
RC23395 (W0410-170) October 26, 2004
Mathematics

IBM Research Report

Dynamic Model Selection in IOHMMs

Vittorio Castelli, Daniel A. Oblinger, Lawrence D. Bergman, Tessa A. Lau
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Dynamic Model Selection in IOHMMs

Vittorio Castelli∗
IBM T.J.Watson Research Center

Yorktown Heights, NY 10598
vittorio@us.ibm.com

Daniel A. Oblinger
IBM T.J.Watson Research Center

Yorktown Heights, N.Y. 10598
oblio@us.ibm.com

Lawrence D. Bergman
IBM T.J.Watson Research Center

Yorktown Heights, N.Y. 10598
bergmanl@us.ibm.com

Tessa A. Lau
IBM T.J.Watson Research Center

Yorktown Heights, N.Y. 10598
tessalau@us.ibm.com

Abstract

In this paper we describe adaptive model selection methods for an ex-
tension of the IOHMM called SimIOHMM. We show how to select
the initial number of states of the HMM, how to decide when to add
new states during the Baum-Welch iterations, and how to modify the
Baum-Welch algorithm to efficiently add new nodes. We show that the
SimIOHMM with dynamic model selection yields substantial compu-
tational gains over the IOHMM with no or little impact on predicting
abilities.

1 Introduction

In this paper we describe efficient adaptive model selection methods for Input-Output Hid-
den Markov Models. More specifically, we extend the IOHMM [3] to naturally support
novel algorithms for the selection the initial number of states of the model, and for dynami-
cally changing the number of states during the Baum-Welch iterations, in a way that can be
adapted to incremental learning. The resulting algorithm, the SimIOHMM, the core idea
of which is described in more details in [7], yields substantial computational gains over the
traditional IOHMM, without compromising the prediction accuracy.

There is an extensive literature on how to select the initial number of states of a HMM.
Most approaches adapt general model-selection criteria, such as MDL [2], BIC [9], or
criteria designed for specific tasks, such as the Discriminative Information Criterion [4]. In
a nutshell, these methods are based on an objective function that simultaneously penalizes
large models and favors models that describe the data well. The model selection procedure
consists of constructing a collection of models having different number of states (which
is an expensive operation), and selecting the one for which the objective function is best.
The objective function is often evaluated using cross-validation or holdout estimates. The
high computational cost of these methods makes them unsuitable as the foundation for
incremental learning.

∗Webpage: http://www.research.ibm.com/people/v/vittorio

There are several algorithms for dynamically reducing the number of states in an HMM. For
example, the approach described in [5] for mixture models can be easily adapted to select
the model of an HMM. This method initializes the Baum-Welch algorithm with a number
of states that is very large compared with the number of surviving states at convergence,
and this initialization strategy makes it both computationally expensive and unsuitable as
the foundation for incremental learning. A method for dynamically splitting HMM states
is described in [1], consisting of computing, during each iteration, the expected likelihood
gain that would result from splitting each state, and splitting the state with highest gain.

The main contribution of this paper is the description of algorithms for initial model se-
lection and for adding new states (in a way that is more general than state-splitting), sup-
ported by the SimIOHMM, that can also be used as a basis for incremental learning. The
SimIOHMM additionally accommodates the state-pruning methods of [5], and therefore
supports a full set of algorithms for dynamically selecting the number of hidden states.

The motivation for our work is learning procedural knowledge by demonstration. The
Sheepdog system, described for example in [6], observes users performing procedures on a
GUI, translates the observations into sequences of input-output pairs (where the input is a
description of what the user sees and knows about the system, and the output is the action
taken by the user), and combines multiple sequences into a model of the procedure, that
can be used to guide users through the procedure or to automatically re-execute the learned
task. The Sheepdog system represents procedures as probability distributions over finite se-
quences of input-output pairs using the SimIOHMM to build the model. The SimIOHMM,
however, is a general-purpose algorithm, applicable to a variety of problem domains.

The rest of the paper is organized as follows: in Section 2 we describe the SimIOHMM. The
main contributions of this paper are in Section 3, describing the SimIOHMM initial model
selection algorithm, and in Section 4, describing the algorithm for dynamically adding
states as part of the Baum-Welch algorithm. Experimental results are presented in Section
5, and the conclusions are in Section 6.

2 The Similarity-based-IOHMM (SimIOHMM)

We begin this section with a brief overview of the IOHMM [3]. We use standard nota-
tion (see, for example, [8]) augmented by the IOHMM-specific notation used in [3]. The
IOHMM models a sequence of input-output pairs {(Ui,Yi)}T

i=1 (where the input U ∈ U and
the output Y ∈ Y) as a finite-state process, namely, as a hidden Markov model with a finite
state space X. The learning algorithm is a version of the classical Baum-Welch algorithm
where the complete data likelihood is the conditional likelihood of the output-state pairs
given the inputs—hence, the IOHMM models the conditional distribution of the outputs
given the inputs. The IOHMM is implemented using a pair of classifiers for each of the
states in the model: a transition classifier, that embodies a conditional probability distribu-
tion over the states given the input and the state, and an action classifier, that embodies a
conditional probability distribution over the outputs given the input and the state.

Our goal is to construct procedures by demonstration. The IOHMM can be used as the
learning algorithm because it can predict the next user action given the observed sequence
of input-outputs. However, in this paper we impose additional requirements on the learning
algorithm, including automatic model selection and the ability to identify highly unlikely
inputs given the observed input-output pairs—and for this specific reason, we need to model
the joint distribution of inputs and outputs. The result is the SimIOHMM, the core algo-
rithm of which is introduced in the companion paper [7] as a way of biasing the learning
algorithm based on the similarity of inputs ([7] does not deal with model selection).

Structurally, a SimIOHMM consists of a IOHMM, a collection of representative inputs (one

for each hidden state1), a distance function between inputs,2 d(·, ·) and a finite-support
kernel function K(·), (say, taking value in [0,1]).3 Representative inputs, distance, and
kernel are incorporated in the Baum-Welch algorithm. Formally, we can substitute the
input-output pair (U,Y) for the output Y (called O for observation by some authors) in
the classical Baum-Welch algorithm and obtain its SimIOHMM version. The E-Step is
then analogous to that of the classical HMM. The M-step updates three sets of quan-
tities: the initial probability distribution on the states, π; the state-transition probabil-
ity distribution A, which in the IOHMM is a mapping from X×U to P(X), the set of
probability distributions over the state space; and the conditional probability distribution
of the observations given the states, B = {bx(u,y)} = PΘ (U = u,Y = y | X = x), where
Θ denotes the current (parameters of the) HMM. The chain rule for probabilities yields
bx(u,y) = PΘ (Y = y | X = x,U = u)PΘ (U = u | X = x).

Both IOHMM and SimIOHMM estimate π using the standard approach, A with the tran-
sition classifier learning algorithm, and PΘ (Y = y | X = x,U = u) with the output classifier
learning algorithm. The IOHMM ignores the term PΘ (U = u | X = x). The SimIOHMM,
by contrast, estimates this term as follows: use Bayes’ rule to expand PΘ (U = u | X = x)
as PΘ (X = x |U = u) PΘ (U = u)/PΘ (X = x). The third term, PΘ (X = x), is estimated

from the γ(k)
x (t)

�
= PΘ

(
Xt = x | (Ui,Yi)

Tk
i=1 = (u(k)

i ,y(k)
i)Tk

i=1

)
, the conditional probabilities of

being in state x at time t given the entire of sequence k of length Tk, where γ(k)
x (t) is com-

puted in the previous E-step. The term PΘ (U = u) can be estimated from the data using the
Maximum Likelihood Estimator. The distinguishing characteristic of the SimIOHMM is
the estimation of PΘ (X = x |U = u), performed by computing the distances between u and
the representative input of each state, using these distances as inputs to the kernel function,
and combining the results with the Nadaraya-Watson kernel density estimator:

PΘ (X = x |U = u) =
K

(
d(u,ux)

)

∑z∈X K
(
d(u,uz)

) . (1)

Clearly, other methods to convert similarity between inputs into probabilities can be used
in conjunction with the the SimIOHMM, but this investigation is left for future work.

The M-step for the SimIOHMM must also be modified to include the recomputation of the
representative inputs. For each state x, the input-output pair (u	x ,y	x) that has the highest
probability of being aligned with the state is identified, and u	x is selected as the new rep-
resentative input of the state x. To support the dynamic addition of new nodes (Section 4),
this step is performed before updating the parameters of transition and output models.

In practice, d(·, ·) is selected to capture gross differences between inputs. In our application,
where inputs are descriptions of application windows, d(·, ·) considers features such as the
title and type of the foreground window, and the name of the application owning it.

The first benefit of the SimIOHMM is computational efficiency: the entropy of γx(t)
quickly decreases, typically to a small fraction of the entropy produced by the IOHMM.
The cost of training the transitions and action classifiers depends on the number of training
samples, which is an increasing function of the entropy of γx(t). The second benefit, which
is more application-dependent, is the simplification of the variable subset selection task: in
our application for a IOHMM, is extremely large, but typically sparse. The SimIOHMM

1The SimIOHMM can rely on multiple representative inputs per each state. To simplify the
discussion, we assume a single representative input per state.

2A version of the SimIOHMM uses a distance function between input-output pairs, in which
case each state has a representative input-output pair, and the structure of the model is appropriately
modified. Its description is beyond the scope of this paper.

3Kernel functions with infinite support can also be used, but require small changes to the algo-
rithms, that we do not discuss here for sake of clarity.

associates similar inputs with the same states, and this allows us to efficiently perform
aggressive adaptive dimensionality reduction with no impact on accuracy.

3 Initial model selection

The structure of the SimIOHMM supports a straightforward way of selecting a minimal
initial model. Start with a state space X containing a single state, interpreted as the source
state of the HMM. The initial state has no associated representative input. Incrementally
grow the state space by iterating over the training sequences, as follows. For each input-
output pair (u,y), for each x in X, compute K(d(u,ux)). If all these values are equal to
zero, add a new state to X and let u be its representative input; otherwise analyze the next
input-output pair. Terminate when all the training sequences have been analyzed.
A second method, for selecting a somewhat larger initial model, consists of adding a new
state xnew if d(u,ux) > 0 for every x ∈ X, and setting u as the representative input of xnew.

Once the initial number of states has been selected, and the corresponding representative
inputs assigned, the E-M algorithm for the SimIOHMM is seeded by constructing initial
values of γx(ut) and of the transition probabilities ai, j(ut) = P(Xt+1 = j | Xt = i,Ut = ut) for

each step of each training sequence, as follows. Let {(u(k)
t ,y(k)

t)}Tk

t=1 be the kth training se-
quence. For each pair (ut ,yt), compute PΘ (X = x |Ut = ut) using the estimator of Equation

1 in conjunction with the initial representative inputs. Set the initial value of γ(k)
x (u(k)

t) to

PΘ

(
Xt = x |Ut = u(k)

t

)
, and the initial value of a(k)

i, j (u
(k)
t+1) to PΘ

(
Xt+1 = j |Ut+1 = u(k)

t+1

)
.

Note that these choices of γ(k)
x (u(k)

t) and a(k)
i, j (u

(k)
t) are consistent, namely,

∑
x∈X

γ(k)
x (u(k)

t)a(k)
x, j(u

(k)
t+1) = ∑

x∈X

γx(u
(k)
t)PΘ

(
Xt+1 = j |Ut+1 = u(k)

t+1

)

= PΘ

(
Xt+1 = j |Ut+1 = u(k)

t+1

)
= γ(k)

j (u(k)
t+1).

This initialization algorithm can also be used to selectively add new states to a SimIOHMM
that is incrementally constructed by providing additional training sequences.

In our experience, the SimIOHMM with this initialization regularly produces a model that
has the same prediction accuracy as as a IOHMM constructed, say, with the Bayesian In-
formation Criterion. This is the case for the experiments reported in the paper. However, on
occasion the initialization produces a suboptimal model that can be improved by allowing
the SimIOHMM to dynamically add and remove states.

4 Dynamically Adding States to the SimIOHMM

As mentioned in the introduction, the SimIOHMM gracefully accommodates the method
described in [5] for pruning states from the state space, a slight variant of which is used
in our implementation. The SimIOHMM also supports a method for dynamically adding
states to the state space during the Baum-Welch iterations. Unlike other methods that
perform state splitting, the SimIOHMM adds states in a way that cannot be reduced to
splitting an existing state.

There are two components to the algorithm: the decision to add a new node, and the ef-
ficient recomputation of the E-step after the node is added. The SimIOHMM recomputes
the representative inputs at the beginning of the M-step. The SimIOHMM then checks,
for each input u in the training set, the collection of values {K

(
d(u,ux)

)
,x ∈ X}. If all

these values are equal to zero for an input u∗, the model is too small to explain the input
sequence to which u∗ belongs. This can happen if either the initial model is too small, or if

the set of recomputed representative inputs does not contain any input sufficiently similar
to ux (this could occur, for example, when the training sequence is an outlier, namely, has
low probability under the true distribution). Hence, the SimIOHMM learning algorithm
decides to add a new node only when the current model is insufficient to explain the data.
The representative input of the new state is set to u∗.

Once a new state is added, the learning algorithm efficiently recomputes the alignment (the

γ(k)
x (t) and ξ(k)

i, j (t) = PΘ

(
Xt = i,Xt+1 = j | {(u(k)

l ,y(k)
l)}Tk

l=1

)
quantities produced by the E-

step). The brute-force approach consists of recomputing the entire alignment after the new
state is added. However, typically only a small fraction of the training samples are affected
by the addition of the new state, and the following efficient solution is adopted instead.

It is always necessary to recompute γ(k∗)
x (t∗), ξ(k∗)

i, j (t∗ − 1) and ξ(k∗)
i, j (t∗), where k∗ is the

index of the training sequence to which u∗ belongs, and t∗ is the index of u∗ within its

sequence. The quantity γ(k∗)
x (t∗) is recomputed by setting it to 0 for all the states except

the new one, say n, for which it is set to 1. The quantity ξ(k∗)
i, j (t∗ − 1) is set to 0 for all

j �= n, and to γ(k∗)
i (t∗ −1) for all i and j = n, while ξ(k∗)

i, j (t∗) is set to 0 for all i �= n and to

γ(k∗)
j (t∗ + 1) for i = n and all j. It might also be necessary to recompute γ and ξ for other

input-output pairs. When a new state is added, all the input-output pairs (u(k)
t ,y(k)

t) in the

training set are scanned (k is the index of the training sequence to which (u(k)
t ,y(k)

t) be-

longs), and those for which K(d(ut ,u∗)) = 0 are discarded,4 because the value of γ(k)
x (t) is

unaffected by the addition of the new state. However, if an input u(k)
t is sufficiently similar

to u∗ that K(d(u(k)
t ,u∗)) > 0, the kth sequence is further analyzed by comparing the distri-

butions γ(k)
X (t −1) and γ(k∗)

X (t∗−1) over the state space for the input-output pairs preceding

(u(k)
t ,y(k)

t) and (u∗,y∗) respectively. If these distributions have disjoint support sets, then

the conclusion is that different parts of the state space are used to explain the (u(k)
t ,y(k)

t) and

(u∗,y∗), hence the alignment of (u(k)
t ,y(k)

t) is not influenced by the newly created state, and
therefore ut is ignored. If this is not the case γ and ξ for ut are updated as described later.
Empirical evidence has shown that this approach can produce slightly larger models than a

method that always updates γ and ξ for every u(k)
t such that K(d(u(k)

t ,u∗)) > 0, at the ex-
pense of a statistically significant reduction in the cost of induction, and with no impact on

accuracy. Recomputing γ and ξ for an input-output pair (u(k)
t ,y(k)

t) described above is more

complex. Let A be the intersection of the support sets of γ(k)
X (t − 1) and γ(k∗)

X (t∗ − 1). Let

γ̃(k)
j (t) = δ

(
K(d(u(k)

t ,u∗)) > 0
)

∑i∈A ξ(k)
i, j (t) be the “contribution” to γ(k)

j (t) of the nodes in

A, where δ is the Dirac 0−1 indicator function. We update γ(k)
j (t) using the equations

γ(k)
j (t) = γ̃(k)

j (t)


1− K(d(u(k)

t ,u∗))

∑x∈X K(d(u(k)
t ,ux))δ(γ̃(k)

j (t) > 0)


 for j = 1 . . . ,n−1

γ(k)
n (t) = 1−

n−1

∑
j=1

γ(k)
j (t),

that is, we distribute part of the probability of the A to the new node, in proportion to the
probabilities estimated by the Kernel density estimator. Finally, for every j ∈ A

⋃{n} the

quantities ξ(k)
i, j (t −1) are recomputed to be consistent with the new values {γ(k)

j (t)}.

This approach selectively adds new states while trying to minimize the computational cost,

4The SimIOHMM can be implemented so that K(d(ut ,u∗)) is not recomputed during the scan.

and for this reason we believe it can be successfully used for incremental learning.

5 Experimental Results

The IOHMM algorithm was implemented in Java, with instances of C4.5 as the transition
and output classifiers, and the SimIOHMM was implemented by extending the IOHMM
code. All experiments were run on an IBM computer with 2 Intel Xeon Processors at
2.4GHz, 512K of L2 cache per processor, and 8 Gb of RAM, running Linux. The dataset
contains 11 training sequences, recorded while an expert performed a procedure for con-
figuring the DNS settings of a system. Each sequence corresponded to a different initial
configuration of the computer system and contains between 17 and 38 steps. The paths
taken by the experts had substantial overlap, but only four sequences can be inferred from
the remaining ones.

Figure 1 shows the training time of the standard IOHMM, and of four versions of the
SimIOHMM characterized by the initialization (random initialization or adaptive) and by
the variable subset selection (enabled or disabled). The number of nodes for the IOHMM
and the SimIOHMM with random initialization was set to 24, the number selected by the
SimIOHMM with adaptive initialization. The figure clearly shows a two-order of magni-

0 2 4 6 8 10 12
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

nr traces

lo
g

tr
ai

ni
ng

 ti
m

e

training time vs nr traces

IOHMM
random initialization , all attributes
adaptive initialization, all attributes
random initialization , variable subset selection
adaptive initialization, variable subset selection

Figure 1: Training time vs. number of training sequences for IOHMM, SimIOHMM with
random or adaptive initialization, and with or without variable subset selection.

tude reduction in training time achieved by the SimIOHMM wth adaptive initialization and
variable subset selection over the standard IOHMM. Additionally, the slope of the curve
for the IOHMM is larger than that for the SimIOMM, which indicates superlinear gains in
training time as a function of the number of training sequences.

The next results are the median values of 7, 4-way cross-validation experiments. They
compare the performance of the IOHMM, of the SimIOHMM with adaptive initialization,
and of the SimIOHMM with dynamic state addition and random initialization (for which
the results are reported as a function of the initial number of states). Figure 2 shows that
the number of iterations to convergence for the SimIOHMM with adaptive initialization
is slightly smaller than that of the SimIOHMM with dynamic state addition. The training
time is substantially higher (but still at least one order of magnitude smaller than that of
the IOHMM), and we attribute this to the fact that when a new state is added, the entropy
of γ temporarily increases, and the cost of each iteration is an increasing function of the
entropy. When the starting number of states grows, both node addition and node deletion
mechanisms come into play, and the cost of the induction appears to grow accordingly.

5 10 15 20 25
0

500

1000

1500

2000

Initial Number of States

T
ra

in
in

g
T

im
e

(s
ec

on
ds

)

Training Time vs. Initial Number of States

 Random Initialization,
 Dynamic State Creation

 Initial Model Selection,
 No Dynamic State Creation

5 10 15 20 25
5

10

15

20

25

30

35

40

Initial Number of States

T
ra

in
in

g
Ite

ra
tio

ns

Training Iterations vs. Initial Number of States

Random Initialization, Dynamic State Creation
Initial Model Selection, No Dynamic State Creation

Figure 2: Training Times and Training Iterations. The IOHMM required 100 iterations.
The SimIOHMM with Initial Model Selection has 14 states.

Figure 3 shows the overall prediction accuracy, and the prediction accuracy of pairs that

5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Initial Number of States

F
ra

ct
io

n
C

or
re

ct
 S

te
ps

Overall Accuracy

Random Initialization, Dynamic State Creation
Initial Model Selection, No Dynamic State Creation
Input−Output HMM

5 10 15 20 25
0.85

0.9

0.95

1

1.05

Initial Number of States

F
ra

ct
io

n
C

or
re

ct
 O

n−
T

ra
ck

 S
te

ps

Accuracy on Predictable Outputs

Random Initialization, Dynamic State Creation
Initial Model Selection, No Dynamic State Creation
Input−Output HMM

Figure 3: Overall accuracy, and accuracy on predictable input-output pairs. The
SimIOHMM with Initial Model Selection has 14 states, and the IOHMM has 14 states.

the HMMs declares as being unpredictable, namely, not learnable from the training set.
The IOHMM declares a pair to be unpredictable only if the output was not observed in the
training set. The SimIOHMM also decides that a pair is unpredictable if the conditional
probability of the input given the observed input-output pairs is equal to 0—the IOHMM
has no provision for such detection. The SimIOHMM with adaptive initialization identifies
more pairs as being unpredictable than the IOHMM, and its accuracy on predictable outputs
is 3% higher. The overall accuracy of the two algorithms is identical.

The t-test (at the 0.05% significance level) shows that, on predictable pairs, the
SimIOHMM with dynamic state addition and random initialization is at least as accurate
than the IOHMM for any initial number of states. The t-test without the Bonferroni correc-
tion identifies the accuracy for 3, 5, 7, 9, 11, 13, and 21 initial states to be lower than that
of the IOHMM. With the Bonferroni correction, the t-test shows that the SimIOHMM is at
least as accurate as the IOHMM when the initial number of states is > 9.

6 Discussion and Conclusions

We have described dynamic adaptive model selection strategies for the SimIOHMM, a
variation of the IOHMM that models the joint distribution of input-output sequences. We
have shown that the SimIOHMM provides a substantial improvement in training time over
the IOHMM, due to the the fact that the entropy of γ is quickly reduced during the first
iterations of the Baum-Welch, which in turn substantially reduces the cost of training the
output and especially the transition classifiers.

We have discussed two methods for selecting the initial number of states, a method for
deciding when to add a new state, and a corresponding method for adding a new state.
When using the adaptive initialization strategy, the current method for deciding to dynam-
ically add a state usually does not trigger a node addition. Therefore, we have explored
separately the contributions of the adaptive initialization strategy and of the dynamic state
addition strategy. We have shown that the adaptive initialization strategy alone can sub-
stantially reduce the cost of induction without negatively affecting the accuracy, while the
algorithm for dynamically adding states has a behavior that depends on its initialization.
It appears that the best tradeoff between training time and prediction accuracy for this last
algorithm consists of starting with a small number of initial states.

Future work includes the development of additional algorithms for deciding when to add
new states, tailored towards maximizing predictive ability; the investigation of the scalabil-
ity of the SimIOHMM to large datasets; and the construction and evaluation of incremental
learning strategies that rely on the adaptive model selection algorithms presented herein.

Acknowledgments
We would like to thank John Turek and Alex Morrow for insightful discussions.

References

[1] Stolcke Andreas and Stephen Omohundro. Hidden markov model induction by bayesian model
merging. In J. D. Cowan S. J. Hanson and C. L. Giles, editors, In Advances in Neural Information
Processing Systems 5, pages 11–18. Morgan Kaufman, 1992.

[2] Andrew Barron, Jorma Rissanen, and Bin Yu. The minimum description length principle in
coding and modeling. IEEE Trans. Information Theory, 44(6):2743–2760, 1998.

[3] Yoshua Bengio and Paolo Frasconi. Input-Output HMM’s for sequence processing. IEEE Trans.
Neural Networks, 7(5):1231–1249, September 1996.

[4] Alain Biem. A model selection criterion for classification: Application to HMM topology op-
timization. In Proc. 7th Int. Conf. Document Analysis and Recognition, ICDAR2003, pages
104–108, Edinburgh, Scotland, 2003.

[5] Mario A. T. Figueiredo and Anil K. Jain. Unsupervised learning of finite mixture models. IEEE
Trans. Pattern Anal. Mach. Intell., 24(3):381–396, 2002.

[6] Tessa A. Lau, Lawrence D. Bergman, Vittorio Castelli, and Daniel Oblinger. Sheepdog: Learning
procedures for technical support. In Proc. of 2004 Int. Conf. on Intelligent User Interfaces (IUI
2004), pages 106–116, 2004.

[7] Daniel A. Oblinger, Vittorio Castelli, Tessa A. Lau, and Lawrence D. Bergman. Similarity-based
alignment and generalization: A new paradigm for programming by demonstration. Submitted
to NIPS 2004.

[8] Lawrence R. Rabiner. A tutorial on Hidden Markov Models and selected applications in speech
recognition. Proc. IEEE, 77(2):257–286, 1989.

[9] G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6:461–464, 1978.

