RC23397 (W0411-102) November 10, 2004
Computer Science

IBM Research Report

Word Sense Disambiguation in a Slot Grammar Framework

Michael C. Mc Cord
IBM Research Division
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, NY 10598

="/"—="S= Research Division
i _=__=?=_ Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. Ithas been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distributionoutside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g, payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
0. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home

Word Sense Disambiguation in a
Slot Grammar Framework

Michael C. McCord
IBM T. J. Watson Research Center

November 11, 2004

1 Introduction

This is a preliminary report on a system for word sense disambiguation
(WSD) for unrestricted vocabulary, which requires no training on tagged
text.! Disambiguation is done to WordNet word senses (Miller, 1995; Fellbaum,
1998).

The “disambiguating power” of the system comes from three sources:

e Parsing by English Slot Grammar (ESG) (McCord, 1980; McCord,
1990; McCord, 1993), both at training time and at runtime.

e The WordNet relation system, applied at training time.

e The WordNet sense frequency data (number of tagged senses), applied
at runtime.

These resources are used as follows. For training, we do the following two
things:

e ESG is used to parse a large (training) corpus, producing a slot-filler
database, as described in Section 2. Keys of entries in the database are
head-slot-filler tuples (and their inverses). The values are frequencies
of occurrence of the keys in the parses of the corpus. These tuples
serve as the basis for local context in the WSD.

Except in the sense that it uses the tagged frequency information that comes with
WordNet.

e Using the slot-filler database, along with WordNet relations, we form
the sense discriminator database for the corpus, as described in Sec-
tion 3. Keys of entries in this database are again head-slot-filler tu-
ples (and their inverses), and the value of a key is the list of possi-
ble WordNet senses of the index of the key (its first component — a
filler word or a head word), where each sense is paired with a “sense
evidence number” for that sense of the index in the context of the
slot-filler tuple.

At runtime, the sense discriminator database, as well as ESG and WordNet
again, are used as follows by the WSD algorithm:

e Each sentence is parsed with ESG, and the parse is used in two ways:

1. The slot-filler relations given by the parse are converted into keys
for the sense discriminator database, and look-up of these keys al-
lows us to accumulate contextual evidence for each possible sense
of each word.

2. Filtering of possible senses for each word is done through ESG’s
morphological analysis (especially for parts of speech). Also,
ESG’s analysis of phrasal verbs plays a role in deciding what
WordNet entries to look up. For example, in “They brought most
of the prices down”, we know to try “bring down” in WordNet.

e The WordNet sense frequency data (for the word forms and parts of
speech determined by ESG) are used to feed into a WSD score that
also uses the contextual evidence for senses.

The runtime WSD algorithm is described in detail in Section 4. The
algorithm can be applied in either sentence mode or document mode. In the
former, senses are chosen only on the basis of local evidence from each sen-
tence. In the latter, evidence is gathered across a whole document, with an
assumption that each word is used in only one sense. (We plan to experiment
with in-between versions of these.)

Using Slot Grammar (SG) slot-filler relations to express sentence-level
context provides much more relevant information for WSD than n-gram
methods, we believe, because slot-filling deals more directly with arguments
of word sense predicates. Also, SG slot-filling can even be done remotely, as
with wh-extraposition, or logically, as with passives and implicit subjects.

One reason this report is a preliminary one is that I have not done enough
exploration of the literature in WSD, and I am not attempting in this first
version to relate adequately to previous work. There are relations to the
work in (Lin, 1997; Mihalcea and Moldovan, 1999; Mihalcea and Faruque,
2004; Leacock and Chodorow, 1998; Leacock et al., 1998; Yarowsky, 1995)
and more, but I will add this discussion in a later version.

At this point, we are doing WSD only for common nouns, verbs and
adjectives.

Section 5 describes an experiment with this system, and an evaluation of
the performance. In this experiment, the training set consisted of about 1.7
million sentences from Wall Street Journal (WSJ) text. On a blind test set
from the WSJ, the system performed at 72% accuracy. This was in sentence
mode, because the test set sentences were not from a single WSJ article,
but were spread out uniformly across a larger test set. It seems likely to me
that the score would increase with training on a suitable larger corpus. The
exact method of scoring is described in Section 5.

A secondary purpose of this report is to describe a kind of integration
of WordNet with ESG, and this is presented in Section 6. This involves a
new system of very fast API functions for WordNet which I wrote to do this
work, along with an efficient editor-based WordNet browser which allows
easy exploration of WordNet by clicking on synsets or words in the result
displays of queries.

2 The Slot-Filler Database

The Slot Grammar package has a facility called SlotStat for processing
a very large corpus and producing a slot-filler database associated with the
corpus. The sentences of the corpus are parsed, and instances of slot-filler
tuples occurring in the parses are gathered, along with their frequencies of
occurrence in the corpus. See (McCord, 1993) and (Dagan and Itai, 1990)
for earlier versions of these ideas.

Let us look first at an example before we explain the situation generally.
Consider the sentence in (1), with its ESG parse.

(1) The treasurer deposited money in the bank.

4 ndet thel (1) det sg def the ingdet
szubj (n) treasurer1(2,u) noun cn sg h
top deposit1(3,2,4,5,u) verb vfin vpast sg vsubj
obj(n) moneyl(4) noun cn sg
comp (p) in1(5,7) prep staticp
LLndet thel(6) det sg def the ingdet
objprep(n) bank1(7,u) noun cn sg

-

~

J

If sentence (1) is taken as the whole corpus, then SlotStat produces the
following slot-filler database:

bank<comp<in<deposit 1
deposit<~comp<in<bank 1
deposit<~obj<n<money 1
deposit<“subj<n<treasurer 1
money<obj<n<deposit 1
treasurer<subj<n<deposit 1

On each line is a slot-filler tuple, followed by its frequency in the corpus.
The character < separates the four elements of each slot-filler tuple.

The second element of each tuple is its slot (like subj for the subject of
a clause), but the slot may be preceded by ~, in which case we call it an
inverse slot. When the slot is not an inverse, the first element of the tuple
is the (citation form of the) head word of the filler phrase for the slot, and
the last element is the head word of the matrix phrase. When the slot is
an inverse, these first and last elements are reversed. But in both cases, we
call the first element the index word of the tuple and the last element the
environment word.

Notice that we cover only selected slots. A rough idea is that we include
the complement slots for verbs, nouns and adjectives, plus two adjunct noun
premodifier slots (called nadj and nnoun) whose main fillers are adjectives
and nouns, respectively. We will not describe here the exact list of slots
covered.

Whether the slot is inverted or not, the third element of a slot-filler tuple
is the option for the slot chosen by the parser. In general, each slot of SG has
associated options, which are symbols that describe or control, in part, how
the slot is filled. For complement slots, the associated options come from

the lexical entry for the matrix word of the slot. In the following lexical
entry for buy (simplified)

buy < v obj (iobj n for)

the iobj (indirect object) slot is shown with options n and for. The n option
means that the iobj can be filled by an NP (as in buy me a book), and the
for option means that the iobj can be filled alternatively by a for-PP (as
in buy a book for me). The obj (direct object) slot in this example shows
no option overtly, but the default is that obj has an n option if no option is
specified.

In an SG parse tree, like the one in (1), the option chosen by the parser
for each slot is shown in parentheses after the slot, as in subj(n).

In the slot-filler tuples of a slot-filler database, there is special treatment
for certain options, associated with “promotion” of certain slot-fillers. In
parse (1), note that the filler of the slot4+option comp (p), a complement slot
of the verb deposit, is actually the PP headed by in. So on that account,
the associated (non-inverted) slot-filler tuple would be:

in<comp<p<deposit 1

But SlotStat modifies this by promoting the object of the preposition in,
namely bank, to become the index word, and in the process replacing the
actual option, p, of comp(p) by the preposition in, giving:

bank<comp<in<deposit 1

In this way, a direct relationship (important for WSD) between the content
words deposit and bank is packed into a single tuple, and the identification
of the preposition (in) is there too.

This promotion is done in some cases besides PP fillers as well. For
instance it is done with to-VPs, for which ESG views to as the head. The
verb head of the actual VP is taken as the filler, and a remnant of to is
coded in the option (inf) of the tuple. This is also done with that-clauses.

There is another, slightly different, kind of promotion done in creating
the slot-filler database. This has to do with verb-particle constructions and
certain cases of verbs with PP complements. Let us look first at particles.

Consider the example in (2).

(2) The company phased those plans out.

(- ndet thel (1) det sg def the ingdet R
fﬁsubj (n) companyl(2,u) noun cn sg
——top phasel(3,2,5,6) verb vfin vpast sg vsubj
ndet thosel(4) det pl def
obj(n) plani(5,u) noun cn pl
Y comp (pt) outl1(6,u) prep motionp badobjping)

Particles associated with verbs are treated by ESG as complement slot fillers
— for the slot comp — with the option being either pt (used with specific
particles listed in the lexical entry) or lo (standing for “locational”) which
takes a range of particles and PPs which can have an interpretation as
physical location (but may be used abstractly also). This treatment of verb
particles as ordinary verb slot fillers makes it easy to have them separated
from the verb, as in example (2).

For example (2), the slot-filler database produced by SlotStat is:

company<subj<n<phase:out
phase:out<”“obj<n<plan
phase:out<“subj<n<company
plan<obj<n<phase:out

e

So when there is a verb particle complement P present for a verb V, the
particle is concatenated the verb like so, V:P, in the slot-filler tuple.

It is worth storing the particles with the verbs in the slot-filler database
for two reasons. (1) This packs more information into each slot-filler tuple.
(2) WordNet often stores verb+particles as multiword strings consisting of
the verb and particle with a blank separator (“phase out” is an example),
especially when the verb+particle has a non-compositional sense. So it is
convenient for us to store sense information directly with the combination
V:P. When this is looked up in WordNet, we of course replace the colon by
a blank. But in the slot-filler database, it is useful to use the colon instead
of a blank, because some verb multiwords in the ESG lexicon are expressed
with blank separators for their components.

The second case of promotion of this sort for the slot-filler database is
done for certain cases of verbs with PP complements. For these we write
V#P, where V is the verb and P is the preposition that heads the PP comple-
ment. An example is call#for. As with some verb+particle constructions,

WordNet also sometimes stores senses under such verb-+preposition multi-
words, for example “call for”.

We do V#P promotion only for restricted kinds of occurrences of PP com-
plements. For instance we do not do it in the case of “deposit in” in example
(1), even though the in-PP is a complement of deposit. We avoid it in this
case because an NP direct object (money) is present. In general, we have
elected to create a V#P promotion in the following two cases, where the gen-
eral idea is to try to capture situations where the phrasal verb V#P is more
likely to have its own special meaning, with a separate listing for V P in
WordNet.

1. The verb V has a complement filling an obj (direct object) slot with
option allowing a PP headed by P. Examples are “depend on” and
“believe in”. In this case, after the promotion to V#P in the slot-filler
tuples, we replace the option of the obj slot by n (for NP), and let the
filler be the object of the preposition P.

2. The verb V has a complement filling a comp slot with option allowing
a PP headed by P, and V has no direct object slot filled (logically) in
the sentence. Examples are “build on” and “dip into”. In these two
examples, the verb frame could in general also have an obj slot filled,
but we do the promotion only if there is no obj logically filled. In a
promotion of this sort, in the slot-filler tuples we replace the comp slot
by obj and let its option be n.

An example for Case 1 is shown in (3).

(3) The outcome depends on his decision.

(ndet thel (1) det sg def the ingdet
{Csubj (n) outcomel(2,u) noun cn sg
top depend1(3,2,4,u) verb vfin vpres sg vsubj ingprep
obj (p) onl(4,6) prep staticp
LLndet his1(5) det sg possdet ingdet
9 objprep(n) decisionl(6,u,u) noun cn sg

The slot-filler database produced for (3) is:

decision<obj<n<depend#on
depend#on<~obj<n<decision
depend#on<~subj<n<outcome

e

outcome<subj<n<depend#on

An example for Case 2 is shown in (4).

(4) He only dipped into the report.

-

subj(n) he (1) noun pron sg def nom h perspron
Fvadv only1(2) adv post ppadv nounadv

top dip1(3,1,u,4) verb vfin vpast sg vsubj

comp (p) into1(4,6) prep motionp

ndet thel(5) det sg def the ingdet
L objprep(n) reporti(6,u) noun cn sg

The slot-filler database produced for (4) is:

dip#into<“obj<n<report 1
dip#into<~subj<n<he 1
he<subj<n<dip#into 1
report<obj<n<dip#into 1

When we create the sense discriminator database from the slot-filler
database, as described in the next section, we will need to look up the
WordNet senses of promoted forms like V#P. Our candidate senses will be
obtained from look-up of both the multiword form V P and the simple verb V.
This is appropriate because some of the meanings of V. P may in fact depend
only on V and are listed in WordNet only under V. For instance, the sense
of “dip into” in “He dipped into the pool” is listed (appropriately) under
“dip” in WordNet 2.0, and the only sense listed under the multiword “dip
into” is “read selectively from”.

There are some cases where one finds appropriate senses for V:P (the
verb-particle case) under V as well as under V P, analogously to what we do
for V#P. But from what I have seen so far, it seems best to stick with V P
for the verb-particle case. I plan to investigate this more.

Let us now summarize, and describe the general form of slot-filler tuples.
Each such object is a quadruple of the following form:

IndexWord<Slot<Option<EnvironmentWord

The Slot is either an inverse slot (preceded by ~) or an ordinary slot. If it is
an ordinary slot, then the IndexWord is the (head word of the) filler of the
slot, or a promoted filler as described above, and the EnvironmentWord is
the matrix word for the slot. For an inverse slot, these first and last members

of the tuple are reversed. The Option is by default the slot’s chosen option,
but may provide other information, such as a specific preposition, in the
case of a promoted filler.

The slot-filler database created by SlotStat for a corpus consists of the
slot-filler tuples extracted from parses of segments in the corpus, each paired
with its frequency (total number of occurrences) in the corpus. During
the corpus analysis, SlotStat stores the accumulating database in a hash
table where the keys are the slot-filler tuples, and the values are frequency
numbers. At the end of the corpus analysis, SlotStat stores the results
in a file in a way that is convenient for reading back in. Results can be
accumulated across several runs of SlotStat.

The reader will no doubt note that the inverse forms of slot-filler tuples
and the associated frequency values are immediately obtainable from their
non-inverted forms, so there is a kind of redundancy there. In fact SlotStat
can optionally work with only the non-inverted forms, and this is the nor-
mal way of first creating the database. However, when we pass to a sense
discriminator database (described in the next section), where the keys are
also slot-filler tuples, we actually need to use both inverted and non-inverted
forms. The symmetry is lost. This happens because the value for each key-
tuple is associated specifically with the index word (first element) of the
tuple, and has to do with sense disambiguation of that word.

Display (5) shows a listing of entries in a slot-filler database for a specific
word, paper. These represent the most frequent tuples with index word
paper, down to a certain frequency, in the database described in Section 5
below.

(5)

paper<“nnoun<n<court 171
paper< nadj<a<international 157
paper<nnoun<n<product 142
paper<Tnadj<n<num 107
paper<nnoun<n<work 105
paper<obj<n<file 103
paper<nnoun<n<company 96
paper<subj<n<say 70
paper<nnoun<n<industry 55
paper<obj<n<make 46
paper<nnoun<n<maker 45
paper<Tnadj<a<local 43

paper<obj<n<use 42

paper< nadj<a<new 42
paper<Tnadj<a<other 40
paper<obj<n<coat 39
paper<subj<n<have 39
paper<nnoun<n<stock 36
paper<“nadj<en<coat 35
paper<nnoun<n<concern 34
paper<obj<n<publish 27
paper<obj<n<sell 27
paper<Tnadj<n<year 27
paper<obj<n<buy 22
paper<obj<n<close 22
paper<Tnadj<a<light 22
paper<nnoun<n<machine 21
paper<nobj<for<demand 21
paper< nnoun<n<eurodollar 21
paper<nnoun<n<producer 20
paper<obj<n<issue 20
paper<obj<n<read 20
paper< nadj<a<daily 19
paper< nnoun<n<research 19
paper<nnoun<n<making 18
paper<obj<n<produce 18
paper<obj<n<sign 17
paper<obj<n<write 17

paper<nnoun<n<manufacturer 16

3 The Sense Discriminator Database

Next we use the slot-filler database for a corpus to construct the sense
discriminator database for that corpus, where the key new information comes
from WordNet.

The entries of a sense discriminator database are of the form:

IndWord<Slot<Option<EnvWord Sense|-Evidence; Senses-Evidences ...

The keys, IndWord<Slot<0Option<EnvWord, are slot-filler tuples, just as for a
slot-filler database. In the value for such a key, shown here after the blanks,

10

the Sense; are integers that specify the WordNet senses of IndWord with the
part of speech it must have according to the slot and option shown for it in
the tuple. These synset numbers are special to my own API to WordNet.
Fach corresponding Evidence; is an integer that measures the evidence for
Sense;, obtained as described below.

We build these entries as follows. For each entry
IndWord<Slot<Option<EnvWord Freq

in the slot-filler database, and for each possible sense Sense; of IndWord
(for its given part of speech), we determine Evidence; as follows. We first
construct the set C' of closely related words to IndWord under sense Sense;
(conceptually) in two steps.

The first step is to form the set S of closely related senses to the pair
(IndWord, Sense;) by traversing WordNet away from Sense; via the following
six relations:

identity (just arrive at Sense; itself)
hypernym (@)

hyponym (7)

verb group ($) if Sense; is a verb

similar to (&) if Sense; is an adjective

SRl R

also see (") if Sense; is a verb or adjective

For all of these, we move at most one step away from Sense;, except for
hyponym, for which we try up to two steps. The last of these relations, also
see, is lexical and depends on the word IndWord as well as its sense Sense;,
but all the rest depend only on Sense;. We let the set .S of senses consist of
all the senses (synsets) we arrive at from Sense; by these transitions.

The second step in forming the set C of closely related words to IndWord
is to take the synsets in S, and for each such synset, add all its synonym
members to C — excluding IndWord itself if it is present.

Actually, we put a limit on the number of words that can be added to
C; this limit is currently set to 50. The steps for forming S and C have
an order — starting with Sense; and then applying the six relations above
in the order listed. In actuality, we add to C' immediately after applying
each of the six relations. And we stop the process when we reach the limit
(currently 50).

11

Given C', we compute Evidence; as Freq plus the sum of all frequencies
F where CloseWord is a member of C', and

CloseWord<Slot<Option<EnvWord F

is in the slot-filler database.

Display (6) shows some of the entries for the index word paper, taken
from the sense discriminator database described in Section 5.

(6)

paper<comp<of<make 77910-16 33615-5 32928-5 32942-5 32865-5 42740-5 20582-11
paper<~nadj<en<recycle 77910-13 33615-6 32928-6 32942-6 32865-6 42740-6 20582-6
paper<obj<n<write 77910-17 33615-84 32928-17 32942-83 32865-17 42740-17 20582-17
paper<obj<n<sell 77910-94 33615-27 32928-59 32942-27 32865-27 42740-59 205682-571
paper<”nnoun<n<government 77910-26 33615-288 32928-26 32942-9 32865-9 42740-26 20582-31
paper<~nadj<a<local 77910-142 33615-55 32928-167 32942-43 32865-43 42740-142 20582-156
paper<~nadj<a<large 77910-44 33615-9 32928-51 32942-9 32865-9 42740-106 20582-60

The WordNet sense numbers involved here are shown in the following output
from the ESG4+WSD interface to WordNet, where the hypernyms are given
only to one level:

1. <77910> n: paper
a material made of cellulose pulp derived mainly from wood or rags or certain grasses
==> <75790> material, stuff
2. <33615> n: composition, paper, report, theme
an essay (especially one written as an assignment)
==> <33614> essay
==> <3897> written assignment, writing assignment
3. <32928> n: newspaper, paper
a daily or weekly publication on folded sheets
==> <32907> press, public press
4. <32942> n: paper
a scholarly article describing the results of observations or stating hypotheses
==> <32934> article
5. <32865> n: paper
medium for written communication;
==> <32861> medium
6. <42740> n: newspaper, paper, newspaper publisher
a business firm that publishes newspapers
==> <42738> publisher, publishing house, publishing firm, publishing company
7. <20582> n: newspaper, paper
a newspaper as a physical object
==> <21670> product, production

12

4 The Algorithm for WSD

The idea is as follows. For each node N (having one of our selected parts of
speech) of the ESG parse tree, the possible senses of N are the the WordNet
senses of N having the part of speech given for N by ESG. For each possible
sense of node N, we gather the evidence (a real number) for that sense of
N. Then we choose a sense that has the maximum evidence. The WordNet
senses of a word are ordered, and if several senses have the same maximum
evidence, we choose the first one.

The algorithm can be run in two modes — (a) sentence mode or (b) docu-
ment mode. For mode (a), the evidence gathering and sense determinations
are done on a segment-by-segment basis. Mode (b) runs in two passes over a
document (or selected sequence of segments). In the first pass, the evidence
is gathered, with an assumption that each word-POS pair is used in only
one sense in the given text. Then in the second pass, senses are chosen as in-
dicated in the preceding paragraph. We plan to experiment with variations,
where the evidence is gathered for certain windows around segments.

In our current system, the evidence for a sense has two components:

1. the contextual evidence

2. the sense frequency evidence.

The contextual evidence comes from slot-filler relations in the ESG parse
tree, plus the sense discriminator database, in a way that we will explain
below. The total evidence for a sense is a linear combination of these two
components, and currently we have found that we get the best results with
a weighting of 0.46 for the contextual evidence and 0.54 for sense frequency
evidence.

The sense frequency evidence for a sense of a node N is obtained from the
sense tagging counts provided by WordNet for the senses of each word. We
just normalize these counts by dividing the count for each possible sense of
node N by the sum of the counts for all the possible senses of N (if this sum
is greater than 0).

Let us now explain the determination of the contextual evidence for a
sense of a node N. The basic idea is to look at the various slot-filler relations
in which N participates in the parse tree, and to accumulate evidence for
each possible sense of N by adding up the evidence numbers associated with
those slot-filler relations in the sense discriminator database. For instance,
suppose we have:

13

Smith deposited money in a savings bank.
Then bank participates in the relations:

bank<comp<in<deposit
bank<"nnoun<n<savings

Then we look up these relations in the sense discriminator database, and,
for each noun sense of bank we add up the two associated evidence numbers.

So, in general, suppose we are given a node N (of one of our selected
parts of speech) in the parse tree, and a possible sense S of N. What is the
contextual evidence E of S as the appropriate sense? We initialize E to 0.
Let CiteN be the citation form of N. Then for each slot-filler relation in the
parse tree of the form

CiteN<Slot<Option<EnvWord

we look up this relation in the sense discriminator database, and if it is there,
we find the evidence number E1 associated with sense S, and we increment
E by E1. We do this for each possible sense S of N, and then normalize
the associated evidence numbers by dividing each by the sum of all these
evidence numbers for the possible senses of N (if the sum is non-zero).

5 Experiment and Evaluation

The training and testing for the experiment were done on text from the
Wall Street Journal (WSJ). “Training” almost exclusively means producing
the slot-filler database by running SlotStat on the training set, and from
that, producing a corresponding sense discriminator database. As indicated
above, training does not include any sense tagging or annotation.

The main part of the training set consisted of 1.67M segments of WSJ
text. The rest of the training set, as well as the test set, came from the
WSJ portion of the Penn Treebank (PTB), which has about 44K segments.
I had earlier used this part of the PTB for some measurements of ESG
parsing accuracy, and split it 75% by 25% into a training set and a blind
test set. There was very little actual training of ESG on this training set —
mainly only some lexical extraction. For the current ESG+WSD evaluation,
I added this PTB training set (the unannotated text segments only) to the
training set, making the total number of training segments about 1.7M. I

14

selected the ESG+WSD test set automatically from my PTB test set (again,
unannotated text segments only), choosing 100 segments by taking every
n segment, where n is chosen to make the total 100 segments. I have
not checked how related (in period of the WSJ) the 1.67M-segment WSJ
training text is to the PTB WSJ text.

The 100 test segments were annotated with correct WordNet senses, with
the aid of some tools that I developed to go with ESG+WSD and a text
editor (Kedit so far). The tools make it quick to see the available WordNet
senses for a word that one clicks on, and then to import the sense marking
one selects into the annotated file. A program in ESG+WSD can read an
annotated corpus of this sort and dynamically score ESG’s performance on
it. Some segments from the training set were also annotated, for scoring
feedback in experiments with the WSD algorithm.

Example (7) below shows a segment from the test set along with its sense
annotation table.

The first column of the table consists of the words (or multiwords) of the
segment in citation form, each with an associated node number. The node
number is just the segment position number the word, or of the head word
in the case of a multiword.

The second column contains in each row the marked sense (synset) num-
ber of the chosen word sense. This is a WordNet sense number in my API
to WordNet, described briefly in Section 6. If WordNet has no appropriate
sense for the given word in context, then it is annotated with a sense <-1>.
This happened with only 12 out of 877 words in the test set (of our chosen
parts of speech). When a word is annotated with <-1>, the scoring program
ignores that word in the tallying of good and bad.

The third and fourth columns are redundant, because they are implied
by the sense number and WordNet, but they are there for the convenience
of a human reader. They are ignored by the scoring program. The third
column shows the part of speech, and the fourth shows the definition, of
each sense (as supplied by WordNet).

15

(7) Omnicare said it expects the division to add "substantial
sales volume and to make a positive contribution to our earnings
in 1990 and beyond."

Omnicare(1)

say(2) <84455> v: express in words

it(3)

expect (4) <83136> v: regard something as probable or likely

the (5)

division(6) <43444> n: an administrative unit in government or business
to(7)

add(8) <80512> v: make an addition (to)

substantial(9) <96708> adj: fairly large

sale(10) <5523> n: the general activity of selling

volume (11) <27520> n: the property of something that is great in magnitude
and (12)

to(13)

make (14) <92156> v: engage in

a(15)

positive(16) <93598> adj: involving advantage or good

contribution(17) <3852> n: any one of a number of individual efforts in a common endeavor
to(18)

our (19)

earnings(20) <68678> n: the excess of revenues over outlays in a given period of time
in(21)

1990(22)

and(23)

beyond (24)

I ran SlotStat on the 1.7M-segment training set, and used an option
that outputs only slot-filler tuples whose frequency is at least a specified
minimum. I chose a minimum of 5. This produced approximately 533K slot-
filler tuples (in symmetric form), together with their frequencies. Samples
are given in example (5) in Section 2. Next I ran the ESG+WSD utility for
creating the sense discriminator database, and this produced approximately
487K entries. There are fewer than for the slot-filler database, because some
of entries in the latter have index words with no WordNet senses (this being
the case mainly for proper nouns). Samples for this sense discriminator
database are given in (6) in Section 3.

Then I ran ESGH+WSD on the test set, using this sense discriminator
database. It is actually run (in this case) under the management of a scor-
ing function operating on the gold sense-annotated test set (consisting of
segments, each followed by its gold sense annotation table.) In this mode of
running, the scoring function gives ESG+WSD each (simple, unannotated)

16

text segment to parse and do its WSD on. ESG+WSD produces its own
internal dynamic version of the sense annotation table for the segment. The
scoring function also reads the gold sense annotation table listed after the
segment, and compares this with what ESG+WSD produced.

The comparison and scoring proceed as follows. For each segment, the
scoring function goes through the nodes of the segment and tallies up two
things:

1. A count SN (“Sense Nodes”) of nodes whose senses we are considering.
These are just the nodes in the gold sense table that have a sense label
<nnn> marked on them, except for those marked <-1> (no appropriate
WordNet sense). As indicated above, the nodes marked with <nnn>
(including <-1>) should be the nodes for common nouns, verbs and
adjectives.

2. A count GSN (“Good Sense Nodes”), where ESG+WSD agrees with
the gold table marking. To agree, (a) the ESG+WSD node and the
gold table node must either be both marked or be both unmarked,
and (b) if they are both marked, they must have the same marking.
ESG+WSD never marks a node with <-1>, so if the gold table has
this, there will be no agreement; but then such nodes are not counted
in the SN tally either.

The counts SN and GSN are accumulated (starting with 0) over the whole
test set, and the score on the test set is the ratio GSN/SN as a percentage.

In the whole process, the scoring function can produce a report file, show-
ing both the gold sense tables, and for each, what ESG+WSD produced,
expressed in the same format. “Local” scores for each segment are given
(based on the SN and GSN tallies just for that segment), as well the total
score at the end.

Example (8) shows the ESG4+WSD output, along with its score, for the
segment given in (7) from the gold file.

17

(8) Omnicare said it expects the division to add "substantial
sales volume and to make a positive contribution to our earnings
in 1990 and beyond."

Omnicare(1)

say(2) <84455> v: express in words

it(3)

expect (4) <83136> v: regard something as probable or likely

the (5)

division(6) <43395> n: an army unit large enough to sustain combat

to(7)

add(8) <80512> v: make an addition (to)

substantial(9) <96708> adj: fairly large

sale(10) <5523> n: the general activity of selling

volume (11) <71591> n: the amount of 3-dimensional space occupied by an object
and (12)

to(13)

make (14) <92156> v: engage in

a(15)

positive(16) <103524> adj: characterized by or displaying affirmation or acceptance ...

contribution(17) <3852> n: any one of a number of individual efforts in a common endeavor
to(18)

our (19)

earnings(20) <68678> n: the excess of revenues over outlays in a given period of time
in(21)

1990(22)

and(23)

beyond (24)

Sense score = 72.73Y%

For this 100-segment test set, the score produced by ESG+WSD was
72%.

The scoring procedure we have described here can do the WSD in sentence
mode (with sense evidence gathering done on each segment in isolation), or
it can apply the WSD algorithm in the document mode (with two passes)
that we described above in Section 4. The experiment we just described was
done in sentence mode, because the test segments are widely dispersed in
the PTB corpus. We plan to do experiments also in document mode.

18

6 Integration of ESG and WordNet

To do this work, I developed my own set of API functions (in C) to
WordNet, along with an internal data structure representation of WordNet,
in such a way that these are integrated nicely with the Slot Grammar (SG)
code and framework. Basically, ESG is just packaged with these extra func-
tions as an add-on. SG is coded in pure ANSI C and runs efficiently on
several platforms. The SG WordNet API functions are quite fast, mainly
because the chosen data representation stores all of WordNet in memory in
arrays, and there is maximum use of (internal, binary) integer values in the
arrays, which in turn index into other arrays.

To use ESG4+WordNet with a version of WordNet depends only on the
lexical data files distributed with WordNet, not on any of the code. ESG
commands (given to the ESG executable) can “compile” the standard dis-
tribution WordNet data files (from about any version of WordNet) to trans-
mogrified data file versions of them which can be read into memory (into
the special internal representation) very quickly when ESG initializes. This
compilation (needed only once) is very quick — taking about 4 seconds. And
the ESG initialization plus loading of these WordNet files takes about a
fourth of a second.

Any users of this package would be expected to obtain WordNet them-
selves directly from Princeton, and then use the ESG-based compiling op-
eration just discussed.

The work described in this report was done with WordNet 2.0. The
sense/synset numbers exhibited are from the ESG-based data representa-
tion. They are obtained simply by starting with 0 for the first noun synset
occurring in noun.dat and counting forward synset by synset. Then the
indexing of synsets continues forward with verb.dat (without resetting the
counter), then adj.dat, and adv.dat. All four of the synset families are
stored in one array.

The SG data structure for parses was expanded to include a new field
for the WordNet sense of each node chosen by WSD, represented simply as
an integer, the synset number described in the preceding paragraph. Parse
displays can optionally show these sense numbers. An example of a sentence
and such a parse display is shown in (9). In order to make the parse tree fit
the page better, we have suppressed the display of features besides parts of
speech. The parse is not quite correct. The phrase for “to be discussed ...”
should be attached to “issues” instead of to “planning”.

19

(9) The location was disclosed as the U.S. began planning the issues
to be discussed at the Dec. 2 meeting.

/ ndet thel (1) det \
.f subj (n) location1(2,u) noun <28>

.-(top be(3,2,4) verb

L pred(en) disclosel(4,u,2,u) verb <84106>

(—“

* vsubconj as3(5,8) subconj
f——————————ndet thel(6) det
S subj (n) U.5.1(7) noun
£> sccomp (bfin) begin1(8,7,9) verb <81340>
L»e obj(ing) plan2(9,7,11) verb <83066>
ndet the1(10) det
obj(n) issue3(11,u) noun <31039>
vnfvp t01(12,13) infto
tocomp (binf) be(13,7,14) verb
pred(en) discuss1(14,u,7,u) verb <84567>
vprep at1(15,19) prep
ndet thel(16) det
nadj dec. 2(18) noun
\\\‘ objprep(n) meetingl(19,u,u,u) noun <43918?////

This sort of parse display can show synset definitions as well as synset num-
bers.

The ESG+WordNet package also includes a browser for WordNet. Most
of the browser code is in C and is coded generically in the ESG+WordNet
package. It is intended to work with ascii text editors like Kedit that have
a nice macro language, and I have so far implemented the editor side of
the browser only for Kedit, where a few macros are required. The browser
allows one to explore WordNet through all of its links, displaying the results
in a normal editor window for a normal (temporary) file created by the
ESG+WordNet code. In the display of results, one can click on any synset
or word and explore from there. (“Clicking” means putting the cursor at
the appropriate place and pressing a designated function key.) The depth of
searching (like all hyponyms, or 2 levels of hyponyms) can be set by available
commands. One can also type in words and other data to pop-up boxes.

The Kedit browser screen looks like this:

20

Kon KEDIT - [C: \clmt\wn.out] =[Ol x|

| File Edit Actions Options Window Help — =[x
i E=TRE] ~ 7] Elal mle] o] mlme]
ey e

<0> n: entity

that which is perceived or known or inferred to have its own distinct existence (living o

[hyponym] :

==> <1> n: thing

==>» <2> n: anything
==>» <3> n: something
<4> n: nothing, nonentity
<23642> n: subject, content, depicted object
<48012> n: body of water, water
==> <47942> n: backwater
==> <47960> n: bay
<47830> n: Abukir, Abukir Bay

<47876> Andaman Sea
<47861> Bay of Bengal
<47862> Bay of Biscay
<47%63> Bay of Campeche
<47964> Bay of Fundy
<47965> Bay of Naples
==> <47986> n: bight

==> <47987> n: Bight of Benin

==> <48349> n: Great Australian Bight
==> <47894> n: Biscayne Bay
==> <48039> n: Buzzards Bay
> <48058> n: Cape Cod Bay

==> <48103> n: Chesapeake Bay

Fl=word F2=wordc F3=exit F4=hype F5=hypo Fé=pholo F7=pmero F8=sholo F%9=smero
Fl0=mholo Fll=mmerc C+Fl=simto C+F2=atri C+F3=entail C+F4=cause C+F5=vgroup
C+F6=sa C+F7=memsa C+F8=r C+F9=memreqg C+Fl0=use C+Fll=memuse C+Fl2=help
StFl=anto S+F2=alsee S+F3=back S+F4=pertto S+Fb=partvb St+F6=domrel S+FT7=ranrel
A+Fl=begword A+F2=endword A+F3=levlsrch A+F4=fullsrch A+F5=entlev A+F6=topyns
[« |

[Line=15 |' Col=1 [”AIH],.ﬁ;U. |3i2e¥§41ﬁ7= I Files=1 I Windows=1 | INS 'F'a,w 750 AM

BB BBBEBEDB

The main area of the screen shows the results for whatever search command
was given, and the grey portion at the bottom is a key to the commands
and their associated function keys. (There is a help screen also.)

This particular screen shows the results of finding the complete hyponym
tree for the synset entity. There are 74,107 lines in the file being edited.
The total time for the tree to be computed by ESG+WordNet and for the
result screen to come up is about a fourth of a second (on a ThinkPad).

In doing the WSD work described in this report, I augmented ESG’s
base lexicon with entries derived from WordNet. The ESG base lexicon has
about 86,000 entries — head words in citation form. ESG does derivational
and inflectional morphology with the base lexical entries, so that many more
words are covered that way. But, not trying to take account of morphology,
I extracted (automatically) words from WordNet which (a) do not occur in
the ESG base lexicon and (b) have a noun sense in WordNet, and created
a SG-style addendum lexicon from these. This has about 75,000 entries.

21

They are mainly multiwords or proper nouns (or both). One trick in the
extraction is to specify the index components of multiwords (the component
that gets inflected), because these have to be specified to ESG in order to
handle inflections of multiwords. (But ESG assumes that the last component
is the index word if no component is marked, and this is usually right for
nouns.)

I keep this WordNet-based addendum lexicon separate from the ESG
base lexicon, with the idea that it should always be derived automatically
from any new updates of WordNet.

References

[Dagan and Itai, 1990] Ido Dagan and Alon Itai. 1990. Automatic acquisi-
tion of constraints for the resolution of anaphoric references and syntactic
ambiguities. Proceedings of Coling-90, 3:162-167.

[Fellbaum, 1998] Christiane Fellbaum. 1998. WordNet: An Electronic Lex-
ical Database. MIT Press, Cambridge, MA.

[Leacock and Chodorow, 1998] Claudia Leacock and Martin Chodorow.
1998. Combining local context with WordNet similarity for word sense
identification. In Christiane Fellbaum, editor, WordNet: An FElectronic
Lexical Database. MIT Press.

[Leacock et al., 1998] Claudia Leacock, Martin Chodorow, and George A.
Miller. 1998. Using corpus statistics and WordNet relations for sense
identification. Computational Linguistics, 24(1):147-165.

[Lin, 1997] Dekang Lin. 1997. Using syntactic dependency as local context
to resolve word sense ambiguity. Proceedings of the ACL.

[McCord, 1980] Michael C. McCord. 1980. Slot Grammars. Computational
Linguistics, 6:31-43.

[McCord, 1990] Michael C. McCord. 1990. Slot Grammar: A system
for simpler construction of practical natural language grammars. In
R. Studer, editor, Natural Language and Logic: International Scientific
Symposium, Lecture Notes in Computer Science, pages 118-145. Springer
Verlag, Berlin.

22

[McCord, 1993] Michael C. McCord. 1993. Heuristics for broad-coverage
natural language parsing. In Proceedings of the ARPA Human Language
Technology Workshop, pages 127-132. Morgan-Kaufmann.

[Mihalcea and Faruque, 2004] Rada Mihalcea and Esanul Faruque. 2004.
SenseLearner: Minimally supervised word sense disambiguation for all
words in open text. Proceedings of SENSEVAL-3.

[Mihalcea and Moldovan, 1999] Rada Mihalcea and Dan I. Moldovan. 1999.
A method for word sense disambiguation of unrestricted text. Proceedings
of the ACL.

[Miller, 1995] George Miller. 1995. WordNet: A lexical database. Commu-
nications of the ACM, 38:39-41.

[Snyder and Palmer, 2004] Benjamin Snyder and Martha Palmer. 2004.
The English all-words task. Proceedings of SENSEVAL-S3.

[Stevenson and Wilks, 2001] Mark Stevenson and Yorick Wilks. 2001. The
interaction of knowledge sources in word sense disambiguation. Compu-
tational Linguistics, 27(3):321-349.

[Stevenson, 2003] Mark Stevenson. 2003. Word Sense Disambiguation: The
Case for Combining Knowledge Sources. CSLI Publications, Stanford,
CA.

[Yarowsky, 1995] David Yarowsky. 1995. Unsupervised word sense disam-
biguation rivaling supervised methods. Proceedings of the ACL.

23

