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Summary

The 8B/10B Encoder and Decoder circuit designs presented here attempt to deliver the
best possible speed and exploit the characteristics of the standard cell library for the IBM
CMOS-7S or similar technology (Ref. 4) to the fullest. An implementation with both a
single CoDec circuit and for parallel circuits is shown.

Introduction

The idea of serialized, self-timed chip I/O is gaining momentum. It is expected to replace
many wide bidirectional and shared buses by separate high-speed, serial communications
type lanes. The IBM 8B/10B transmission code of Ref. 2 is well entrenched in the industry
for this kind of application because of its easy implementation and good transmission
characteristics. A clear trend is also to higher transmission speed which traditionally has
been handled by multiple byte CoDec circuits in parallel. Cideciyan (Ref. 3) teaches an
improved method of operating multiple encoders in parallel.

The improvements described in this report go well beyond Ref. 3. New vector
classifications have been developed for the mapping to and from the encoded domain
which leads to coding and decoding equations with generally shorter delay. The code itself
is unchanged. The disparity for both the coding and decoding process is handled by
separate rather than shared (Ref. 2) classifications and the extra number of circuits
required is surprisingly small. While traditional circuits present the running disparity at the
end of a byte or block of bytes together with the encoded or decoded data, this design takes
advantage of the fact that it is not necessary to immediately know the polarity of the
running disparity at the start of the encoding or decoding and error checking processes. So
instead of the ending disparity, the starting disparity of the current byte together with
certain characteristics of the current byte are passed along to the next byte interval via
latches or delay elements. The starting disparity of the next byte is then computed during
the early part of the next cycle concurrently with bit mapping, error checking, and
disparity classification of the new byte. These two innovations will allow many
applications to operate with a single CoDec circuit rather than two or four, or two instead
of four. For very short range applications, the reduced latency of a single CoDec may be
more important than the circuit savings. Increased latency with multiple CoDec circuits is



associated with single byte lanes because it takes extra time to assemble and disassemble
several bytes in parallel if not needed for other reasons.

For implementations with multiple CoDec circuits operating in parallel, it is also not
necessary to obtain the ending disparity of the respective multiple byte blocks, instead, the
starting disparity of the current block may be derived from the disparity value at some
preceding reference point and certain characteristics of the bytes up to the new reference
point.

• For the encoding process, the running disparity from the preceding reference point is
changed if the number of unbalanced coded vectors up to the new reference point is
odd and remains unchanged otherwise. The same is true for the number of balanced
vectors if the total number of vectors back to the reference is even. However, it seems
that the ending running disparity of a block can be obtained without increasing the
delay in the critical path.

• The decoding process does not appear to be addressed explicitly by Ref. 3. Disparity
plays no role in the bit mapping for decoding, but the conformance with disparity rules
is checked for error detection purposes and this logic path can be one of the bottlenecks
in some of the traditional designs. The disparity check circuits classify the encoded
bytes into those which are disparity dependent or independent (which is a different
thing from being balanced or not). Disparity independent bytes are ignored. Disparity
dependent bytes assume either a positive or a negative exit disparity depending solely
on the bit patterns in the byte regardless of the running disparity at the start of the byte.
For error checking purposes, the running disparity at any point is equal to the exit dis-
parity of the most recent disparity dependent byte. For the example of four parallel
bytes, this can be determined by 4 independent sets of combinational logic simulta-
neously, i.e. the disparity in front of byte #3 is obtained without knowledge of the dis-
parity on front of the preceding bytes, as is required for some designs with longer
delays. The disparity at the front of the 4-byte block is derived from the disparity value
at the front of the last byte (#3) of the preceding block and the disparity characteristics
of that byte. An improvement in the delay margin can be obtained by deferring this
evaluation to the next block cycle. This solution is not taught by Ref. 3.

General Improvements for Higher Speed

The speed improvements are accomplished by the following steps:

1. New coding and decoding tables have been generated with new classifications. While
the old classifications relied heavily on 4-variable functions, the new classifications
rely more on 3-variable functions which can be implemented with less delay.

2. Separate functions have been defined which address specifically the disparity aspects.
The balance of coded bytes is determined directly from the input bits rather than indi-
rectly from the absence of positive or negative encoded 6B or 4B vectors. The original
design for the control of the disparity and complementation relies on the same primitive
classifications as are used for the support of bit encoding and decoding to save circuits.
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3. For encoding, the disparity at the front of any vector is determined by a starting refer-
ence and any of the following four techniques:

a. For a block of an even number of vectors, the disparity remains unchanged from the
front end to the tail end, if there is an even number of balanced vectors, and the dis-
parity at the tail end is the complement of the starting disparity if the number of bal-
anced vectors is odd.

b. For a block of an odd number of vectors, the disparity remains unchanged from the
front end to the tail end, if there is an odd number of balanced vectors, and the dis-
parity at the tail end is the complement of the starting disparity if the number of bal-
anced vectors is even.

c. Regardless of the number of bytes in a block, the disparity at the tail end is the com-
plement of the disparity at the front end if the number of unbalanced vectors is odd,
and the disparity remains unchanged if the number of unbalanced vectors is even.
Reliance on unbalanced vectors generally requires more logic delay.

d. An alternative approach depends on the propagation of the disparity from vector to
vector and from byte to byte which requires the most time.

5. For decoding, the current disparity is assumed to be equal to the exit disparity of the
next previous disparity dependent byte.

6. Rather than computing the ending disparity of a byte or block and then passing it on to
the next block as a starting disparity, the starting disparity of the current byte or block
may be computed based on the disparity at a reference point in the preceding block and
the disparity characteristics of the bytes in between.

7. Particular attention has been devoted to the critical paths for the S-Function as defined
in Note 2 of Table II and the complement functions. Some serial gating and large fan-in
in the critical path has been avoided by gating upstream in multiple non-critical paths.

8. The first logic implementation choice throughout is NAND-gates with the least delay,
second choice is NOR-gates. For the same reason, XNOR gates are preferred over
XOR gates. Logic polarities are rigged to make the best use of the preferred circuits.

9. The more critical signals have been wired to the A-inputs which are the top inputs of
the symbols, except for some XOR and XNOR gates for which the bottom inputs have
less delay.

10.The current design has less sharing of basic logic elements and intermediate functions
if it requires serial steps. For instance at the input, the A≠B function is generated
directly from the A and B inputs instead of from intermediate logic expressions with
multiple use.

Notation

The signal names used in the equations of this document do not reflect any logic levels,
they are to be interpreted as abstract logic statements. However, in the circuit diagrams,
the signal names may be prefixed with the letter P or N to indicate whether the function is
true at the upper or lower level, respectively. The P and N prefixes are normally not used
for net names which start with P and N, respectively, unless it could cause confusion and
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misinterpretations (e.g. NNDFS6=PPDFS6 is not reduced to avoid apparent
contradictions such as NDFS6=PDFS6). Net numbers starting with n or m are true at the
lower level and take the P prefix if true at the upper level.

8B/10B Encoder

The Table I, 5B/6BEncoding, has changed entries in the column ‘Coding Class’. The 5B
vector sets L03 and L30 include all source vectors S5 with 3 logical zeros or ones,
respectively, in the bit positions A, B, and C. The symbols L12 and L21 indicate 1 logical
one and 2 logical zeros or vice versa, respectively, in the same bit positions. The new
symbols are formally defined as follows:

1. The vector sets L03 and L30 comprise all S5 vectors which have 3 zeros or 3 ones,
respectively, in the bits ABC.

L03 = A’•B’•C’

L30 = A•B•C

The vector sets L12 and L21 comprise all S5 vectors which have 1 one and 2 zeros or 2
ones and 1 zero, respectively, in the bits ABC.

L12 = A•B’•C’ + A’•B•C’ + A’•B’•C

L21 = A’•B•C + A •B’• C + A•B•C’

Coder Equations, Table I and II.

Conceptually, coding is done in two steps. The translation to the primary vectors is
executed first. A second step for the subset of the disparity dependent coded vectors
determines whether the alternate, complemented vectors must be used to meet the
disparity rules. Disparity dependent vectors have a plus sign or a minus sign in the DR
column of the tables.

Generation of Primary Vectors

The logic equations necessary for the translation to the primary vectors can be read
directly from the columns ‘Coding Class’, ‘Primary abcdei’, and ‘Primary fghj’ of Table I
and Table II. In the ‘Primary’ columns, all plain bits are the same as the corresponding
input bit values ABCDE. The bold and underlined bits are forced to the complemented
value indicated. The i and j bits are assumed to be normally 0. If there are two
classification entries on a single line separated by a comma, the second expression applies
to the last bold 0 or 1 in the Primary column. The extracted logic equations from the
Tables are listed below:

The symbols • and + represent the Boolean AND and OR functions, respectively. The
apostrophe (’) represents negation.

a = A

b = B•(L30•D)’ + L03•D’

c = C + L03•D’ + L03•D•E = C + L03•(D’ + D•E) = C + L03•(D’+ E)
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d = D• (L30• D)’

e = E•(L03•D)’ + L12•D’•E’ + L03•D•E’

i = L21•D’•E’ + L12•[(D≠E) + K] + L03•D’•E + L30•D•E

f = F•[F•G•H•(S+K)]’

g = G + F’•G'•H' = G + F’•H’

h = H

j = (F≠G)•H’ + F•G•H•(S + K)

8B/10B Disparity Control

The column ‘DR Class’ (DR = Required Running Disparity) in the tables above classifies
the vectors according to the plus sign and the minus sign entries in the DR column which
indicates the required disparity at the front of the primary encoded vector. The expressions
PDRS6, PDRS4 and NDRS6, NDRS4 represent a positive or negative required disparity,
respectively, at the start of the 6B or 4B vectors.

PDRS6

The set of 6B vectors with a plus sign in the DR column is referred to as PDRS6.

PDRS6 = L03•(D + E’) + L30•D•E’ + L12•D’•E’

NDRS6

The set of 6B vectors with a minus sign in the DR column is referred to as NDRS6.

NDRS6 = L30•(D’ + E) + L03•D’•E + L21•D•E + K

PDRS4

PDRS4 = F’•G’ + (F ≠ G)•K

NDRS4

NDRS4 = F•G

In the circuit diagrams, the signal names PDFS6, PDFS4 and NDFS6 and NDFS4
represent the actual running disparity at the front of the 6B and 4B vectors, respectively.

CMPLS6 and CMPLS4

If the polarities of DF and DR do not match, a complement signal is generated which
selects the alternate vector.

CMPLS6 = NDFS6•PDRS6 + PDFS6•NDRS6

CMPLS4 = NDFS4•PDRS4 + PDFS4•NDRS4
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BALS6 and BALS4

The column ‘DB Class’ (Block Disparity) identifies all coded vectors which are balanced
by a 0 in the DB column.

The set of 6B vectors with a zero in the DB column is referred to as BALS6.

BALS6 = L21•(D’+ E’) + L12•K’•( D + E) + L30•D’•E’

The set of 4B vectors with a zero in the DB column is referred to as BALS4.

BALS4 = (F ≠ G) + F•G•H’

An encoded byte is balanced if BALS6 and BALS4 are either both true of both false.

BALBY = (BALS6=BALS4)
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Table I. 5B/6B Encoding

Name ABCDE K Coding
Class

 Primary
a b c d e i

Alternate
a b c d e i

DR Class DR DB Class DB

D0 0 0 0 0 0  0 L03•D’ 0 1 1 0 0 0 1 0 0 1 1 1 L03•(D+E’) +

D1 1 0 0 0 0  0 L12•D’•E’ 1 0 0 0 1 0 0 1 1 1 0 1 L12•D’•E’ +

D2 0 1 0 0 0  0 L12•D’•E’ 0 1 0 0 1 0 1 0 1 1 0 1 L12•D’•E’ +

D3 1 1 0 0 0  0 L21•D’•E’ 1 1 0 0 0 1 ± L21•(D’+E’) 0

D4 0 0 1 0 0  0 L12•D’•E’ 0 0 1 0 1 0 1 1 0 1 0 1 L12•D’•E’ +

D5 1 0 1 0 0  0 L21•D’•E’ 1 0 1 0 0 1 ± L21•(D’+E’) 0

D6 0 1 1 0 0  0 L21•D’•E’ 0 1 1 0 0 1 ± L21•(D’+E’) 0

D7 1 1 1 0 0  0 1 1 1 0 0 0 0 0 0 1 1 1 L30•(D’+E) – L30•D’•E’ 0

D8 0 0 0 1 0  0 L03•D•E’ 0 0 0 1 1 0 1 1 1 0 0 1 L03•(D+E’) +

D9 1 0 0 1 0  0 L12•(D≠E) 1 0 0 1 0 1 ± L12•(D+E)•K’ 0

D10 0 1 0 1 0  0 L12•(D≠E) 0 1 0 1 0 1 ± L12•(D+E)•K’ 0

D111 1 1 0 1 0  0 L21•D• E’ 1 1 0 1 0 0 ± L21•(D’+E’) 0

D12 0 0 1 1 0  0 L12•(D≠E) 0 0 1 1 0 1 ± L12•(D+E)•K’ 0

D131 1 0 1 1 0  0 L21•D•E’ 1 0 1 1 0 0 ± L21•(D’+E’) 0

D141 0 1 1 1 0  0 L21•D•E’ 0 1 1 1 0 0 ± L21•(D’+E’) 0

D15 1 1 1 1 0  0 L30•D 1 0 1 0 0 0 0 1 0 1 1 1 L30 • D•E’ +

D16 0 0 0 0 1  0 L03•D’, L03•D’•E 0 1 1 0 1 1 1 0 0 1 0 0 L03•D’•E –

D172 1 0 0 0 1  0 L12•(D≠E) 1 0 0 0 1 1 ± L12•(D+E)•K’ 0

D182 0 1 0 0 1  0 L12•(D≠E) 0 1 0 0 1 1 ± L12•(D+E)•K’ 0

D19 1 1 0 0 1  0 1 1 0 0 1 0 ± L21•(D’+E’) 0

D202 0 0 1 0 1  0 L12•(D≠E) 0 0 1 0 1 1 ± L12•(D+E)•K’ 0

D21 1 0 1 0 1  0 1 0 1 0 1 0 ± L21•(D’+E’) 0

D22 0 1 1 0 1  0 0 1 1 0 1 0 ± L21•(D’+E’) 0

D/K23 1 1 1 0 1  x 1 1 1 0 1 0 0 0 0 1 0 1 L30•(D’+E) –

D24 0 0 0 1 1  0 L03•D•E, L03•D 0 0 1 1 0 0 1 1 0 0 1 1 L03•(D+E’) +

D25 1 0 0 1 1  0 1 0 0 1 1 0 ± L12•(D+E)•K’ 0

D26 0 1 0 1 1  0 0 1 0 1 1 0 ± L12•(D+E)•K’ 0

D/K27 1 1 0 1 1  x 1 1 0 1 1 0 0 0 1 0 0 1 L21•D•E –

D28 0 0 1 1 1  0 0 0 1 1 1 0 ± L12•(D+E)•K’ 0

K28 0 0 1 1 1  1 L12•K 0 0 1 1 1 1 1 1 0 0 0 0 K –

D/K29 1 0 1 1 1  x 1 0 1 1 1 0 0 1 0 0 0 1 L21•D•E –

D/K30 0 1 1 1 1  x 0 1 1 1 1 0 1 0 0 0 0 1 L21•D•E –

D31 1 1 1 1 1  0 L30•D, L30•D•E 1 0 1 0 1 1 0 1 0 1 0 0 L30•(D’+E) –
1. S = 1 for L21•PDFS6•D•E’
2. S = 1 for L12•NDFS6•D’•E
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Circuit Implementation of 8B/10B Encoding

A circuit block identified by eXGS_s10encode for 8B/10B encoding is illustrated in
FIGS.1A and 1B which are part of a single circuit with shared net names, i.e. a net name
in one diagram may also find use in the other without the definition of input and output
pins.

Notation for net names in the encoding circuit diagrams: The letters ‘a’ and ‘o’ within net-
names refer to the Boolean AND and OR functions, respectively. The letter ‘n’ within a
name negates the preceding parameter. The letters ‘e’ and ‘ue’ represent the symbols ‘=’
and ‘≠', respectively. The capital letters ABCDEFGHK represent the uncoded input bits
and the lower case letters abcdeifghj represent the coded format.

Bit Encoding

A bit encoding implementation according to the Tables I and II and the related equations
and design principles is illustrated in the circuit diagram 8B/10B Bit Encoding of FIG.1A.

Disparity Control

The circuit for the control of the disparity is shown in FIG.1B. The output signal
PBALBY assumes the upper level for a balanced byte.

Table II. 3B/4B Encoding

Name F G H  K M
Coding
Class

Primary
f g h j

Alternate
f g h j

DR Class DR DB Class DB

D/Kx.01 0 0 0  x 0 F’•G’•H’ 0 1 0 0 1 0 1 1 F’•G’ +

Dx.1 1 0 0  0 0 (F≠G)•H’ 1 0 0 1 ± (F≠G) 0

K28.1 1 0 0  1 0 (F≠G)•H’ 1 0 0 1 0 1 1 0 (F≠G)•K + (F≠G) 0

Dx.2 0 1 0  0 0 (F≠G)•H’ 0 1 0 1 ± (F≠G) 0

K28.2 0 1 0  1 0 (F≠G)•H’ 0 1 0 1 1 0 1 0 (F≠G)•K + (F≠G) 0

D/Kx.31 1 1 0  x 0 1 1 0 0 0 0 1 1 F•G – F•G•H’ 0

D/Kx.41 0 0 1  x 0 0 0 1 0 1 1 0 1 F’•G’ +

Dx.5 1 0 1  0 0 1 0 1 0 ± (F≠G) 0

K28.5 1 0 1  1 0 1 0 1 0 0 1 0 1 (F≠G)•K + (F≠G) 0

Dx.6 0 1 1  0 0 0 1 1 0 ± (F≠G) 0

K28.6 0 1 1  1 0 0 1 1 0 1 0 0 1 (F≠G)•K + (F≠G) 0

Dx.P7 1 1 1  0 0 1 1 1 0 0 0 0 1 F•G –

Dx.A72 1 1 1  0 0 F•G•H•S 0 1 1 1 1 0 0 0 F•G –

Ky.A73 1 1 1  1 0 F•G•H•K 0 1 1 1 1 0 0 0 F•G –
1. Kx is restricted to K28
2. S = L21•D•E’•PDFS6 + L12•D’•E•NDFS6
3. Ky is restricted to K23, K27, K28, K29, K30
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A reduction in the combined delay of a 5B/6B and a 3B/4B encoder or of several 8B/10B
encoders operating in parallel results from the methodology used to determine the
disparity at any vector boundary as shown at the bottom of FIG.1B and in FIG.2. Given a
starting disparity such as NDFBY (Negative Disparity in Front of a Byte), the running
disparity at any subsequent vector boundary remains unchanged if the combined number

FIG.1B
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of S6 and S4 vectors between the two points is even and the number of balanced vectors is
even, otherwise it assumes the complementary polarity. This is in contrast to the more
obvious techniques which observe the disparity as it propagates from vector to vector. The
expression NDFS4 represents a negative running disparity in front of the 4B vector.

The 8B/10B encoder has an output which indicates whether the coded 10-bit byte is
balanced or not, but there is no output to indicate the ending disparity. Generally, the
starting disparity for a vector is determined from the disparity of a prior reference point
according to the rules described above.

Disparity Circuit for 1-Byte Encoder, Fast Version

The circuit of FIG.2 takes
advantage of the fact that it is not
necessary that the starting
disparity must be known
immediately for the encoding
process. Since the evaluation of
the running disparity at the end of
a byte may be in the critical delay
path, the final operations for
determining the starting disparity
PNDFS6 of the next byte are
deferred to the next byte interval
to be executed while initial bit
encoding independent of the
running disparity is performed.
The cost of doing this is to pass
along two parameters rather than
just one to the next byte interval
for an increase in the timing
margin by an amount equal to the
delay of a XNOR2 gate.

The circuit diagram of FIG.2
provides the starting disparity

PNDFBY and an encoded byte disparity ‘PBALBY’ for the current byte based on these
identical two parameters carried over from the preceding byte. At the end of each byte
cycle, the signals PNDFBY and PBALBY are stored in two latches with outputs
PNDFBY_LAST and PBALBY_LAST, respectively. The respective latches are not shown
since their timing is identical to or closely related to the timing for the data output latches.
These parameters are used for the determination of the starting disparity of the next byte.
The signal PNDFBY is at the upper level for a negative running disparity in front of the
new byte.

FIG.2
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Disparity Circuit for 1-Byte Encoder, Slower Version

To better illustrate the fast
approach to disparity operations,
the more traditional way is also
shown in FIG.3 and is applicable
where the higher performance is
not needed. In traditional circuits,
the ending disparity PNDEBY is
derived within one and the same
encoding cycle. Then only one
parameter must be passed on to the
next cycle with a single latch. The
data input of this latch is PNDEBY
and the output is PNDFBY, the
disparity at the front of the next
byte.

Disparity Circuit for 4-Byte
Encoder, Fast Version

The circuit block of FIG.4 shows
four encoders operating in parallel
on a 4-byte word. Again, this
circuit takes advantage of the fact
that it is not necessary that the
starting disparity be known
immediately for the encoding

process. For this application, the circuit illustrated in FIG.1B may be modified as follows:
the gating by the signals PNDFS6 and PDFS6 may be moved forward in the logic chain.
As an example, it might be advantageous, depending on the delay characteristics of the
gates and interconnections, to move the respective gating to the AO gates I366 and I371 or
even to the I320 gate, which would then be changed to and AOI gate.

The starting disparity of the block and of the first byte encoder I0 is given by the signal
PNDFW (Neg. Disp. in Front of the Word) which is generated by the XNOR gate I25 at
the top right. The starting disparity for each of the remaining 3 bytes is obtained by
circuits operating in parallel from this reference point and the number of balanced bytes in
between using a set of XOR and XNOR gates. Some designers have implemented daisy
chains for disparity propagation from byte to byte with the associated serious delay
penalties.

The signal PBAL012 (bottom left) is at the upper level if the block comprising the first 3
bytes I0, I1, and I2 is balanced. The running disparity PNDF3 in front of the last byte I3
and the balance signal PBALBY3 of the last byte are passed along to the next word cycle
via a pair of latches, the output of which are labelled PNDF3_LAST and
PBALBY3_LAST.

FIG.3
Page 12



FIG.4
Page 13



Disparity
Circuit for 4-
Byte Encoder,
Slower
Version

The circuit of
FIG.5 shows
also four
encoders
operating in
parallel on a 4-
byte word. But
here the ending
disparity
PNDEW of the
4-byte block is
generated in the
same block
cycle by the
XNOR gate I34
at the lower
right. The signal
PNDEW is
passed along to
the next cycle
via a latch the
output of which
is labelled
PNDFW, the
running
disparity at the
front of the next
block.

FIG.5
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10B/8B Decoder

The decoder consists of circuits to restore the original byte ABCDEFGH K, and circuits to
indicate all transmission errors to the extent that they are detectable by the transmission
code. The rules for the 6B/5B decoding are listed in Table III and the rules for 4B/3B
decoding are listed in Table IV. Some changes in classifications have been made to enable
faster operation at the expense of a few extra circuits.

The necessary bit translations for the decoding of a byte have been extracted from Tables
III and IV and are listed in condensed form in Table V. The value of the decoded bits
‘ABCDE FGH’ is equal to the coded bits ‘abcde fgh’, respectively, except when the coded
bits belong to one of the listed classifications of Table V and there is an ‘F’ for false in the
respective bit column for that class.

The logic implementation of the decoder described in Ref 1 and 2 is an attempt to
minimize the required circuit area which is accomplished by a reuse of basic logic
definitions for various purposes such as decoding and error checking. That approach adds
circuit delay and is not optimal for very high speed applications. The high speed
implementation described here uses separate classifications for bit decoding, disparity
classifications DR and DU, and each of these sets is implemented for minimum delay in
CMOS technology.

Some of the 6B vector sets have been defined more broadly in the current design to allow
invalid vectors in the set which leads to simpler logic terms with less delay. The new
definitions operate identically for valid inputs, but for invalid inputs there may be different
results which must be taken into account in the logic modelling and verification. These
more inclusive categories also reduce the delay in the critical path of the disparity checks
because the invalid vectors do not have to be added explicitly. There is a double win in
using more comprehensive classifications: Simpler implementation and fewer logic terms.

The vector sets P3x and Px3 comprise all 4-bit vectors ‘abcd’ with 3 or 4 ones and 3 or 4
zeros, respectively, and replace the old sets of P13, P31. The sets P22, P04, and P40 are
used only in the error checking circuits where P22 is derived from Px3 and P3x.

P40 = a •b•c•d
P04 = a’•b’•c’•d’
P3x = P31 + P40 = a •b•c + a•b•d + a•c•d + b•c•d
Px3 = P13 + P04 = a’•b’•c’ + a’•b’•d’ + a’•c’•d’ + b’•c’•d’
P22 = P3x’•Px3’

The vector sets P2x and Px2 are used to define the disparity classes and comprise all 3-bit
vectors ‘abc’ with 2 or 3 ones and 2 or 3 zeros, respectively:

P2x = P21 + P30 = a•b + a•c + b•c

Px2 = P12 + P03 = a’•b’ + a’•c’ + b’•c’

Table III, 6B/5B Decoding and Table IV, 4B/3B Decoding, have been modified to reflect
these changes. Table V, Decoder Equations, is based on Tables III and IV.
Page 15



Table III. 6B/5B Decoding

Name abcde i Decoding Class ABCDE K1 DR Class DR DU Class DU

D0 011000 a’•b•c•d’•(e=i) 00000 0 (a•b•c)’•d’•e’•i’ + d’•e’•i’ –
D0 100111 a•b’•c’•d•(e=i) 00000 0 (a’•b’•c’)’•d•e•i – d•e•i +
D1 100010 Px3• i’ 10000 0 Px3•(e’+i’) + Px3•(e’+i’) –
D1 011101 P3x• i 10000 0 P3x•(e+i) – P3x•(e+i) +
D2 010010 Px3• i’ 01000 0 Px3•(e’+i’) + Px3•(e’+i’) –
D2 101101 P3x• i 01000 0 P3x•(e+i) – P3x•(e+i) +
D3 110001 11000 0 ±
D4 001010 Px3 • i’ 00100 0 Px3•(e’+i’) + Px3•(e’+i’) –
D4 110101 P3x•i 00100 0 P3x•(e+i) – P3x•(e+i) +
D5 101001 10100 0 ±
D6 011001 01100 0 ±
D7 111000 11100 0 a•b•c – d’•e’•i’ –
D7 000111 Px3•d•i 11100 0 a’•b’•c’ + d•e•i +
D8 000110 Px3•i’ 00010 0 Px3•(e’+i’) + Px3•(e’+i’) –
D8 111001 P3x•i 00010 0 P3x•(e+i) – P3x•(e+i) +
D9 100101 10010 0 ±
D10 0101 01 01010 0 ±
D11 110100 11010 0 ±
D12 001101 00110 0 ±
D13 101100 10110 0 ±
D14 011100 01110 0 ±
D15 101000 a•b’•c•d’•(e=i) 11110 0 (a•b•c)’•d’•e’•i’ + d’•e’•i’ –
D15 010111 a’•b•c’•d•(e=i) 11110 0 (a’•b’•c’)’•d•e•i – d•e•i +
D16 011011 a’•b•c•d’•(e=i) 00001 0 P2x•e•i – P2x•e•i +
D16 100100 a•b’•c’•d•(e=i) 00001 0 Px2•e’•i’ + Px2•e’•i’ –
D17 100011 10001 0 ±
D18 010011 01001 0 ±
D19 110010 11001 0 ±
D20 001 011 00101 0 ±
D21 101010 10101 0 ±
D22 011010 01101 0 ±

D/K23 111010 11101 x P3x•(e+i) – P3x•(e+i) +
D/K23 000101 Px3•e’ 11101 x Px3•(e’+i’) + Px3•(e’+i’) –
D24 001100 a’• b’• e’• i’ 00011 0 Px2•e’•i’ + Px2•e’•i’ –
D24 110011 a• b• e• i 00011 0 P2x•e•i – P2x•e•i +
D25 100110 10011 0 ±
D26 010110 01011 0 ±

D/K27 110110 11011 x P3x•(e+i) – P3x•(e+i) +
D/K27 001001 Px3•e’ 11011 x Px3•(e’+i’) + Px3•(e’+i’) –
D28 001110 00111 0 ±
K28 001111 c• d• e• i 00111 1 (a’•b’•c’)’•d•e•i – d•e•i +
K28 110000 c’• d’• e’• i’ 00111 1 (a•b•c)’•d’•e’•i’ + d’•e’•i’ –

D/K29 101110 10111 x P3x•(e+i) – P3x•(e+i) +
D/K29 010001 Px3•e’ 10111 x Px3•(e’+i’) + Px3•(e’+i’) –
D/K30 011110 01111 x P3x•(e+i) – P3x•(e+i) +
D/K30 100001 Px3•e’ 01111 x Px3•(e’+i’) + Px3•(e’+i’) –
D31 101011 a•b’•c•d’•(e=i) 11111 0 P2x•e•i – P2x•e•i +
D31 010100 a’•b•c’•d•(e=i) 11111 0 Px2 • e’ • i’ + Px2 • e’ • i’ –

1. K = (K28 + Kx.7) = (c=d=e=i) + (e≠i) (i=g=h=j)
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Table IV. 4B/3B Decoding

Name f g h j Decoding Class FGH K1

1. K = (K28 + Kx.7) = (c=d=e=i) + (e≠ i)• (i=g=h=j)

DR Class DR DU Class DU

D/Kx.0 0100 (f≠g)•h’•j’ 000 x (f≠g)•h’•j’ + h’•j’ –
D/Kx.0 1011 (f≠g)•h•j, f•g’•(h=j) 000 x (f≠g)•h•j – h•j +
D/Kx.1 1001 100 x ±
K28.1 0110 c’•d’•e’•i’• (h≠ j) 100 1

D/Kx.2 0101 010 x ±
K28.2 1010 c’•d’•e’•i’• (h≠ j) 010 1

D/Kx.3 1100 110 x f•g – h’•j’ –
D/Kx.3 0011 (f=g)•j 110 x f’•g’ + h•j +
D/Kx.4 0010 001 x f’•g’ + f’•g’•(h≠ j) –
D/Kx.4 1101 (f=g)•j 001 x f•g – f•g•(h≠ j) +
D/Kx.5 1010 101 x ±
K28.5 0101 c’•d’•e’•i’• (h≠ j) 101 1

D/Kx.6 0110 011 x ±
K28.6 1001 c’•d’•e’•i’• (h≠ j) 011 1
Dx.7 1110 111 0 f•g – f•g•(h≠ j) +
Dx.7 0 001 (f=g)•j 111 0 f’•g’ + f’•g’•(h≠ j) –

D/Kx.7 0111 (f≠g)•h•j 111 x (f≠g)•h•j – h•j +
D/Kx.7 1000 (f≠g)•h’•j’, f•g’•(h=j) 111 x (f≠g)•h’•j’ + h’•j’ –

Table V. 10B/8B Decoder Equations

Classifications A=a B=b C=c D=d E=e F=f G=g H=h K= 0

a’•b•c•d’• (e=i) F F
a•b’•c’•d• (e=i) F F F
Px3•i’ F
P3x•i F F F F
a•b’•c•d’• (e=i) F F
a’•b•c’•d• (e=i) F F F
a’•b’•e’•i’ F F
a•b•e•i F F F
Px3•(d•i+e’)+c’•d’•e’•i’ F F F F F
(f≠g)•h•j F
(f≠g)•h’•j’ F
f•g’•(h= j) F
(f= g)•j + c’•d’•e’•i’• (h≠ j) F F F
K281 + Kx.72

1. K28 = c• d• e• i + c’• d’• e’• i’
2. Kx.7 = (e≠ i)• (i= g=h=j)

F
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6B/5B Decoder and Error Check Equations

Logic Equations for the Generation of the decoded Bits A, B, C, D, E

Generally, A = a, B = b, C = c, D = d, E = e, except for the conditions listed in Table V, the
complement of the respective unencoded bit is generated, e.g. A = a’. The following
decoding equations are extracted from Table V:

1. A = a’ iff (if and only if):

a•b’•c’•d•(e=i) +P3x•i + a’•b•c’•d•(e=i) +a•b•e•i+Px3•(d•i +e’)+ c’•d’•e’•i’

Using Boolean manipulations, this logic statement can be restructured as follows:

(a ≠b)•c’•d•(e=i) + P3x•i + Px3•(d•i +e’)  + a• b•e•i + c’•d’•e’•i’

An examination of Table III shows that the first term in the above equation
[(a ≠b)•c’•d•(e=i)] can be changed to (a’+ b’)•c’•d•(e=i). This modified expression
overlaps with D7 (‘1000111’b = Px3•d•i) which also requires complementation of the
bit ‘a’. So the term Px3•d•i for the decoding of bit ‘a=0’ to ‘A=1’ could be eliminated
and thus the delay in a non-critical path is reduced, but it has been included because it
saves a gate. The equation implemented in the circuit diagram of FIG.6A is:

(a’+ b’)•c’•d•(e=i) + P3x•i + Px3•(d•i+e’) + a•b•e•i + c’•d’•e’•i’

In said logic diagram, the following abbreviations are used:

n0 = (a’+b’)•c’•d•(e=i) = c’•d•(e=i)•n8

n1 = Px3•(d•i+e’)

n2 = a•b•e•i + c’•d’•e’•i’

n8 = (a’+b’)

CPLa = n0 + n1 + P3x•i + n2, where CPL suggests complementation

2. B = b’ iff:

a’•b•c•d’•(e=i)+ P3x•i + a•b’•c•d’•(e=i) + a•b•e•i + Px3•(d•i +e’) + c’•d’•e’•i’

Boolean reduction gives:

(a≠b)•c•d’•(e=i) + P3x•i + Px3•(d•i+e’) + a•b•e•i + c’•d’•e’•i’

By an examination of Table III, it can be verified that the first term (a≠b)•c•d’•(e=i)
can again be simplified to (a+b)•c•d’•(e=i). However, it turns out that because of sig-
nal polarity problems, (a≠b) can be generated with less delay than (a+b), and so the
former expression is used.

In the logic diagram, the following abbreviations are used:

n3 = c•d’•(e=i)•(a≠b)

CPLb = n3 + n1 + P3x•i + n2

3. C = c’ iff:

a’•b•c•d’•(e=i)+P3x•i+a’•b•c’•d•(e=i)+a’•b’•e’•i’+Px3•(d•i+e’)+c’•d’•e’•i’

This logic statement can be restructured as follows:

a’•b•(c≠d)•(e=i) + P3x•i + Px3•(d•i+e’) + e’•i’•(a’•b’+ c’•d’)
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In the logic diagram, the following abbreviations are used:

n4 = a’•b•(c≠d)•(e=i)

n5 = e’•i’•(a’•b’+c’•d’)

CPLc = n4 + n1 + P3x•i + n5

4. D = d’ iff:

a•b’•c’•d•(e=i) +P3x•i +a•b’•c•d’•(e=i)+a•b•e•i +Px3•(d•i +e’) + c’•d’•e’•i’

This logic statement can be restructured as follows:

a•b’•(c ≠ d)•(e = i) + P3x•i + a•b•e•i + Px3•(d•i+e’) + c’•d’•e’•i’

In the logic diagram, the following abbreviations are used:

n6 =  a•b’•(c≠d)•(e = i)

CPLd = n6  + n1 + P3x•i  + n2

5. E = e’ iff:

a•b’•c’•d•(e=i)+Px3•i’+a’•b•c’•d•(e=i)+a’•b’•e’•i’+Px3•(d•i +e’)+c’•d’•e’•i’

Boolean reduction reduces this to:

(a≠b)•c’•d•(e=i) + Px3•(d•i+e’+ i’) + e’•i’•(a’•b’+c’•d’)

An examination of Table III shows the same kind of overlap as described above for the
decoding of bit ‘a’ to ‘A’. In this case, a gate can be saved by taking advantage of the
overlap and deleting the term Px3•d•i. The equation can thus be reduced to:

(a’+b’)•c'•d•(e=i) + Px3•(e’ + i’) + e’•i’•(a‘•b’+c’•d’)

In the logic diagram, the following abbreviations are used:

n7 = Px3•(e’ + i’)

CPLe = n0 + n7 + n5

Logic Equation for invalid Vectors R6, INVR6

There are a total of 16 invalid R6 vectors:

INVR6 = P40 + P04 + P3x•e•i + Px3•e‘•i’

6B/5B Disparity Check Equations

The column ‘DR’ of Table III lists the required disparity at the start of the respective 6B
vectors and the column ‘DR Class’ identifies the respective input bit patterns. The old
column DB (Ref. 1) has been changed to DU and lists a positive or negative exit disparity
for the disparity dependent vectors only. Disparity independent vectors have no entry in
the DU column. In the old design, disparity independent vectors passed the input disparity
to the output. In the new design, disparity independent vectors are ignored and bypassed
for disparity purposes for shorter delay. Short delay is especially important for the DU
outputs PDUR6 and NDUR6. To achieve this goal, a dedicated column ‘DU Class’ has
been added which sorts the received vectors into DU classes in the most efficient way.
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Logic Equations for Required Input Disparity DRR6

The terms PDRR6 and NDRR6 represent the R6 vectors which require a positive or
negative running disparity, respectively, at the start of the vector. Contrary to previous
implementations, all invalid vectors starting with P40 or P04 have been left out of the
equations because of their redundancy in the overall error checking scheme.

PDRR6 = Px3•(e’+ i’) + a’•b’•c’ + (a•b•c)’•d’•e’•i’ + Px2• e‘•i’

NDRR6 = P3x•(e+i) + a • b • c + (a’•b’•c’)’•d•e•i + P2x•e•i

Boolean operations reduce this to:

PDRR6 = Px3•(e’+ i’) + a’•b’•c’ + e‘•i’•[Px2 + d’•(a•b•c)’]

NDRR6 = P3x•(e+i) + a • b • c + e•i•[P2x + d•(a’•b’•c’)’]

In the diagram of FIG.6B, the following abbreviations are used for net names:

n20 = (a•b•c)’•d’

n21 = (a’•b’•c’)’•d

n22 = PDRR4•NDRR6’

n23 = NDRR4•PDRR6’

Logic Equation for Monitoring Byte Disparity Violations

Bytes with only disparity independent vectors R6 and R4 are ignored for disparity
checking purposes. There is a disparity violation DVBY at a specific byte under the
following conditions:

1. The required entry disparity of the R6 vector does not match the running disparity at
the front of the byte.

2. The R6 vector is disparity independent and the required entry disparity of the R4 vector
does not match the running disparity in front of the byte.

For implementation with reduced delay in a critical path, the disparity dependence of the
vector R6 is ignored, instead the entry disparity of vector R4 is compared with the
disparity in front of the byte and an error is flagged on a mismatch except when the vector
R6 has a required entry disparity which matches the running disparity.

A disparity violation internal to a byte from a disparity dependent R4 vector mismatched
to a disparity dependent R6 vector is included in the set of invalid bytes, but not in DVBY.
The disparity violation at a byte DVBY is thus given by the equation:

DVBY=NDFBY•(PDRR6+PDRR4•NDRR6’) + PDFBY•(NDRR6+NDRR4•PDRR6’)

The terms PDFBY and NDFBY represent a positive or negative running disparity,
respectively, at the front of the byte.

If needed, one level of gating (I300 and I301, upper right corner of FIG.6B) in the above
equation can be eliminated by merging the gates I302 and I303 with the NDRR6 and
Page 20



PDRR6 functions. The two AOI222 gates are then first duplicated, changed to the non-
inverting version and expanded to AO2222 to generate PNDR and PDR directly.

Logic Equations for the assumed ending Disparities PDUR6 and NDUR6

The logic equations for the generation of the exit disparities PDUR6 and NDUR6, for
invalid vectors PINVR6, and for the disparity violations are listed and explained on page
19 of the Research Report RC18855. Some simplifications have been made. For the
expressions PDBR6 and NDBR6, the terms P40 and P04 have been replaced by
P40•(e+i) and P04•(e’+i’), respectively. The terms P40 and P04 in the encoded domain
can be generated only by at least one error. For the case of a single error and e=i, the R6
vector was obviously initially balanced and so should not generate PDUR6 or NDUR6
which would generate a superfluous code violation at the next disparity dependent vector
in addition to the invalid vector at the actual error location. Therefore:

PDUR6 = P3x•(e+i) + d•e•i + P2x•e•i = P3x•(e+i) + e•i•(d + P2x)

NDUR6 = Px3 •(e’+i‘) + d’• e‘•i’ + Px2• e‘•i’ = Px3 •(e’+i‘) + e‘• i’•(d' + Px2)

4B/3B Decoder, Error Checks

Logic Equations for the Generation of the decoded Bits F, G, H, K

Generally, F = f, G = g, H = h, except for the conditions listed in Table V with an F (False)
entry for which the complement of the respective unencoded bit is generated, e.g. H = h’.

In Table IV, the Decoding Class for the lines D/Kx.3 (0011), D/Kx.4 (1101), and Dx.7
(0001) have all been changed to (f =g) • j and similar changes have been made for other
vector classifications. This leads to simplified equations on the last 5 rows of the
Classifications column in Table V. With this change, the following decoding equations are
extracted from Table V:

1. F = f’ iff (if and only if):

(f≠g)•h•j + (f =g)•j + c’•d’•e’•i’•(h≠j)

In the logic diagram, the following abbreviations are used:

m0 = (f ≠ g) • h •j

m7 = c’•d’•e’•i’•(h≠j)

CPLf = m0 + (f = g) • j + m7

2. G = g’ iff:

(f ≠ g) • h’ •j’ + (f=g) • j + c’•d’•e’•i’•(h≠j)

CPLg = (f ≠ g) • h’ •j’ + (f=g) • j + m7

3. H = h’ iff:

f • g’• (h =j) + (f =g) • j + c’•d’•e’•i’•(h≠j)

Abbreviation:

m2 = f • g’• (h = j)
Page 21



CPLh = m2 + (f =g) • j + m7

Logic Equation for Control Bit K

K = (K28 + Kx.7) = (c=d=e=i) + (e≠i)•(i=g=h=j)

For reduced delay, the above equation is implemented as follows:

K = c•d•e•i + c’•d’•e’•i’ + (e≠i)•(i•g•h•j + i’•g’•h’•j’)

In the logic diagram of FIG.7, the following abbreviations are used:

m10 = i•g•h•j + i’•g’•h’•j’

Kx7 = m10•(e≠i)

Logic Equations for the required Disparity at the Front of the R4 Vector

The terms PDRR4 and NDRR4 represent the required positive or negative disparity,
respectively, at the front of the R4 vector.

PDRR4 = f’•g’ + (f ≠g)•h’•j’

NDRR4 = f•g + (f ≠g)•h•j = f•g + m0

Logic Equations for the assumed ending Disparities PDUR4 and NDUR4

PDUR4 = h•j + f •g •(h ≠ j)

NDUR4 = h’•j’ + f’•g’ •(h ≠ j)

Logic Equation for invalid Vector R4, INVR4

There are a total of 2 inherently invalid R4 vectors: all ones or all zeros (f=g=h=j). Some
invalid combinations of R6 and R4 vectors are also detected in this circuit complex and
lumped together in the signal INVR4, such as violations of the S-function rules
(e=i=f=g=h), and Kx.7 control characters with R6 vectors of the P22 class. (In previous
designs, these unsuitable R6 vectors were classified as balanced vectors which leads to a
more complicated circuit.) The K28•(f =g=h) character is a valid control character in
terms of coding constraints, but is not included in the 8B/10B alphabet because it would
require special encoding circuits. It is included in the group of invalid characters.

An invalid Kx.7 control character is recognized if the following conditions are met:

VKx7 = (i•g•h•j + i’•g’•h’•j’) •(e≠i)•P22 = m10 •(e≠i)•P22

Other invalid R4 vectors are lumped together in the signal INVR4:

INVR4 = (f=g=h=j) + (e=i=f=g=h) + K28•(f=g=h) + K28’•(i≠g=h=j)

Abbreviations:

m5 = K28•(f=g=h)

m6 = K28’•(i ≠ g=h=j)

INVR4 = (f=g=h=j) + (e=i=f=g=h) + m5 + m6
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Circuit Implementation of 10B/8B Decoding

Circuits for 6B/5B Decoding and 6B Error Checks

An example of a circuit implementation of the above 6B/5B decoding and error check
equations is illustrated in FIGS. 6A and 6B, which represent a single circuit with net
sharing which is identified by the block name eXGXS_r6cecode.

Notation for net names in the decoding circuit diagrams: For the Boolean operators, the
identical letters are use as for the encoding diagrams, but they are capitalized (A, O, N, E,
UE) to avoid confusion with some of the lower case letters abcdeifghj which represent the
coded bits.
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FIG.6A
Page 24



Circuit Implementation of 4B/3B Decoder and related Error Checks

A circuit implementation of 4B/3B decoding equations and the related error checks is
illustrated in the circuit diagram of FIG.7 and identified by the block name
eXGXS_r4decode.

FIG.6B
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Circuits for 10B/8B Byte-Level Error Checks

The circuit of FIG.8 merges the 6B/5B and 4B/3B decoders into a byte decoder with the
block name eXGXS_r10decode.

Error Reporting

The circuit of FIG.8 generates the signal PINVBY which indicates an inherently invalid
byte which includes disparity violations NDV64 which are evident from an examination
of just the 10 coded bits of the current byte. The signal PVIOL signals either an invalid
byte or a disparity violation NDVBY detected at this location which may result from an
error in this or a preceding byte.

FIG.7
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Disparity Monitoring

If either one or both of the vectors of a byte are disparity dependent, either PDUBY or
PNDUBY are asserted to establish a positive or negative running disparity, respectively, at
the end of the byte regardless of the running disparity at the front of the byte:

FIG.8
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PDUBY = PDUR4 + PDUR6•NDUR4'

NDUBY = NDUR4 + NDUR6•PDUR4'Logic Equations for the Determination of the
Disparity at the Start of the Byte

PDFBY = PDUBY_LAST + PDFBY_LAST • NDUBY_LAST’

Note that NDFBY and PDFBY are complementary: NDFBY = PDFBY’

The values of PDUBY and NDUBY are exclusive, none or one alone can be true.

Byte Disparity, Fast Version

The circuit of FIG.9 shows how the disparity at the front end of a new byte is generated
based on three parameters passed along from the encoding process of the preceding byte.
This circuit can operate at a higher cycle rate than the simpler circuit of FIG.10.

Notation: The signal names
PDFBY and NDFBY refer
to a positive and negative
running disparity,
respectively, in front of the
byte. The signal names
PDUBY and NDUBY refer
the assumed positive or
negative exit disparity,
respectively, of the byte,
regardless of the starting
disparity at the front end. If
neither the 6B vector nor the
4B vector of the byte is
disparity dependent, none of

the two outputs is asserted.

The values for the outputs NDFBY, PDUBY, and PNDUBY are stored in three latches (not
shown in the diagrams) which are clocked concurrently with the decoded data output. The
outputs of the latches are labelled NDFBY_LAST, PDUBY_LAST, and
PNDUBY_LAST, respectively, and are used for the computation of the starting disparity
NDFBY for the next byte.

FIG.9
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Byte Disparity, Slower Version

The incentive to use the
slower version as shown in
FIG.10 is the saving of two
latches. If timing is not
critical, the ending disparity
PDEBY is generated in the
same cycle as the decoding
and the error checks. So
only this single parameter
must be passed on to next
byte in the traditional
manner. The output of this
latch is the signal PDFBY,
the disparity in front of the
new byte. If the longest
delay path is to the PDEBY

output, the delays associated with one inverter plus one OAI21 gate will increase the
critical path.

Four-Byte Word Decoder

The circuit of a four-byte word decoder is illustrated in FIG.11.

Notation

The signal names PDFBY0 and NDFBY0 refer to a positive and negative disparity,
respectively, in front of byte #0.

The signal names PDUBY0 and NDUBY0 refer the assumed positive or negative exit
disparity, respectively, of byte #0. If neither the 6B vector nor the 4B vector of the byte is
disparity dependent, none of the two outputs is asserted.

The values for the outputs PDFBY3, PNDFBY3, PDUBY3, and PNDUBY3 are stored in
the latches which provide the signals PDFBY3_LAST, PNDFBY3_LAST,
PDUBY3_LAST, and PNDUBY3, respectively, for the computation of the starting
disparities PDFBY0 and PNDFBY0 for the next word cycle at the top of the diagram.

Logic Equations for the Determination of the Disparity at the Start of the Bytes

PDFBY0 = PDUBY3_LAST + PDFBY3_LAST • NDUBY3_LAST’

NDFBY0 = NDUBY3_LAST + NDFBY3_LAST • PDUBY3_LAST’

The values of PDFBY0 and NDFBY0 are complementary, but the values of PDUBY3 and
NDUBY3 are exclusive, none or one alone can be true.

FIG.10
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To minimize the circuit delays, the disparity values for the front of byte #1, #2, and #3 are
determined not sequentially from byte to byte, but based on the disparity in front of byte
#0 and the changes in disparity contributed by the byte(s) in between.

PDFBY1 = PDUBY0 + PDFBY0 • NDUBY0’
NDFBY1 = NDUBY0 + NDFBY0 • PDUBY0’

PDFBY2 = PDUBY1 + PDUBY0 • NDUBY1’ + PDFBY0 • NDUBY0’ • NDUBY1’
n0 = NDUBY0 + NDUBY1
PDFBY2 = PDUBY1 + PDUBY0 • NDUBY1’ + PDFBY0 • n0’

FIG.11
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NDFBY2 = NDUBY1 + NDUBY0 • PDUBY1’ + NDFBY0 • PDUBY0’ • PDUBY1’
n1 = PDUBY0 + PDUBY1
NDFBY2 = NDUBY1 + NDUBY0 • PDUBY1’ + NDFBY0 • n1'

PDFBY3 = PDUBY2 + PDUBY1 • NDUBY2’ + PDUBY0 • NDUBY1’ • NDUBY2’
+ PDFBY0 • NDUBY0’ • NDUBY1’ • NDUBY2’

n2 = NDUBY0 + NDUBY1 + NDUBY2
n3 = NDUBY1 + NDUBY2
PDFBY3 = PDUBY2 + PDUBY1 • NDUBY2’ + PDUBY0 • n3’ + PDFBY0 • n2'
NDFBY3 = NDUBY2 + NDUBY1 • PDUBY2’ + NDUBY0 • PDUBY1’ • PDUBY2’

+ NDFBY0 • PDUBY0’ • PDUBY1’ • PDUBY2’
n4 = PDUBY0 + PDUBY1 + PDUBY2
n5 = PDUBY1 + PDUBY2
NDFBY3 = NDUBY2 + NDUBY1•PDUBY2’ + NDUBY0 • n5’ + NDFBY0 • n4'

The circuit implementation of shown in FIG.11 takes advantage of the relationships:

PNDFBY1 = PDFBY1’

PNDFBY2 = PDFBY2’

These signals are not in the critical path and the added inversion does not decrease the
maximum rate. For applications which have sufficient timing margin, the same
simplifications can also be used for the signal PNDFBY3 and perhaps PNDFBY3 at a
penalty of one inversion for each of those two signals.
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