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ABSTRACT

Detection of space-time clusters has an important role in
epidemiology and public health. Here, we focus on the
retrospective clustering analysis that is performed possibly
triggered by an alarm from a surveillance system. Various
approaches for detecting space-time clusters have been pro-
posed and implemented. Many of these are based on the
spatial scan statistic formulation. In this paper we present
the issues to consider when choosing the shape of the cluster
in such analyses. One criterion is the flexibility of the shape
and its ability to model the phenomenon being studied. An-
other subtle and related factor is that with a more flexible
shape clusters can appear more by chance. This will be
reflected in the p-value obtained through Monte Carlo hy-
pothesis testing. Choosing more complex cluster shapes can
impact the computational requirements and also constrain
the cluster detection approaches that could be applied. Im-
portantly, the approach and heuristics used can impact key
aspects of the results and their interpretation (e.g., p-value
estimate). We use the New Mexico brain cancer data set to
illustrate these tradeoffs. Clusters with two different shapes
(cylinder, square pyramid) are detected in this data and
compared. The results show the insights that can be gained
from these shapes, individually and when put together.

1. INTRODUCTION

The spatial scan statistic developed by Martin Kulldorff
[2, 3] has been applied to both retrospective and prospec-
tive applications in the domain of epidemiology and pub-
lic health. A family of analysis methods have been devel-
oped for various models of the underlying phenomenon (e.g.,
Bernoulli model, Poisson model). We will utilize examples
using the Poisson model in this paper to illustrate the con-
cepts being presented. For the Poisson model, events are
allowed to be generated by an inhomogenous Poisson pro-
cess (e.g., number of disease events in a region over a time
interval can be expected to be proportional to the corre-
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sponding population assuming no other factors).

These models have been implemented in a system for de-
tecting space-time clusters (SaTScan) [4]. SaTScan detects
space-time clusters using cylindrical windows (see Figure 1)
with a circular geographic base and the height of the cylin-
der corresponding to some interval in time. Geographical
locations are specified discretely (e.g., centers of counties)
to SaTScan. Input data to SaTScan includes the number
of cases and population information at these discrete loca-
tions at various times. SaTScan evaluates a set of cylindrical
windows by considering all those spatially centered at any
point in a user-specified grid and exhaustively varying the
cylinder’s radius and time duration. The evaluation com-
putes the likelihood ratio of the alternative hypothesis that
there is an elevated event rate within the cylindrical window
and the null hypothesis that the rate is the same inside and
outside the window. For the Poisson model, this likelihood
function [2] is proportional to

LR = (¢/n)*([C = ¢]/[C = n])“ "7 1() (1)

where C is the total number of cases over the entire space
and time, c is the number of cases within the window, and
n is the expected number of cases within the window under
the null hypothesis. The indicator function, I(), is 1 when
the window has more cases than expected under the null
hypothesis and is 0 otherwise. The cylindrical window with
the largest value of the likelihood function is the resulting
cluster R. The multiple hypothesis testing problem is over-
come in SaTScan using Monte Carlo methods by generating
synthetic datasets for the entire space-time region in which
the event counts are independently generated conforming to
the Poisson model for each location and time. Each of these
synthetic datasets is analyzed to determine its most domi-
nant cluster and its likelihood function value. Using these
Monte Carlo experiments one can determine the likelihood
that the cluster R could have occurred by chance under the
null hypothesis (p-value).

The use of cylindrical space-time windows for the clus-
ters examined can limit the fit to the phenomenon being
analyzed. For example, the cylindrical shape cannot model
growth or shrinkage over time nor can it model movement
over time. The square pyramid shape was proposed in [1]
as an approach to overcome these limitations. Figure 2 il-
lustrates this cluster shape using 2D and 3D views. The
3D view in Figure 2 shows a cluster growing with time. The
axis of the pyramid need not be orthogonal to the two spatial
axes allowing the cluster to model movement of the phenom-
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Figure 1: Cluster with a cylindrical shape (3D and
2D views)

ena. This is clear from the 2D view of Figure 2 where the
squares represent the geographical extent at discrete times
in the cluster time interval. The use of this flexibile shape re-
sults in greatly increased computational requirements. The
computational issue is addressed in [1] by the use of a ran-
domized search heuristic for the strongest cluster instead of
the grid based pseudo-exhaustive approach used in SaTScan.

This paper explores the issues related to the choice of the
shape used for space-time clusters.

2. CHOICE OF CLUSTER SHAPE

The first criterion to consider when choosing the cluster
shape is the fit to the phenomenon being modeled. All the
available information about the phenomenon can be used
to determine which characteristics are important to model.
For example, if modeling the growth of the phenomenon over
time is important, it is preferable to use a shape that can
represent this behavior. Note, choosing a shape arbitrarily
that allows more flexibility than is needed has shortcomings
also. As discussed above, the goal is to detect strong clusters
that are also significant when compared to those that can
occur by chance under the null hypothesis. An arbitrarily
complex shape will increase the chances that the detected
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Figure 2: Cluster with a square pyramid shape (3D
and 2D views)

cluster is not significant since the chance of finding strong
clusters in the synthetic data of the Monte Carlo experi-
ments also increases.

We also need to balance the fit of the shape to the phe-
nomenon with the computational need for the shape be-
ing considered. This second criterion, namely the computa-
tional need, has to be considered in conjunction with the
search algorithm used. A search algorithm could be ex-
haustive by considering all possible clusters of the chosen
shape. We will elaborate on this using an example. Consider
the retrospective analysis of the New Mexico brain cancer
data [5] using cylindrical space-time clusters. The disease
occurences and population counts are provided for each of
the 32 counties included in the data. An exhaustive analy-
sis of cylindrical time-space clusters would have to consider
all possible circular cross-sections, each being represented
uniquely by the subset of counties included. Note that us-
ing a regular grid for the centers of the circular cross sections
and then exhaustively considering all possible radii may or
may not be exhaustive depending on the positions of the
county centers and the choice of the grid. For cylindrical
clusters it may be practical to choose a grid fine enough to
be spatially exhaustive for a given data set. However, this
approach may not be computationally effective for all data



sets and efficient algorithms that guarantee exhaustive ex-
ploration by cylindrical clusters need to be developed. Ex-
haustive methods may not be practical for more complex
shapes. For example, the computational need is significantly
higher for the square pyramid shape used in [1]. The heuris-
tic search using the randomized algorithm proposed in [1]
is a practical solution to detect square pyramid clusters in
retrospective analysis. However, further work is needed to
characterize the p-value computed by any method that is
not guaranteed to be exhaustive.

We will illustrate the use of these criteria by evaluating
the applications of two different cluster shapes to the New
Mexico brain cancer data [5]. This data set was analyzed us-
ing cylindrical clusters with cross-sections restricted to have
one of the 32 county locations as its center [3]. Suppose we
want to extend the analysis using a more complex shape that
can model both growth (or shrinkage) and movement over
time. We restrict our consideration to convex 3D shapes
since allowing non-convex shapes is overkill for our model-
ing goal. The 3D convex hull would be the least restric-
tive convex shape but it is still too general for the goal at
hand (e.g., we need to model either growth or shrinkage
but not both). Truncated pyramids are adequate to model
growth (or shrinkage) over time. The pyramid can model
movement if its axis is not restricted to be orthogonal to
the spatial plane. We can limit the degrees of freedom by
choosing a regular polygon for the pyramid cross-section.
While we will use the square cross-section as an example
in this paper, similar analysis can be performed with other
regular polygons for the cross-section. We could have in-
creased the flexibility by allowing irregular polygons for the
cross-sections. However, our attempt at using an irregu-
lar polygon (rectangle) for the cross-section of the pyramid
was not successful. It was significantly harder to get good
convergence behavior for the randomized search algorithm
with this extra degree of freedom. As mentioned before, we
would also expect some impact on the p-values if the cross-
sections were not restricted to regular polygons. We also
considered the truncated cone as another cluster shape can-
didate. A regular polygon was chosen over the circle for the
cross-section since the computations with planes in the case
of the polygon was simpler involving linear equations.

In the next section, we will use the New Mexico brain
cancer data [5] to compare the results of the analyses using
two shapes, the cylindrical and square pyramid clusters.

3. EXPERIMENTAL RESULTS

The data set [5] contains brain cancer occurrences in 32
counties in New Mexico for the period 1973 to 1991. Occur-
rences are aggregated at the temporal granularity of a year.
Population information is provided for each year. Three
covariates are provided: age group, gender and ethnicity.
First, we will consider only the first two covariates in Sec-
tion 3.1. Then we will add the third covariate (ethnicity)
and discuss the impact of this addition in Section 3.2.

3.1 Considering Covariates. Age Group and
Gender

The Poisson formulation for the spatial scan statistic pro-
vides adjusting for covariates using indirect standardization
[2]. In this section, we adjust for the two covariates, age
group and gender. Hence, we are assuming that both these
covariates are relevant to the disease being analyzed and the

analysis in this subsection is intended to find clusters that
cannot be explained by these two covariates.

Log likelihood ratio 13.70
Number of cases 265 (195.33 expected)
Overall relative risk 1.357

p-value 0.004
Centroid coordinates (89, 81)
Cross-section radius 50.25

1985-1989

Time frame

Table 1: Cylindrical cluster results using fine grid
for centroids

First, we will present results for the cylindrical clusters
detected by using the SaTScan system [4]. We use a fine grid
of size 1 Cartesian coordinate to perform the analysis. The
characteristics of the strongest cluster detected are given in
Table 1. This cluster extends for 5 years from 1985 to 1989
and includes 12 counties. Note that we use a fine grid in this
SaTScan application to better approximate an exhaustive
analysis for cylindrical clusters. For example, the cluster
detected using the default mode when no grid is specified is
weaker (Log likelihood ratio = 11.07, p-value = 0.013, and
includes 16 counties over the same 5 year period) since it
misses analyzing many potential cylindrical clusters.

Log likelihood ratio 16.918
Number of cases 284 (204.92 expected)
Overall relative risk 1.386
p-value 0.038

Time frame 1982-1989

Table 2: Square pyramid cluster results

Next, we present the results for square pyramid cluster
detected using the method described in [1]. The charac-
teristics of the strongest cluster detected by this heuristic
search are given in Table 2. The number of cases included
in this square pyramid cluster is somewhat larger than the
number in the cylindrical cluster above. It also extends over
a longer period of time. The p-value of 0.038 computed us-
ing 999 Monte Carlo replications is much higher than the
0.004 value in Table 1, but the cluster is significant using
the threshold of 0.05.

The cylindrical and square pyramid clusters can be com-
pared using the 3D and 2D views in Figure 3. Consider
the 2D view first. The county locations are marked by x*
in this view. This view also shows the square cross-sections
of the pyramid for each of the eight years (we will ignore
the circle for now). For the 5 years (1985-1989) common
to both clusters, the square cross-sections of the pyramid
are shown using solid lines. The first 3 years (1982-1984) of
the square pyramid cluster are not included in the cylindri-
cal cluster and are marked with dashed lines. The square
pyramid cluster originates with 6 counties at the start in
1982 but expands to include 15 counties at the end in 1989.
In contrast, the cylindrical cluster whose spatial extent is
marked by the circle covers 12 counties for the 5 year pe-
riod 1985-1989. The square pyramid cluster also indicates
a movement over time in addition to the growth as some
counties at the right of the 2D view get dropped in the later
years.



1990

1988

1986

o)
£
* 1984
1982
1980
200
1601 * - *
*
* *
7 S S — W
} |
B e Sl B sl
K TS T
20y Kok i
oo [
oo ! i
100 /% * | | 1\ [
o) / I I I ~ I | I
Q [ * o I o
g | | | % | [
S ol [ ]
| A TR SO I B 1 N IO
| N A A
\ | k| Lo il
60
* *
K
a0 [N %
« T *
20
. . . . . . . .
0 20 4 60 80 100 120 140 160 180
space-x

Figure 3: Comparing the cylindrical and square
pyramid clusters (3D and 2D views)

Together, the 2D and 3D views provide visualization of
the cylindrical and square pyramid clusters showing key as-
pects like overlap. If we believe that the more flexible square
pyramid cluster has indeed captured key characteristics of
the phenomenon, then the visualization suggests that the
detected cylindrical cluster could be construed as a reason-
able approximation given its shape constraints.

3.2 Adding Covariate: Ethnicity

In this section, we add the covariate ethnicity to the anal-
ysis. This covariate can take one of three values: white,
black or other. The spatial distribution of the covariate at
the beginning (1973) and at the end (1991) of the time pe-
riod is illustrated in Figure 4. The bar charts in Figure 4
show the population fractions for the ethnicity values, black
and other, for each of the 32 counties. The figure clearly
illustrates that wide variation of the ethnicities over the
counties and also illustrates shifts in the distribution over
time. Hence, factoring out this covariate could be expected
to impact the cluster detected.

The results are interesting since there is a split based on
the cluster shape. The strongest cylindrical cluster is the
same as was seen in the two covariate case in Section 3.1.
Its log likelihood ratio is lower (12.86) and the p-value higher
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Figure 4: Distributions of the ethnicity covariate for
the years 1973 (top) and 1991(bottom)

(0.01), with this additional covariate factored out. In con-
trast, the square pyramid cluster detected in Section 3.1 is
not the strongest cluster any more. Its log likelihood ratio
drops to 16.05. Moreover, even the strongest square pyra-
mid cluster detected with a log likelihood ratio of 16.208 is
not significant with a p-value estimate of 0.054 (using the
earlier threshold of 0.05).

4. CONCLUSION

The purpose of considering the different sets of covari-
ates in the earlier section was to illustrate and compare the
behavior of cluster detection methods with different under-
lying shapes. The actual set of covariates that needs to be
adjusted for in any data set should be determined by the
domain expert performing the analysis. The domain ex-
pert should also choose the cluster shape keeping in mind
the phenomenon being modeled and analysis goals. For ex-
ample, a flexible shape like the square pyramid can model
growth (shrinkage) and movement of the phenomenon and
maybe provide some insights on its origin. However, com-
putational considerations may limit the analysis to utilize
heuristic approaches that can only estimate the strongest
cluster and more importantly its p-value. For retrospec-



tive analysis, we would argue that performing the analyses
with more than one shape can lead to greater insights about
the phenomenon. Moreover, we gain more confidence in
these insights when the results of the analyses with differ-
ent shapes support each other as illustrated in the example
earlier.
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