix P with non-negative entries is said to be strictly irreducible
if P and PPT are irreducible (here PT stands for the transpose of the matrix P ).

Definition 3. A Markov chain is said to be strictly irreducible if the corresponding
chain is strictly irreducible.

Theorem 1. Let (A, τ) be a non-commutative probability space,

α1, ..., αm : A 7−→ A

are positive kernels, and

α1, ..., αm : L1(A, τ) 7−→ L1(A, τ)

are their corresponding extensions. Let µ be a σm-invariant Markov measure on
Ωm. Then, for any operator

ϕ ∈ L1(A, τ),
there exists a function

ϕ ∈ L1(A, τ),
such that

(2.11) cµn(α)ϕ→ ϕ

both double side almost everywhere and in L1(A, τ) as n→∞. We have

(2.12) τ(ϕ) = τ(ϕ).

If the measure µ is strictly irreducible, then

αjϕ = ϕ

for j = 1, ...,m. If
ϕ ∈ Lp(A, τ),

p ≥ 1, then

(2.13) cµn(α)ϕ→ ϕ

in Lp(A, τ) as well.

Theorem 1 generalizes Ergodic Theorems of Grogorchuk [11], Nevo [22], Nevo
and Stein [23], and Bufetov [3] to the non-commutative case.

In this paper we proof Skew Ergodic Theorem (originated by S.Kakutani). Next,
we also apply Theorem 1 to the proof of Ergodic Theorem for finitely generated
locally free semigroup acting as contraction on tracial von Neumann algebra, intro-
duced in the [27].
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3. Ergodic Type Theorem and Skew Product Transformations

For each ω ∈Wm denote by Tω operator defined as follows

(3.1) Tω : A 7−→ A, Tω = αωn ◦ ... ◦ αω1

For any operator ϕ in L1(A, τ) we denote

(3.2) Sµ
j (T )(ϕ) =

∑
|ω|=j

µ(ω)Tω(ϕ)

Česaro average of the Sµ
j (T )(ϕ) over j we denote by

(3.3) Cµ
n(T )(ϕ) =

1
n

n−1∑
j=0

Sµ
j (T )(ϕ)

Theorem 2. Let ϕ be an operator affiliated to tracial von Neumann algebra A with
separable predual, and integrated with modules, A ∈ L1(A, τ). Then there exists an
operator ϕ ∈ L1(A, τ) such that

(3.4) Cµ
n(T )(ϕ) 7−→ ϕ in norm of the L1(A, τ),

and

(3.5) τ(ϕ) = τ(ϕ).

If, in addition, ϕ ∈ L1+ε(A, τ), then

(3.6) Cµ
n(T )(ϕ) 7−→ ϕ double side almost everywhere .

For any ω ∈ Wm, ω = ω1...ωn denote by ω∗ expression ω = ωn...ω1. If µ is
σm invariant Borel probability on Ωm, than formula µ∗(ω) = µ(ω∗) defines σm

invariant Borel probability with property µ∗∗ = µ. Later implies that

(3.7) Cµ
n(T ) = cµ

∗

n (T )

Let Ψ = L∞(Ωm, µ)⊗A be a tensor product of von Neumann algebras L∞(Ωm, µ)
and A. Ψ may be considered as a von Neumann algebra L∞(Ωm, µ,A) of almost
everywhere bounded ultra-weakly bounded functions mapping ψ : Ωm 7→ A, with
the norm ||ψ|| = lim sup

ω∈Ωm

||ψ(ω)||∞. Trace for the algebra Ψ is given by formula

(3.8) ν(ψ) =
∫

Ωm

τ(ψ(ω))dµ(ω), for ψ ∈ Ψ

Consider an operator Φ define as

(3.9) Φ(ψ) = Φ(ψ(ω)) = αω1(ψ(σ(ω))) for ψ ∈ Ψ

It is easy to see that Φ : Ψ 7→ Ψ, and Φ is a positive kernel on Ψ.
Extension of the operator Φ to the L1(Ωm, µ,A), pre-conjugate of the algebra

L∞(Ωm, µ,A) = (L1(Ωm, µ,A))∗ by norm ||.||1 we denote also by Φ.
For every x ∈ A denote by xe embedding of x into Ψ as an identical func-

tion. This embedding extends by norm ||.||1 onto embedding of L1(A, τ) into
L1(Ωm, µ,A). We denote the images under imbedding by Ae and L1(Ae).

Lemma 1. For the ω ∈ Wm with |ω| = j and ϕ ∈ L1(A, τ), n-th iteration of Φ
satisfy

(3.10) Φ(n)(ψ) = Φ(n)(ψ(ω)) = αωn
· · ·αω1(ψ(σ(n)ω)) for ψ ∈ Ψ
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and

(3.11) Φ(j)(ϕe) = Tω(ϕ) for ϕ ∈ L1(A, τ)

Lemma 2. For ϕ ∈ L1(A, τ) the following equality holds:

(3.12)
∫

Ωm

Φj(ϕe)dµ(ω) =
∑
|ω|=j

µ(ω)Tω(ϕ)

Denote by

(3.13) ϕe
n =

1
n

n−1∑
j=0

Φj(ϕe)

the n-th Česaro average of ϕe.

Lemma 3. For ϕ ∈ L1(A, τ) the following equality holds:

(3.14)
∫

Ωm

ϕe
ndµ(ω) =

1
n

n−1∑
j=0

∑
|ω|=j

µ(ω)Tω(ϕ)

and

(3.15) Cµ
n(T )(ϕ) =

∫
Ωm

ϕe
ndµ(ω)

Denote by Proj(A) set of all orthogonal projection operators in A. Let Ee be a
conditional expectation of the Ψ onto subalgebra Ae defined as

(3.16) Ee(ψ(ω)) =
∫

Ωm

ψ(ω)dµ(ω)

Lemma 4. Sequence ϕe
n convergence in norm of ||.||1.

Proof. Follows from the Ergodic Theorem, see for example [29]. �

Lemma 5. Suppose that ϕ ∈ L1+ε(A, τ), than there exists decreasing to 0 sequence
of positive operators Bn from L1(Ωm, µ,A) such that for positive ϕ

(3.17) −Bn ≤ ϕe
n − ϕ ≤ Bn, for all n

Proof. Follows from the theorem about majorant convergence, see [6]. �

Since conditional expectation is contraction in the norm ||.||1, latest lemma and
(3.13)-(3.16) imply ||.||1 convergence in the Theorem 2.

Lemma 6. Let E be an conditional expectation of von Neumann algebra A onto
subalgebra B ⊂ A. If sequence {Xn}∞n=1 of self-adjoint operators from the algebra
A such that it majorant converges to 0, than {E(Xn)}∞n=1 majorant converges to 0.

Proof. Follows from application of expectation E to the majorant convergence in-
equality. �

Proof of the theorem follows from the lemmas 1-5 and the fact that majorant
convergence imply double side almost everywhere convergence.
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4. Ergodic Type Theorem for Action of Finitely Generated Locally
Free Semigroups

Definition 4. Locally free semigroup (see [28] and references there) LFSm+1 with
m generators is define as semigroup determined by generators satisfying following
relations:

(4.1) LFSm+1 = {g1, ..., gm | gigj = gjgi; i, j ∈ {1, ...,m}, |i− j| > 1}

Semigroup LFSm+1 is associated with to topological Markov chain with states
{1, ...,m} and transition matrix

(4.2) M = (mi,j), mi,j =
{

1, if |i− j| ≤ 1 or i ≤ j;
0, otherwise.

The set of admissible words in the chain corresponds to the WM , set of admissible
one-sided sequences corresponds to ΩM and left shift σM corresponds to shift on
ΩM . Each word ω1...ωn corresponds to gω = gω1 ...gωn

.
Correspondence ω 7→ gω defines a bijection between WM and LFSm+1, and

from (4.2) it follows that system (ΩM , σM ) mixes topologically, hence it has ergodic
measure non-generative on words WM .

Now we assume that semigroup LFSm+1 acts as semigroup with generators gi

mapped to the kernels αi acting on tracial von Neumann Algebra (A, τ). Applying
Theorem 1, we obtain ergodic theorem for action of LFSm+1.
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