IBM Research Report

DC-Balanced 6B/8B-P Transmission Code with Local Parity

Albert X. Widmer
IBM Research Division
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, NY 10598

DC-Balanced 6B/8B-P Transmission Code with Local Parity

Albert X. Widmer
IBM T. J. Watson Research Center
1101 Kitchawan Rd. Route 134, Yorktown Heights, NY 10598-0218
914-945-2047, widmer@us.ibm.com

Abstract

A transmission code which packs six bits of data and four control vectors into an eight-bit format is presented. All 68 valid 8-bit vectors are dc-balanced with a maximum digital sum variation of 6 and a maximum run length of 6 . Any single error can be instantly detected and attributed to a particular 8-bit vector. So a parity vector computed over a block of vectors can be used to correct the error. The circuit implementation requires no more than 69 standard primitive logic cells for encoding and 78 cells for the combined operations of decoding and validity checks. There are at most 5 primitive logic gates in any logical path.

Introduction

Since the start of the digital age, it has been common practice to append a parity bit to a group of bits such as a byte so a byte afflicted with a single error could be identified and perhaps corrected by another set of parity bits. For reliable serial transmission, redundancy is often added to control the run length and bandwidth characteristics of the serial bit stream. While transmission codes usually can detect many types of errors in a string of coded vectors, they usually cannot always point to the exact error location or identify the specific faulty vector; extra redundancy is required to do so. References 2, 3, and 4 are examples of this approach. The overall coding efficiency can be raised if parity and transmission aspects are solved by a single solution as was done in reference 1 for a dcbalanced $8 \mathrm{~B} / 10 \mathrm{~B}$ code. However, the encoding and decoding circuitry for reference 1 is complex and difficult to implement for very fast serial links while preserving low latency as required for computer bus applications. For new applications of transmission codes in wide computer busses, compatibility with the 8 -bit byte format carries less weight. Remainders of a few bits may be allotted to spare assignments or are readily handled by compatible codes such as $1 \mathrm{~B} / 2 \mathrm{~B}, 3 \mathrm{~B} / 4 \mathrm{~B}$, or 5 B 6 B , or any combination thereof. In other situations, where the bus width n is a multiple of 6 and 8 such as $n \times 24$, it is just the number of coding circuits and perhaps transmission lanes which changes.

A new solution with the 6B/8B-P code is presented here. The code is slightly less efficient than reference 1 but for applications which require error correction, it can be more efficient
than solutions according to reference 2,3 , or 4 depending on the particular configuration. It is implemented with very simple circuits suitable for extremely high operating rates. Short circuit delays are compatible with low latency requirements. Also, the ratio of the serial transmission rate and the parallel electrical interface clocks is a preferred power of two versus a multiple of 3 or 5 for solutions based on any of the above references. The simple circuitry also helps to contain power dissipation in a critical area.

While the new code is primarily aimed at applications with statistically independent single errors, such as well designed optical links, it can also have advantages for applications with no forward error correction where the local parity feature has a subordinated role.

Additionally, the 6B/8B code provides another design point among several alternatives. As an example, an electrical bus with 72 data lines may be transmitted over nine $8 \mathrm{~B} / 10 \mathrm{~B}$ coded lines. If the distance and baud rate of the electrical lines is aggressive, Decision Feedback Equalizers may be required which have a tendency to generate multiple errors. To overcome this problem, five lines are added carrying an error correction Hamming code. To transport a single 72-bit word over the 14 high speed lines requires then $14 \times 10=$ 140 bits. Using $6 \mathrm{~B} / 8 \mathrm{~B}$ code over $12+5=17$ high speed lines requires only $17 \mathrm{x} 8=136$ bits which is surprising considering the larger overhead of $6 \mathrm{~B} / 8 \mathrm{~B}$ code. The savings result from less overhead for error correction, because of the wider correction entities. The larger number of serial lines can be used to either lower the serial transmission rate to 8 times the bus rate rather than 10 times. Alternatively, the bus rate and throughput can be increased by 25% assuming in both cases an entire 72 -bit word is dispatched with each bus-rate clock cycle. For comparison, similar performance can be obtained using the more complex 7B/8B code which can transmit words of 77 bits with Hamming correction on just 16 lines operating at eight times the bus rate. The well known 5B/6B code can handle 75-bit words with Hamming correction on 20 lines at a serial rate of just six times the word rate.

General Description and Novelty of the 6B/8B-P Code

The input to the encoding apparatus consists of seven lines plus a clock. Six unrestricted lines represent 64 data vectors if the seventh line, the control line, is not asserted. If the control line is asserted together with one of four specified data vectors, a coded control vector is generated which is recognizable as other than data. So there are a total of 68 coded vectors and they are all balanced. Therefore, any single bit error or any odd number of bit errors in the coded domain will generate an invalid vector instantly recognizable as such.

For purposes of encoding and decoding, the 64 source vectors are classified into four sets:

1. A first set of 20 source vectors comprises all balanced 6 B vectors.
2. A second set of 14 source vectors comprises all 6 B vectors with a disparity of plus two with the exception of the vector with a trailing run of four ones.
3. A third set of 14 source vectors comprises all 6 B vectors with a disparity of minus two with the exception of the vector with a trailing run of four zeros.
4. A fourth set of 20 source vectors comprises the 14 vectors with a disparity of four or six, the two vectors with a disparity of two and a trailing run of four, and the four control vectors.

In the encoding process, all four sets obtain a two-bit prefix as described in more detail below. Alternatively, the two bits could also be added as a suffix or at other specified positions. However, the prefix is the preferred implementation for reasons explained below. The source bits of the first three sets remain unchanged for encoding and decoding. Only the 16 data vectors of set four require changes in two or three bit positions to generate balanced coded vectors. The prefix is selected as follows:

1. The first set takes a two-bit prefix with complementary bit values, i.e. bit values of 10 , or 01 in an alternate implementation.
2. The second set takes a two-bit prefix with bit values of 00 .
3. The third set takes a two-bit prefix with bit values of 11 .
4. The fourth set takes a two-bit prefix which is the complement of that of the first set, i.e. bit values of 01 , or 10 in an alternate implementation.

Notation

The six bits of the source vectors are identified by the capital letters A, B, C, D, E, and F. An additional control input carries the label K . The eight bits of the coded vectors are identified by the respective lower case letters $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$, and f ; the two extra bits are identified by the letters g and h . In the circuit diagrams described below in reference to FIGS. 7A/B and 8A/B, the coded inputs and outputs ' a ' through ' h ' are prefixed with the capital letter C because some chip design tools do not differentiate between lower and upper case letters. All vectors are assigned a name starting with the letter D or K for data or control vectors, respectively, followed by a two position octal number for source vectors, or a three position octal number for coded vectors. The octal number represents the binary bit pattern with the low order bit on the right side (bit A or a). The high order octal position for coded vectors indicates the value of the bits g and h which identify the class to which the vector belongs.

This document assumes, that the high order bit h is transmitted first. The code is not sensitive to the order, but because the bits g and h are used to classify the coded vectors, it is conceivable that their position at the leading end of coded vectors could be used to slightly reduce the latency of the receiver or to improve the timing margin. Note that a reversal of the transmission order requires reversals in the definition of the synchronizing vector pair described below.

The signal names used in the equations of this document do not reflect any logic levels, they are to be interpreted as abstract logic statements. However, in the circuit diagrams, the signal names may be prefixed with the letter P or N to indicate whether the function is true at the upper or lower level, respectively. The P and N prefixes are normally not used for net names which start with P and N , respectively. Net numbers starting with ' n ' or ' m ' are true at the lower level and take the P prefix if true at the upper level. In the logic
equations, the symbols $\bullet,+$, and \oplus represent the Boolean AND, OR, and EXCLUSIVE OR functions, respectively. The apostrophe (') represents negation.

Source Vectors and Coded Vectors

FIG. 1 is a trellis diagram of the 64 source vectors, ignoring the value of the K-input. FIG. 2 is a trellis diagram of the 68 coded vectors which include four control vectors which are other than data. The numbers in the diagrams indicate the number of vectors ending with the node to the left.

Low Frequency Characteristics

From the trellis of FIG. 2 it is evident, that the code is dc-balanced with a maximum digital sum variation of six. The normalized dc-offset which is related to the area between the zero disparity level and the extreme contour of the trellis is 1.75 . As a point of reference, the offset value for the Fibre Channel 8B/10B code of Ref. 5 is 1.9. The low frequency cut-off point for high pass filters can be located as low or below that for $8 \mathrm{~B} / 10 \mathrm{~B}$ code depending on the low pass filter parameters for equal eye closure (Ref. 6).

FIG. 2

Synchronization Characteristics

The maximum run length is six centered across the 8B boundaries. There are no contiguous runs of six. The run of six is singular, i.e. it cannot appear with any other alignment with reference to the 8B boundaries and can serve as the comma.

To generate the comma of six zeros in the context of a control character, one of the control characters (K170) is defined with a trailing run of three zeros. This character may be followed by any of the four data characters (D027, D033, D035, D036) from the set of FIG. 5 with a leading run of three zeros. An equivalent, alternate comma of six ones is generated from another control character (K107) with a trailing run of three ones followed
by any of the four data characters (D341, D342, D344, D350) from the set of FIG. 6 with a leading run of three ones. These two vector pairs allow the signalling and checking of both the vector alignment and the start or the end of a frame.

In normal data traffic, there are also sequences of six ones or zeros with identical alignment which can also be used for alignment or alignment checks. A third possibility to gain alignment with a random sequence of coded vectors is to monitor the validity of the received coded vectors or the running disparity at 6-baud intervals and stepping the alignment until no invalid characters appear or until the running disparity value at the boundaries assumes a steady value which then can be assumed to be zero and should remain there in the absence of errors.

6B/8B Encoding Table

As described in the General Description above, for purposes of this design, the sixty-eight coded 8B vectors of FIG. 2 are divided into four sets as illustrated by the trellis diagrams of FIG. 3, 4, 5, and 6. The solid lines in FIG. 3, 5, and 6 represent 48 of the source vectors which remain unchanged in the encoded domain except for the two-bit dotted prefix. The trellis of FIG. 4 represents the four control vectors and the remaining 16 data vectors.

FIG. 3

FIG. 5

FIG. 4

FIG. 6

The 48 coded 8 -bit vectors of FIG. 3, 5, and 6 which require no changes for encoding are listed in Table 1.

Table 1. 48 Encoded Vectors with no Changes

FIG. 3		FIG. 5		FIG. 6	
Name	hgfedcba	Name	hgfedcba	Name	hgfedcba
D207	10000111	D027	00010111	D303	11000011
D213	10001011	D033	00011011	D305	11000101
D215	10001101	D035	00011101	D306	11000110
D216	10001110	D036	00011110	D311	11001001
D223	10010011	D047	00100111	D312	11001010
D225	10010101	D053	00101011	D314	11001100
D226	10010110	D055	00101101	D321	11010001
D231	10011001	D056	00101110	D322	11010010
D232	10011010	D063	00110011	D324	11010100
D234	10011100	D065	00110101	D330	11011000
D243	10100011	D066	00110110	D341	11100001
D245	10100101	D071	00111001	D342	11100010
D246	10100110	D072	00111010	D344	11100100
D251	10101001	D074	00111100	D350	11101000
D252	10101010				
D254	10101100				
D261	10110001				
D262	10110010				
D264	10110100				
D270	10111000				

The 20 vectors of FIG. 4 are listed in Table 2. The ten source vectors on the left side of the table have a negative disparity. The ten source vectors with positive disparity on the right side are the exact complements of those on the left side. Sixteen of these vectors require changes for encoding as follows:

1. The two vectors with all ones or zeros and a disparity of six are balanced by complementing three bits.
2. The 12 vectors with a disparity of four are encoded by complementing two bits.
3. The two data vectors with a disparity of two and a trailing run length of four are balanced by the complementation of a single bit.

In Table 2 and 3, the coded bits which are the complements of the respective source bits are printed in bold type and underlined. Note the symmetries for the set of 16 data vectors between the left and right side of Table 2 and between the 'abc' bits of the vectors D10, D20, and D40 and the 'def' bits of the vectors D04, D02, and D01, respectively. The bit positions complemented for encoding are identical for both vectors of a complementary pair. This feature can be exploited for simplifications in the encoding and decoding equations as described below under Alternate Implementation of Encoder and Decoder.

The complete 6B/8B coding assignments are shown in Table 3.
Table 3. 6B/8B Code

Name		FEDCBA	Name	hgfedcba	Name	K FEDCBA	Name	a
D00	0	000000	D131	01011001	D4	100010	D342	11100010
D01	0	000001	D161	0111000	D	0100011	D243	10
D02	0	000010	D162	011100	D44	100100	D344	11100
D03	0	00	D303	1	D45	100101	45	10100101
D04	0	000100	D145	01100	D4	0100110	D246	10
D05	0	00	D	1	D4	10	D047	00100111
D0	0	00	D306	11000110	D5	00	350	11101000
D07	0	000	D207	1000	D51	0101001	D251	01
D10	0	001000	D151	0	D52	0101010	D252	10101010
D11	0	001	D311	1100	D53	0101011	D053	00101011
D12	0	001010	D312	11001010	D54	0101100	D254	00
D13		010	D213	100010	D5	0101101	D055	00101101
D14	0	001100	D314	11001100	D56	0101110	D056	0
D15	0	001101	D215	100011	D57	0101111	D154	0110110
D16		01	D2	100011	D60	0110000	D164	01110100
D17	0	001	D113	010	D61	0110001	D261	10110001
D20	0	010000	D123	01010	D62	0110010	D262	10110010
D21	0	100	D321	11010	D63	01	D063	00110011
D22	0	100	D322	11010010	D64	0110100	D264	10110100
D23	0	0100	D223	100100	D65	0110101	D065	00110101
D24	0	010100	D3	11	D6	0110110	D066	00110110
D25	0	10	D225	1001	D67	0110111	D126	01010110
D26	0	010	D226	10010	D7	0111000	D270	10111000
D27	0	010111	D027	00	D71	0111001	D07	00111001
D30	0	011000	D330	11011000	D72	0111010	D072	00111010
D31	0	01100	D231	10	D73	0111011	D132	01
D32	0	011010	D232	10	D7	0111100	D	0011
D33	0	011	D033	000	D75	0111101	D115	010
D34	0	011100	D234	10011100	D76	0111110	D116	01001110
D35	0	1110	D035	00011101	D77	0111111	D146	$011 \underline{0011}$
D36	0	11110	D036	00011110	K07	1000111	K107	0100011
D37	0	011111	D134	01011100	K25	1010101	K125	01010101
D40	0	100000	D143	01100011	K52	1101010	K152	01101010
D41	0	100001	D341	11100001	K70	1111000	K170	01111000

Table 2. 20 Encoded Vectors of FIG. 4 with individual Bit Changes

Name	K FEDCBA	Name	hgfedcba	Name	K FEDCBA	Name	hgfedcba
D00	0000000	D131	01011001	D77	0111111	D146	01100110
D01	0000001	D161	01110001	D76	0111110	D116	01001110
D02	0000010	D162	01110010	D75	0111101	D115	01001101
D04	0000100	D145	01100101	D73	0111011	D132	01011010
D10	0001000	D151	01101001	D67	0110111	D126	01010110
D20	0010000	D123	01010011	D57	0101111	D154	01101100
D40	0100000	D143	01100011	D37	0011111	D134	01011100
D60	0110000	D164	01110100	D17	0001111	D113	01001011
K07	1000111	K107	01000111	K70	1111000	K170	01111000
K25	1010101	K125	01010101	K52	1101010	K152	01101010

Generation of Encoded 8B Vectors

For the derivation of the encoding equations refer to the Tables 2 and/or 3. Generally, the encoded bits retain the value of the unencoded $b i t(a=A, b=B$, etc), but a specific source bit is complemented ($a=A^{\prime}, b=B^{\prime}$, etc) if and only if (iff) the respective equation is true. In the Coding Labels and equations, some bit values are included redundantly to allow more circuit sharing for the complementation of other bits of the same vector which are also typed in bold type and underlined in the Tables 2 and 3. Redundant bit values in the Tables 4 through 18 and in the equations are overlined and the names of redundant vectors in the tables are preceded by an asterisk.

Encoded Bit a

The ' a ' column has bold entries for D00, D04, D10, D20, D40, D37, D57, D67, D73, and D77. The respective uncoded bits FEDCBA are listed in Table 4, the A-bit is overlined, and common patterns in the source bits are marked by bold type to logically classify the vectors by simple expressions.

Table 4. a-bit Encoding

Name	K FEDCBA	Coding Label	a	Name	K FEDCBA	Coding Label	a
D00	x $00000 \overline{0}$	$\overline{A^{\prime}} \cdot B^{\prime} \cdot C^{\prime} \cdot D^{\prime} \cdot E^{\prime} \cdot F^{\prime}$	1	D77	x $11111 \overline{1}$	$\overline{\mathrm{A}} \cdot \mathrm{B} \cdot \mathrm{C} \cdot \mathrm{D} \cdot \mathrm{E} \cdot \mathrm{F}$	0
D04	$\times 00010 \overline{0}$	$\overline{A^{\prime}} \cdot B^{\prime} \cdot E^{\prime} \cdot F^{\prime} \cdot C \neq D$	1	D73	$\times 11101 \overline{1}$	$\bar{A} \cdot B \cdot E \cdot F \cdot C \neq D$	0
D10	x $00100 \overline{0}$	$\overline{A^{\prime}} \cdot B^{\prime} \cdot E^{\prime} \cdot F^{\prime} \cdot C \neq D$	1	D67	x 11011	$\bar{A} \cdot B \cdot E \bullet F \cdot C \neq D$	0
D20	x $01000 \overline{0}$	$\overline{A^{\prime}} \cdot B^{\prime} \cdot C^{\prime} \cdot D^{\prime} \cdot E \neq F$	1	D57	x $10111 \overline{1}$	$\overline{\mathrm{A}} \cdot \mathrm{B} \cdot \mathrm{C} \cdot \mathrm{D} \cdot \mathrm{E} \neq \mathrm{F}$	0
D40	x 10000 $\overline{0}$	$\overline{A^{\prime}} \cdot B^{\prime} \cdot C^{\prime} \cdot D^{\prime} \cdot E \neq F$	1	D37	$\times 01111 \overline{1}$	$\overline{\mathrm{A}} \cdot \mathrm{B} \cdot \mathrm{C} \cdot \mathrm{D} \cdot \mathrm{E} \neq \mathrm{F}$	0

Using these identifiers, the encoding equation for bit ' a ' can be written as follows:
$a=A \bullet[\bar{A} \bullet B \bullet E \bullet F \bullet C \oplus D+\bar{A} \bullet B \bullet C \bullet D \bullet E \oplus F+\bar{A} \bullet B \bullet C \bullet D \cdot E \bullet F]^{\prime}+$ $\overline{A^{\prime}} \cdot B^{\prime} \bullet E^{\prime} \cdot F^{\prime} \bullet C \oplus D+\overline{A^{\prime}} \cdot B^{\prime} \cdot C^{\prime} \bullet D^{\prime} \bullet E \oplus F+\overline{A^{\prime}} \cdot B^{\prime} \cdot C^{\prime} \cdot D^{\prime} \cdot E^{\prime} \circ F^{\prime}$

In the circuit diagram s68encode of FIG. 7B, the following net names are used:

$$
\begin{aligned}
& n 1=\overline{A^{\prime}} \bullet B^{\prime} \cdot E^{\prime} \bullet F^{\prime} \cdot C \oplus D+\overline{A^{\prime}} \cdot B^{\prime} \cdot C^{\prime} \cdot D^{\prime} \cdot E \oplus F+\overline{A^{\prime}} \cdot B^{\prime} \cdot C^{\prime} \cdot D^{\prime} \cdot E^{\prime} \cdot F^{\prime} \\
& \text { n2 }=A \cdot(n 3), \\
& \mathrm{n} 3=\overline{\mathrm{A}} \cdot \mathrm{~B} \cdot \mathrm{E} \cdot \mathrm{~F} \cdot \mathrm{C} \oplus \mathrm{D}+\overline{\mathrm{A}} \cdot \mathrm{~B} \cdot \mathrm{C} \cdot \mathrm{D} \cdot \mathrm{E} \oplus \mathrm{~F}+\overline{\mathrm{A}} \cdot \mathrm{~B} \cdot \mathrm{C} \cdot \mathrm{D} \cdot \mathrm{E} \cdot \mathrm{~F}
\end{aligned}
$$

Encoded Bit b

The ' b ' column has bold entries for D20, D40, D37, and D57. The respective uncoded bits FEDCBA are listed in Table 5, the B-bit is overlined, and common patterns are marked.

Table 5. b-bit Encoding

	K FEDCB	Coding Label	b	Name	K	兂	b
	x $0100 \overline{0} 0$	$A^{\prime} \cdot \overline{B^{\prime}} \cdot C^{\prime} \cdot D^{\prime} \cdot E \neq F$	1	D57	x $1011 \overline{11}$	$A \cdot \bar{B} \cdot C \cdot D \cdot E \neq F$	0
40	x 1000 $\overline{0}$	$A^{\prime} \cdot \overline{B^{\prime}} \cdot C^{\prime} \cdot D^{\prime} \cdot E \neq$	1	D	x $0111 \overline{1} 1$	$A \cdot \bar{B} \cdot C \cdot D \cdot E \neq F$	

Using these identifiers, the encoding equation for bit ' b ' can be written as follows:
$b=B \bullet(A \cdot \bar{B} \cdot C \cdot D \cdot E \oplus F)^{\prime}+A^{\prime} \cdot \overline{B^{\prime}} \cdot C^{\prime} \cdot D^{\prime} \cdot E \oplus F$
In the circuit diagram of FIG. 7B, the following net name is used:
$\mathrm{n} 11=\mathrm{B} \bullet(\mathrm{A} \cdot \overline{\mathrm{B}} \cdot \mathrm{C} \cdot \mathrm{D} \bullet \mathrm{E} \oplus \mathrm{F})^{\prime}$

Encoded Bit c

The ' c ' column has bold entries for D60 and D17. The respective uncoded bits FEDCBA are listed in Table 6, the C-bit is overlined.

Table 6. c-bit Encoding

Name	K FEDCBA	Coding Label	c	Name	K FEDCBA	Coding Label	\mathbf{c}
D60	$\times 110 \overline{0} 00$	$A^{\prime} \bullet B^{\prime} \bullet D^{\prime} \bullet E \bullet F$	1	$D 17$	$\times 001 \overline{1} 11$	$A \bullet B \bullet D \bullet E \cdot \bullet F$	0

Using these identifiers, the encoding equation for bit ' c ' can be written as follows:
$c=C \bullet\left(A \bullet B \cdot D \cdot E^{\prime} \cdot F^{\prime}\right)^{\prime}+A^{\prime} \bullet B^{\prime} \cdot D^{\prime} \bullet E \bullet F$
In the circuit diagram of FIG. 7B, the following net name is used:

$$
\mathrm{n} 21=\mathrm{C} \cdot\left(\mathrm{~A} \cdot \mathrm{~B} \cdot \mathrm{D} \cdot \mathrm{E}^{\prime} \bullet \mathrm{F}^{\prime}\right)^{\prime}
$$

Encoded Bit d

The ' d ' column has bold entries for D00 and D77. The respective uncoded bits FEDCBA are listed in Table 7, the D-bit is overlined.

Table 7. d-bit Encoding

Name	K FEDCBA	Coding Label	d	Name	K FEDCBA	Coding Label	d
D 00	$\times 00 \overline{0} 000$	$\mathrm{~A}^{\prime} \cdot \mathrm{B}^{\prime} \bullet \mathrm{C}^{\prime} \bullet \overline{\bar{D}^{\prime}} \cdot \mathrm{E}^{\prime} \bullet \mathrm{F}^{\prime}$	1	D 77	$\mathrm{x} 11 \overline{1} 111$	$\mathrm{~A} \bullet \mathrm{~B} \cdot \mathrm{C} \cdot \overline{\mathrm{D}} \bullet \mathrm{E} \bullet \mathrm{F}$	0

Using these identifiers, the encoding equation for bit 'd' can be written as follows:

```
\(d=D^{\bullet}(A \bullet B \cdot C \bullet \bar{D} \cdot E \cdot F)^{\prime}+A^{\prime} \bullet B^{\prime} \cdot C^{\prime} \bullet \overline{D^{\prime}} \cdot E^{\prime} \cdot F^{\prime}\)
```

In the circuit diagram of FIG. 7B, the following net name is used:

$$
\mathrm{n} 31=\mathrm{D} \cdot(\mathrm{~A} \cdot \mathrm{~B} \cdot \mathrm{C} \cdot \overline{\mathrm{D}} \cdot \mathrm{E} \cdot \mathrm{~F})^{\prime}
$$

Encoded Bit e

The ' e ' column has bold entries for D00, D01, D02, D75, D76, and D77. Table 8 lists the respective uncoded bits FEDCBA, the E-bit is overlined, and common patterns are marked by bold entries.

Table 8. e-bit Encoding

Name	K FEDCBA	Coding Label	e	Name	K FEDCBA	Coding Label	e
D00	x $0 \overline{0} 0000$	$A^{\prime} \cdot B^{\prime} \cdot C^{\prime} \cdot D^{\prime} \cdot \overline{E^{\prime}} \cdot F^{\prime}$	1	D77	x 111111	$A \cdot B \cdot C \cdot D \cdot \bar{E} \cdot F$	0
D01	x $0 \overline{0} 0001$	$C^{\prime} \cdot D^{\prime} \cdot \overline{E^{\prime}} \cdot F^{\prime} \cdot A \neq B$	1	D76	$\times 1 \overline{11110}$	$C \cdot D \cdot \bar{E} \cdot F \cdot A \neq B$	0
D02	x $0 \overline{0} 0010$	$C^{\prime} \cdot D^{\prime} \cdot \overline{E^{\prime}} \cdot F^{\prime} \cdot A \neq B$	1	D75	x $1 \overline{1} 1101$	$C \cdot D \cdot \bar{E} \cdot F \cdot A \neq B$	0

Using these identifiers, the encoding equation for bit 'e' can be written as follows:
$e=E \bullet(C \cdot D \cdot \bar{E} \bullet F \bullet A \oplus B+A \bullet B \bullet C \bullet D \cdot \bar{E} \bullet F)^{\prime}+C^{\prime} \cdot D^{\prime} \cdot \overline{E^{\prime}} \bullet F^{\prime} \bullet A \oplus B+A^{\prime} \cdot B^{\prime} \bullet C^{\prime} \bullet D^{\prime} \cdot \overline{E^{\prime}} \cdot F^{\prime}$
In the circuit diagram of FIG. 7B, the following net name is used:
$\mathrm{n} 41=\mathrm{E} \cdot(\mathrm{n} 42){ }^{\prime}$
$\mathrm{n} 42=\mathrm{C} \cdot \mathrm{D} \cdot \overline{\mathrm{E}} \cdot \mathrm{F} \cdot \mathrm{A} \oplus \mathrm{B}+\mathrm{A} \cdot \mathrm{B} \cdot \mathrm{C} \cdot \mathrm{D} \cdot \overline{\mathrm{E}} \cdot \mathrm{F}$

Encoded Bitf

The 'f' column has bold entries for D01, D02, D04, D10, D67, D73, D75, and D76. The respective uncoded bits FEDCBA are listed in Table 9. The F-bit is overlined, and common patterns are marked by bold entries.

Table 9. f-bit Encoding

Name	K FEDCBA	Coding Label	f	Name	K FEDCBA	Coding Label	f
D01	x 000001	$C^{\prime} \cdot D^{\prime} \cdot E^{\prime} \cdot \overline{F^{\prime}} \cdot A \neq B$	1	D76	x $\overline{1} 11110$	$C \bullet D \cdot E \bullet \bar{F} \cdot A \neq B$	0
D02	x 000010	$C^{\prime} \cdot D^{\prime} \cdot E^{\prime} \cdot \overline{F^{\prime}} \cdot A \neq B$	1	D75	x $\overline{1} 11101$	$C \cdot D \cdot E \cdot \bar{F} \cdot A \neq B$	0
D04	$\times \overline{0} 00100$	$A^{\prime} \cdot B^{\prime} \cdot E^{\prime} \cdot \overline{F^{\prime}} \cdot C \neq D$	1	D73	x $\overline{1} 11011$	$A \cdot B \cdot E \cdot \bar{F} \cdot C \neq D$	0
D10	x $\overline{0} 01000$	$A^{\prime} \cdot B^{\prime} \cdot E^{\prime} \cdot \bar{F}^{\prime} \cdot C \neq D$	1	D67	X 110111	$A \cdot B \cdot E \cdot \bar{F} \cdot C \neq D$	0

The encoding equation for bit ' f ' can be written as follows:
$f=F^{\prime}\left(C \bullet D \cdot E \bullet \bar{F} \bullet A \oplus B+A^{-} \bullet B \cdot E \bullet \bar{F} \bullet C \oplus D\right)^{\prime}+C^{\prime} \bullet D^{\prime} \bullet E^{\prime} \bullet \overline{F^{\prime}} \bullet A \oplus B+A^{\prime} \bullet B^{\prime} \cdot E^{\prime} \cdot \overline{F^{\prime}} \cdot C \oplus D$

In the circuit diagram of FIG. 7B, the following net name is used:

```
n51 = F•(n52)'
n52 = C D D }\cdot\textrm{E}\cdot\overline{\textrm{F}}\cdot\textrm{A}\oplus\textrm{B}+\textrm{A}\cdot\textrm{B}\cdot\textrm{E}\cdot\textrm{F}\cdot\textrm{C}\oplus\oplus\textrm{D
```


Encoded Bit g

The value for bit ' g ' is one for the 34 vectors of FIG. 4 and FIG. 6. These vectors are enumerated in the right column of Table 1 and in Table 2. Note that the source vectors for all coded vectors of Table 1 are identical to the trailing 6 bits of the respective coded vector and are not listed explicitly.

The 34 source vectors for which the value for bit ' g ' is one are listed again in Table 10. All 22 source vectors with four or more zeros are part of this set. For the derivation of logical encoding equations, these 22 vectors are grouped into 3 overlapping sets. The redundant vectors are marked by an asterisk. The set of 7 source vectors at the top left side of the table is characterized by three trailing zeros and at least one bit with a value of zero in the leading three bit positions which is described by the logic expression $A^{\prime} \cdot B^{\prime} \cdot C^{\prime} \cdot\left(D^{\prime}+E^{\prime}+F^{\prime}\right)$. The set of 6 source vectors (not counting the redundant vector *D00) at the top right side of the table is characterized by three leading zeros and at least one bit with a value of zero in the trailing three bit positions which is described by the logic expression $\left(A^{\prime}+B^{\prime}+C^{\prime}\right) \bullet D^{\prime} \bullet E^{\prime} \cdot F^{\prime}$. The set of nine vectors (not counting the redundant vectors) at the bottom of the left side is characterized by at least 2 zeros in the leading three positions and at least 2 zeros in the trailing three positions which is described by the logic expression $\left(A^{\prime} \bullet B^{\prime}+A^{\prime} \cdot C^{\prime}+B^{\prime} \bullet C^{\prime}\right) \bullet\left(D^{\prime} \bullet E^{\prime}+D^{\prime} \bullet F^{\prime}+E^{\prime} \bullet F^{\prime}\right)$.

The four vectors on the right side with a trailing run of four ones are identified by the logic expression $A \cdot B \cdot C \cdot D$. The two vectors with four leading ones are identified by the logic expression $C \bullet D \bullet E \bullet F \bullet A \oplus B$ and the two vectors with two leading ones and two trailing ones are identified by the logic expression $A \bullet B \bullet E \bullet F \bullet C \oplus D$.

Finally, all four control vectors identified by a K-value of one have a g-value of one.
The logic equation for the encoding of the g-bit can thus be expressed as follows:

$$
\begin{aligned}
g=A^{\prime} \bullet B^{\prime} \bullet C^{\prime} \bullet\left(D^{\prime}+E^{\prime}+F^{\prime}\right)+\left(A^{\prime}+B^{\prime}+C^{\prime}\right) \bullet D^{\prime} \bullet E^{\prime} \bullet F^{\prime}+(A \bullet B \bullet C \bullet D)+C \bullet D \bullet E \bullet F \bullet A \oplus B+ \\
A \bullet B \bullet E \bullet F \bullet C \oplus D+\left(A^{\prime} \bullet B^{\prime}+A^{\prime} \bullet C^{\prime}+B^{\prime} \bullet C^{\prime}\right) \bullet\left(D^{\prime} \bullet E^{\prime}+D^{\prime} \bullet F^{\prime}+E^{\prime} \bullet F^{\prime}\right)+K
\end{aligned}
$$

In the circuit diagram of FIG. 7B, the following net names are used:

$$
\begin{aligned}
& \mathrm{n} 61=\mathrm{n} 64 \cdot \mathrm{n} 65 \\
& \mathrm{n} 63=\mathrm{n} 67+\mathrm{n} 68+\mathrm{K} \\
& \mathrm{n} 65=\mathrm{D}^{\prime} \cdot \mathrm{E}^{\prime}+\mathrm{D}^{\prime} \cdot \mathrm{F}^{\prime}+\mathrm{E}^{\prime} \cdot \mathrm{F}^{\prime} \\
& \mathrm{n} 67=\mathrm{A}^{\prime} \cdot \mathrm{B}^{\prime} \cdot \mathrm{C}^{\prime} \cdot\left(\mathrm{D}^{\prime}+\mathrm{E}^{\prime}+\mathrm{F}^{\prime}\right)
\end{aligned}
$$

$$
\mathrm{n} 62=\mathrm{n} 66+\mathrm{A} \cdot \mathrm{~B} \cdot \mathrm{C} \cdot \mathrm{D}+\mathrm{A} \cdot \mathrm{~B} \cdot \mathrm{E} \cdot \mathrm{~F} \cdot \mathrm{C} \oplus \mathrm{D}
$$

$$
\mathrm{n} 63=\mathrm{n} 67+\mathrm{n} 68+\mathrm{K} \quad \mathrm{n} 64=A^{\prime} \cdot \mathrm{B}^{\prime}+\mathrm{A}^{\prime} \cdot \mathrm{C}^{\prime}+\mathrm{B}^{\prime} \cdot \mathrm{C}^{\prime}
$$

$$
\mathrm{n} 66=\mathrm{C} \bullet \mathrm{D} \cdot \mathrm{E} \bullet \mathrm{~F} \bullet \mathrm{~A} \oplus \mathrm{~B}
$$

Table 10.g-bit Encoding

Name	K FEDCBA	Coding Label	g	Name	K FEDCBA	Coding Label	g
D00	x 000000	$A^{\prime} \cdot B^{\prime} \cdot C^{\prime} \cdot\left(D^{\prime}+E^{\prime}+F^{\prime}\right)$	1	*D00	x 000000	$\left(A^{\prime}+B^{\prime}+C^{\prime}\right) \cdot D^{\prime} \cdot E^{\prime} \cdot F^{\prime}$	1
D10	x 001000	$A^{\prime} \cdot B^{\prime} \cdot C^{\prime} \cdot\left(D^{\prime}+E^{\prime}+F^{\prime}\right)$	1	D01	x 000001	$\left(A^{\prime}+B^{\prime}+C^{\prime}\right) \cdot D^{\prime} \cdot E^{\prime} \cdot F^{\prime}$	1
D20	x 010000	$A^{\prime} \cdot B^{\prime} \cdot C^{\prime} \cdot\left(D^{\prime}+E^{\prime}+F^{\prime}\right)$	1	D02	x 000010	$\left(A^{\prime}+B^{\prime}+C^{\prime}\right) \cdot D^{\prime} \cdot E^{\prime} \bullet F^{\prime}$	1
D30	x 011000	$A^{\prime} \cdot B^{\prime} \cdot C^{\prime} \cdot\left(D^{\prime}+E^{\prime}+F^{\prime}\right)$	1	D03	x 000011	$\left(A^{\prime}+B^{\prime}+C^{\prime}\right) \cdot D^{\prime} \cdot E^{\prime} \cdot F^{\prime}$	1
D40	x 100000	$A^{\prime} \cdot B^{\prime} \cdot C^{\prime} \cdot\left(D^{\prime}+E^{\prime}+F^{\prime}\right)$	1	D04	x 000100	$\left(A^{\prime}+B^{\prime}+C^{\prime}\right) \cdot D^{\prime} \cdot E^{\prime} \cdot F^{\prime}$	1
D50	x 101000	$A^{\prime} \cdot B^{\prime} \cdot C^{\prime} \cdot\left(D^{\prime}+E^{\prime}+F^{\prime}\right)$	1	D05	x 000101	$\left(A^{\prime}+B^{\prime}+C^{\prime}\right) \cdot D^{\prime} \cdot E^{\prime} \cdot F^{\prime}$	1
D60	x 110000	$A^{\prime} \cdot B^{\prime} \cdot C^{\prime} \cdot\left(D^{\prime}+E^{\prime}+F^{\prime}\right)$	1	D06	x 000110	$\left(A^{\prime}+B^{\prime}+C^{\prime}\right) \cdot D^{\prime} \cdot E^{\prime} \bullet F^{\prime}$	1
D11	X 001001	$\left(A^{\prime} \cdot B^{\prime}+A^{\prime} \cdot C^{\prime}+B^{\prime} \cdot C^{\prime}\right) \cdot E^{\prime} \cdot F^{\prime}$	1	D17	x 001111	$A \cdot B \cdot C \cdot D$	1
D12	x 001010	$\left(A^{\prime} \cdot B^{\prime}+A^{\prime} \cdot C^{\prime}+B^{\prime} \cdot C^{\prime}\right) \cdot E^{\prime} \cdot F^{\prime}$	1	D37	x 011111	$A \cdot B \cdot C \cdot D$	1
D14	x 001100	$\left(A^{\prime} \cdot B^{\prime}+A^{\prime} \cdot C^{\prime}+B^{\prime} \cdot C^{\prime}\right) \cdot E^{\prime} \cdot F^{\prime}$	1	D57	X 101111	$A \cdot B \cdot C \cdot D$	1
D21	x 010001	$\left(A^{\prime} \cdot B^{\prime}+A^{\prime} \cdot C^{\prime}+B^{\prime} \cdot C^{\prime}\right) \cdot D^{\prime} \cdot F^{\prime}$	1	D77	X 111111	$A \cdot B \cdot C \cdot D$	1
D22	x 010010	$\left(A^{\prime} \cdot B^{\prime}+A^{\prime} \cdot C^{\prime}+B^{\prime} \cdot C^{\prime}\right) \cdot D^{\prime} \cdot F^{\prime}$	1	D75	$\times 111101$	$C \cdot D \cdot E \cdot F \cdot A \neq B$	1
D24	x 010100	$\left(A^{\prime} \cdot B^{\prime}+A^{\prime} \cdot C^{\prime}+B^{\prime} \cdot C^{\prime}\right) \cdot D^{\prime} \cdot F^{\prime}$	1	D76	x 111110	$C \bullet D \cdot E \cdot F \cdot A \neq B$	1
D41	x 100001	$\left(A^{\prime} \cdot B^{\prime}+A^{\prime} \cdot C^{\prime}+B^{\prime} \cdot C^{\prime}\right) \cdot D^{\prime} \cdot E^{\prime}$	1	D67	X 110111	$A \cdot B \cdot E \cdot F \cdot C \neq D$	1
D42	x 100010	$\left(A^{\prime} \cdot B^{\prime}+A^{\prime} \cdot C^{\prime}+B^{\prime} \cdot C^{\prime}\right) \cdot D^{\prime} \cdot E^{\prime}$	1	D73	x 111011	$A \cdot B \cdot E \bullet F \cdot C \neq D$	1
D44	x 100100	$\left(A^{\prime} \cdot B^{\prime}+A^{\prime} \cdot C^{\prime}+B^{\prime} \cdot C^{\prime}\right) \cdot D^{\prime} \cdot E^{\prime}$	1	K07	1000111	K	1
*D00	x 000000		1	K25	1010101	K	1
*D01	x 000001		1	K52	1101010	K	1
*D02	x 000010		1	K70	1111000	K	1
*D04	x 000100		1				
*D10	x 001000		1				
*D20	x 010000		1				
*D40	x 100000		1				

Encoded Bit h

The value for bit ' h ' is zero for the vectors of FIG. 4 and FIG. 5. These vectors are enumerated in the center column of Table 1 and in Table 2. Note that the source vectors for all coded vectors of Table 1 are identical to the trailing 6 bits of the respective coded vector and are not listed explicitly.

The 34 source vectors for which the value for bit ' h ' is zero are listed again in Table 11. All 22 source vectors with four or more ones are part of this set. For the derivation of logical encoding equations, these 22 vectors are grouped into 3 overlapping sets. The names of redundant vectors are marked by an asterisk.

Table 11. h-bit Encoding

Name	K FEDCBA	Coding Label	h	Name	K FEDCBA	Coding Label	h
D17	x 001111	$A \cdot B \cdot C \cdot(D+E+F)$	0	D71	x 111001	$(A+B+C) \bullet D \cdot E \bullet F$	0
D27	x 010111	$A \cdot B \bullet C \cdot(D+E+F)$	0	D72	x 111010	$(A+B+C) \cdot D \cdot E \cdot F$	0
D37	x 011111	$A \cdot B \cdot C \cdot(D+E+F)$	0	D73	x 111011	$(A+B+C) \cdot D \cdot E \bullet F$	0
D47	x 100111	$A \cdot B \cdot C \cdot(D+E+F)$	0	D74	$\times 111100$	$(A+B+C) \cdot D \cdot E \bullet F$	0
D57	x 101111	$A \cdot B \bullet C \cdot(D+E+F)$	0	D75	$\times 111101$	$(A+B+C) \cdot D \cdot E \bullet F$	0
D67	x 110111	$A \cdot B \bullet C \cdot(D+E+F)$	0	D76	$\times 111110$	$(A+B+C) \cdot D \cdot E \bullet F$	0
D77	x 111111	$A \cdot B \bullet C \bullet(D+E+F)$	0	*D77	$\times 111111$	$(A+B+C) \cdot D \cdot E \cdot F$	0
D33	x 011011	$(A \cdot B+A \cdot C+B \cdot C) \cdot D \cdot E$	0	D00	x 000000	$A^{\prime} \cdot B^{\prime} \cdot C^{\prime} \cdot D^{\prime}$	0
D35	x 011101	$(A \cdot B+A \cdot C+B \cdot C) \cdot D \cdot E$	0	D20	x 010000	$A^{\prime} \cdot B^{\prime} \cdot C^{\prime} \cdot D^{\prime}$	0
D36	$\times 011110$	$(A \cdot B+A \cdot C+B \cdot C) \cdot D \cdot E$	0	D40	$\times 100000$	$A^{\prime} \cdot B^{\prime} \cdot C^{\prime} \cdot D^{\prime}$	0
D53	x 101011	$(A \cdot B+A \cdot C+B \cdot C) \cdot D \cdot F$	0	D60	x 110000	$A^{\prime} \cdot B^{\prime} \cdot C^{\prime} \cdot D^{\prime}$	0
D55	X 101101	$(A \cdot B+A \cdot C+B \cdot C) \cdot D \cdot F$	0	D01	x 000001	$C^{\prime} \cdot D^{\prime} \cdot E^{\prime} \cdot F^{\prime} \cdot A \neq B$	0
D56	$\times 101110$	$(A \cdot B+A \cdot C+B \cdot C) \cdot D \cdot F$	0	D02	x 000010	$C^{\prime} \cdot D^{\prime} \cdot E^{\prime} \cdot F^{\prime} \cdot A \neq B$	0
D63	x 110011	$(A \cdot B+A \cdot C+B \cdot C) \cdot E \cdot F$	0	D04	x 000100	$A^{\prime} \cdot B^{\prime} \cdot E^{\prime} \cdot F^{\prime} \cdot C \neq D$	0
D65	x 110101	$(A \cdot B+A \cdot C+B \cdot C) \cdot E \cdot F$	0	D10	x 001000	$A^{\prime} \cdot B^{\prime} \cdot E^{\prime} \cdot F^{\prime} \cdot C \neq D$	0
D66	x 110110	$(A \cdot B+A \cdot C+B \cdot C) \cdot E \cdot F$	0	K07	1000111	K	0
*D37	x 011111		0	K25	1010101	K	0
*D57	x 101111		0	K52	1101010	K	0
*D67	x 110111			K70	1111000	K	0
*D73	x 111011						
*D75	x 111101						
*D76	x 111110						
*D77	x 111111						

The set of 7 source vectors at the top of the left side is characterized by three trailing ones and at least one bit with a value of one in the leading three bit positions which is described by the logic expression $A \cdot B \cdot C \cdot(D+E+F)$. The set of 6 source vectors (not counting the redundant vector *D77) at the top of the right side is characterized by three leading ones and at least one bit with a value of one in the trailing three bit positions which is described by the logic expression $(A+B+C) \bullet D \cdot E \cdot F$. The set of nine vectors (not counting the redundant vectors) at the bottom of the left side is characterized by at least two ones in the trailing three positions and at least two ones in the leading three positions which is described by the logic expression $(A \cdot B+A \cdot C+B \cdot C) \cdot(D \cdot E+D \cdot F+E \cdot F)$.

The four vectors with a trailing run of four zeros on the right side are identified by the logic expression $A^{\prime} \cdot B^{\prime} \cdot C^{\prime} \cdot D^{\prime}$. The two vectors with four leading zeros are identified by the logic expression $C^{\prime} \bullet D^{\prime} \bullet E^{\prime} \cdot F^{\prime} \cdot A \neq B$. The two vectors with two leading and two trailing zeros are identified by the logic expression $A^{\prime} \cdot B^{\prime} \cdot E^{\prime} \cdot F^{\prime} \cdot C \neq D$.

Finally, all four control vectors identified by a K -value of one have an h -value of zero. The logic equation for the encoding of the h -bit can thus be expressed as follows:

$$
\begin{array}{r}
h=[A \cdot B \cdot C \bullet(D+E+F)+(A+B+C) \cdot D \cdot E \cdot F+(A \bullet B+A \cdot C+B \cdot C) \bullet(D \cdot E+D \cdot F+E \bullet F)+ \\
\left.\left(A^{\prime} \cdot B^{\prime} \cdot C^{\prime} \cdot D^{\prime}\right)+C^{\prime} \cdot D^{\prime} \cdot E^{\prime} \cdot F \cdot A \oplus B+A^{\prime} \cdot B^{\circ} \cdot E^{\circ} \cdot F^{\circ} \cdot C \oplus D+K\right]^{\prime}
\end{array}
$$

In the circuit diagram of FIG. 7B, the following net names are used:

$$
\begin{array}{ll}
\mathrm{n} 71=\mathrm{n} 74 \cdot \mathrm{n} 75 & \mathrm{n} 72=\mathrm{n} 78+\mathrm{A}^{\prime} \cdot \mathrm{B}^{\prime} \cdot \mathrm{C}^{\prime} \cdot \mathrm{D}^{\prime} \\
\mathrm{n} 73=\mathrm{n} 76+\mathrm{n} 77+\mathrm{K} & \mathrm{n} 74=\mathrm{A} \cdot \mathrm{~B}+\mathrm{A} \cdot \mathrm{C}+\mathrm{B} \cdot \mathrm{C} \\
\mathrm{n} 75=\mathrm{D} \cdot \mathrm{E}+\mathrm{D} \cdot \mathrm{~F}+\mathrm{E} \bullet \mathrm{~F} & \mathrm{n} 76=\mathrm{A} \cdot \mathrm{~B} \cdot \mathrm{C} \cdot(\mathrm{D}+\mathrm{E}+\mathrm{F}) \\
\mathrm{n} 77=(\mathrm{A}+\mathrm{B}+\mathrm{C}) \cdot \mathrm{D} \cdot \mathrm{E} \cdot \mathrm{~F} & \mathrm{n} 78=\mathrm{C}^{\prime} \cdot \mathrm{D}^{\prime} \cdot \mathrm{E}^{\prime} \cdot \mathrm{F}^{\prime} \cdot \mathrm{A} \oplus \mathrm{~B}
\end{array}
$$

$$
\mathrm{n} 72=\mathrm{n} 78+\mathrm{A}^{\prime} \cdot \mathrm{B}^{\prime} \cdot \mathrm{C}^{\prime} \cdot \mathrm{D}^{\prime}+\mathrm{A}^{\prime} \cdot \mathrm{B}^{\prime} \cdot \mathrm{E}^{\prime} \cdot \mathrm{F}^{\prime} \cdot \mathrm{C} \oplus \mathrm{D}
$$

- PA		PCa
- PB		NCb
PC		NC
PD		nca
Pe		PC
- PF	\bigcirc	PC
- ${ }^{\text {Na }}$	\bigcirc	$\mathrm{PC}^{\text {c }}$
- ${ }^{\text {Nb }}$	$=$	NCh
-nc	$\stackrel{\infty}{\infty}$	
- ${ }^{\text {ND }}$	\bigcirc	
-ONE		
-OnF		

Circuit Implementation of the 6B/8B-P Encoder

FIG.7A is a symbol of the encoder circuit showing the inputs and outputs.

FIG. 7B is the logic diagram of the encoder circuit. It has not yet been simulated and verified by design tools, so it may be afflicted with minor errors.

Alternate Implementation of Encoder

Because of the symmetries between the left and the right side of Table 2, all the encoding equations for the bits ' a ' through ' f ' have complementary features which can be exploited by the extensive use of the Exclusive OR function. The transformed coding equations for the bits ' a ' thorough ' f ' are presented here:
$a=A \oplus\left[\bar{A} \oplus B^{\prime} \cdot\left(B \oplus E^{\prime} \cdot E \oplus F^{\prime} \cdot C \oplus D+B \oplus C^{\prime} \cdot C \oplus D^{\prime} \cdot E \oplus F+B \oplus C^{\prime} \cdot C \oplus D^{\prime} \cdot D \oplus E^{\prime} \cdot E \oplus F^{\prime}\right)\right]$
$b=B \oplus\left(A \oplus \overline{B^{\prime}} \cdot \bar{B} \oplus C^{\bullet} \cdot C \oplus D^{\prime} \cdot E \oplus F\right)$
$c=C \oplus\left(A \oplus B^{\prime} \bullet B \oplus D^{\prime} \cdot D \oplus E \bullet E \oplus F^{\prime}\right)$
$d=D \oplus\left(A \oplus B^{\prime} \cdot B \oplus C^{\prime} \cdot C \oplus \bar{D} \cdot \bar{D} \oplus E^{\prime} \cdot E \oplus F^{\prime}\right)$
$e=E \oplus\left[\left(C \oplus D^{\prime} \cdot D \oplus \overline{E^{\prime}} \cdot \bar{E} \oplus F^{\prime}\right) \cdot\left(A \oplus B+A \oplus B^{\prime} \cdot B \oplus C^{\prime}\right)\right]$
$f=F \oplus\left[\left(E \oplus \bar{F}^{\prime}\right) \bullet\left(C \oplus D^{\prime} \bullet D \oplus E^{\prime} \bullet A \oplus B+A \oplus B^{\prime} \bullet B \oplus E^{\prime} \bullet C \oplus D\right)\right]$
An implementation based on these alternate equations may be advantageous in terms of silicon area. To support a selection for a particular technology and application, the circuit delay and the total circuit capacity related to power dissipation must also be considered.

FIG. 7B. 6B/8B ENCODING CIRCUIT

Generation of Decoded 6B Vectors

For all encoded vectors 'hgfedcba' with a value $\mathrm{hg} \neq 01$ the decoded bits FEDCBA are equal to the encoded bits 'fedcba' and the value of the K-bit is zero. If $\mathrm{hg}=01$, the decoding equations can be derived from Table 2 or 3 as shown below similar to encoding. Redundancies are introduced for the same purposes as for encoding and marked in the same way.

Decoded Bit A

The ' a ' column of Table 2 has bold entries for D131, D145, D151, D123, D143, D146, D132, D126, D154, and D134. The respective coded bits 'hgfedcba' are listed in Table 12, the a-bit is overlined to indicate redundancy, and common patterns are marked by bold type to logically classify the vectors by simple expressions.

Table 12. A-bit Decoding

Name	hgfedcba	Coding Label	AK	Name	hgfedcba	Coding Label	AK
D131	01011001	$\overline{\mathrm{a}} \cdot \mathrm{b}^{\prime} \cdot c^{\prime} \cdot \mathrm{d} \cdot \mathrm{e} \cdot f^{\prime} \cdot \mathrm{g} \bullet h^{\prime}$	00	D146	$0110011 \overline{0}$	$\overline{a^{\prime}} \cdot b^{\bullet} \cdot{ }^{\circ} \cdot d^{\prime} \cdot e^{\prime} \cdot f \cdot g \bullet h \prime$	10
D145	01100101	$\overline{\mathrm{a}} \bullet \mathrm{b}^{\prime} \cdot e^{\prime} \cdot f \cdot g \bullet h ' \bullet c \neq d$	00	D132	$0101101 \overline{0}$	$\overline{a^{\prime}} \cdot b^{\bullet} \cdot e^{\prime} f^{\prime} \cdot g \bullet h^{\prime} \cdot c \neq d$	10
D151	01101001	$\overline{\mathrm{a}} \cdot \mathrm{b}^{\prime} \cdot e^{\prime} \cdot f \cdot \mathrm{~g} \bullet \mathrm{~h}^{\prime} \cdot \mathrm{c} \neq \mathrm{d}$	00	D126	$0101011 \overline{0}$	$\overline{a^{\prime}} \cdot b^{\bullet} \cdot e^{\bullet} f^{\prime} \cdot g \bullet h^{\prime} \cdot \mathrm{c}=\mathrm{d}$	
D123	01010011	$\overline{\mathrm{a}} \bullet \mathrm{b}^{\bullet} \cdot c^{\prime} \cdot d^{\prime} \cdot \mathrm{g} \cdot h^{\prime} \cdot \mathrm{e} \neq \mathrm{f}$	00	D154	$0110110 \overline{0}$	$\overline{\mathrm{a}} \cdot \mathrm{b} \cdot \stackrel{c}{ } \cdot \mathrm{~d} \cdot \mathrm{~g} \cdot \mathrm{~h} \cdot \bullet \mathrm{e} \neq \mathrm{f}$	0
D14	011000	$\overline{\mathrm{a}} \bullet \mathrm{b} \bullet c^{\prime} \cdot d^{\prime} \cdot \mathrm{g} \bullet h^{\prime}$	0		0101110	$\overline{a^{\prime}} \cdot b^{\prime} \bullet c \cdot d \cdot g \bullet h \prime$	

Using these identifiers, the decoding equation for bit ' A ' can be written as follows:

$$
\begin{aligned}
& A=a \bullet\left(\bar{a} \bullet b^{\prime} \bullet c^{\prime} \cdot d \bullet e \bullet f^{\prime} \cdot g \bullet h^{\prime}+\bar{a} \bullet b^{\prime} \bullet e^{\prime} \bullet f \bullet g \bullet h^{\prime} \cdot c \oplus d+\bar{a} \bullet b \bullet c^{\prime} \cdot d^{\prime} \bullet g \bullet h^{\prime} \cdot e \oplus f\right)^{\prime}+ \\
& \overline{a^{\prime}} \bullet b \bullet c \cdot d \prime \bullet e^{\prime} \bullet f \bullet g \bullet h \prime+\overline{a^{\prime}} \bullet b \bullet e \bullet f^{\prime} \bullet g \bullet h^{\prime} \cdot c \oplus d+\overline{a^{\prime}} \cdot b^{\prime} \bullet c \bullet d \bullet g \bullet h \prime \bullet e \oplus f
\end{aligned}
$$

In the circuit diagram r86decode of FIG. 8B, the following net names are used:

$$
\begin{aligned}
& \mathrm{n} 1=\mathrm{a} \cdot \mathrm{n} 3^{\prime} \\
& n 2=a^{\prime} \cdot b \cdot c \bullet d \prime \cdot e \prime \cdot f \bullet g \bullet h \prime+a^{\prime} \bullet b \bullet e \bullet f \cdot \cdot g \bullet h \prime \cdot c \oplus d+a^{\prime} \bullet b \prime \cdot c \cdot d \bullet g \bullet h \prime \cdot e \oplus f \\
& n 3=a \bullet b \prime \bullet c^{\prime} \bullet d \bullet e \bullet f \cdot \bullet \cdot h \prime+a \bullet b \cdot \bullet \prime \bullet f \bullet g \bullet h \prime \cdot c \oplus d+a \bullet b \bullet c^{\prime} \bullet d \cdot g \bullet h \prime \cdot e \oplus f
\end{aligned}
$$

Decoded Bit B

The ' b ' column of Table 2 has bold entries for D123, D143, D154, and D134. The respective coded bits 'hgfedcba' are listed in Table 13, the b-bit is overlined, and common patterns are marked by bold type.

Table 13. B-bit Decoding

	hgfedcba	Coding Label	BK	Name	hgfedcba	Coding Label	
D123	$010100 \overline{1}$	$a \bullet \bar{b} \cdot c^{\prime} \bullet d^{\prime} \cdot \mathrm{g} \bullet \mathrm{h} \cdot{ }^{\prime} \neq$	00	D154	$011011 \overline{0} 0$	${ }^{\circ} \cdot{ }^{-d \cdot g \cdot h \cdot e}$	
D	011000	$a \bullet \bar{b} \bullet c^{\prime} \cdot d \prime \cdot g \bullet h ' \bullet e \neq f$			$010111 \overline{0} 0$	$\bullet \mathrm{g}$	

Using these identifiers, the decoding equation for bit ' B ' can be written as follows:
$B=b^{\bullet}\left(a \bullet \bar{b} \bullet c^{\prime} \bullet d^{\prime} \bullet g \bullet h^{\prime} \bullet e \oplus f\right)^{\prime}+a^{\prime} \bullet \overline{b^{\prime}} \bullet c \bullet d \bullet g \bullet h^{\prime} \bullet e \oplus f$
In the circuit diagram of FIG. 8B, the following net name is used:

$$
\mathrm{n} 11=\mathrm{b} \bullet\left(\mathrm{a} \bullet \mathrm{~b} \bullet \mathrm{c}^{\prime} \bullet \mathrm{d} \cdot \bullet \mathrm{~g} \bullet \mathrm{~h} \cdot \bullet \mathrm{e} \oplus \mathrm{f}\right)^{\prime}
$$

Decoded Bit C

The ' c ' column of Table 2 has bold entries for D164 and D113. The respective coded bits 'hgfedcba' are listed in Table 14.

Table 14. C-bit Decoding

Name	hgfedcba	Coding Label	CK	Name	hgfedcba	Co	
	01110100	-b'•d'•e $\cdot f \cdot g \bullet h '$	00		01001011		

Using these identifiers, the decoding equation for bit ' C ' can be written as follows:
$C=c \bullet\left(a^{\prime} \bullet b^{\prime} \bullet d^{\prime} \bullet e \cdot f \bullet g \bullet h^{\prime}\right)^{\prime}+a \bullet b \bullet d \bullet e^{\prime} \bullet f^{\prime} \bullet g \bullet h^{\prime}$
In the circuit diagram of FIG. 8B, the following net name is used:

$$
n 21=c \bullet\left(a^{\prime} \bullet b \prime \cdot d \cdot \bullet \bullet f \bullet g \bullet h^{\prime}\right)^{\prime}
$$

Decoded Bit D

The ' d ' column of Table 2 has bold entries for D131 and D146. The respective coded bits 'hgfedcba' are listed in Table 15.

Table 15. D-bit Decoding

Name hgfedcba	Coding Label DK	Name	hgfedcba	Coding Label	SK
D13101	$\bullet \mathrm{g} \cdot \mathrm{h}$ '00	D1	$0110 \overline{0} 110$	$\bullet \bar{d} \cdot e^{\prime} \bullet \bullet \bullet \cdot g$	

Using these identifiers, the decoding equation for bit ' D ' can be written as follows:
$D=d \bullet\left(a \bullet b^{\prime} \bullet c \cdot \bullet \bar{d} \bullet e \bullet f^{\prime} \bullet g \bullet h^{\prime}\right)^{\prime}+a^{\prime} \bullet b \bullet c \bullet \bar{d} \cdot \bullet e^{\prime} \bullet f \bullet g \bullet h^{\prime}$
In the circuit diagram of FIG. 8B, the following net name is used:

$$
\text { n31 }=d \bullet\left(a \bullet b \prime \bullet c^{\prime} \bullet d \bullet e \bullet f \prime \bullet g \bullet h^{\prime}\right) \prime
$$

Decoded Bit E

The 'e' column of Table 2 has bold entries for D131, D161, D162, D146, D116, and D115. Table 16 lists the respective coded bits 'hgfedcba', the e-bit is overlined, and common patterns are marked by bold entries.

Table 16. E-bit Decoding

Name	hgfedcba	Coding Label	EK	Name	hgfedcba	Coding Label	EK
D131	$010 \overline{1} 1001$	$a \cdot b ' \bullet c^{\prime} \cdot d \cdot \bar{e} \bullet f \cdot \bullet g \bullet h '$	00	D146	01100110	$a^{\prime} \cdot b \cdot c \cdot d ' \cdot \bar{e} \cdot \bullet f \cdot g \bullet h '$	0
D161	$011 \overline{10001}$	$c^{\prime} \cdot d^{\prime} \bullet \bar{e} \cdot f \bullet g \bullet h ' a \neq b$	00	D116	$010 \overline{0} 1110$	$\mathrm{c} \bullet \mathrm{d} \bullet \overline{\mathrm{e}} \cdot \mathrm{f}^{\prime} \cdot \mathrm{g} \bullet h^{\prime} \cdot \mathrm{a}=\mathrm{b}$	10
D162	$011 \overline{1} 0010$	$c^{\prime} \cdot d \cdot \bar{e} \bullet f \bullet g \bullet h ' \bullet a \neq b$	00	D115	$010 \overline{0} 1101$		0

Using these identifiers, the encoding equation for bit 'e' can be written as follows:

$$
\begin{aligned}
E=e \bullet\left(a \bullet b^{\prime} \bullet c^{\prime} \bullet d \bullet \bar{e} \bullet f^{\prime} \bullet g \bullet h^{\prime}+c^{\prime} \bullet d^{\prime} \bullet\right. & \left.\bar{e} \bullet f \bullet g \bullet h^{\prime} \bullet a \oplus b\right)^{\prime}+ \\
& a^{\prime} \bullet b \bullet c \bullet d^{\prime} \bullet \overline{\mathrm{e}^{\prime}} \bullet f \bullet g \bullet h^{\prime}+c \bullet d \bullet \overline{\mathrm{e}^{\prime}} \bullet f \cdot g \bullet h^{\prime} \bullet a \oplus b
\end{aligned}
$$

In the circuit diagram of FIG. 8B, the following net name is used:

$$
\begin{aligned}
& n 41=e \bullet n 43 \prime \quad n 42=a^{\prime} \bullet b \bullet c \bullet d^{\prime} \bullet e^{\prime} \bullet f \bullet g \bullet h \prime+c \bullet d \bullet e^{\prime} \bullet f \cdot \bullet g \bullet h \prime \cdot a \oplus b \\
& \mathrm{n} 43=\left(\mathrm{a} \bullet \mathrm{~b}^{\prime} \bullet c^{\prime} \bullet d \bullet e \cdot f \cdot \bullet g \bullet h^{\prime}+c^{\prime} \bullet d^{\prime} \bullet e \bullet f \bullet g \bullet h^{\prime} \bullet a \oplus b\right)^{\prime}
\end{aligned}
$$

Decoded Bit F

The 'f' column of Table 2 has bold entries for D161, D162, D145, D151, D116, D115, D132, and D126. The respective coded bits 'hgfedcba' are listed in Table 17, the e-bit is overlined, and common patterns are marked by bold entries.

Table 17. F-bit Decoding

Name hgfedcba	Coding Label	FK	Name	hgfedcba	Coding Label	K
D16101T10001	$c^{\prime} \cdot d \cdot e \cdot \stackrel{f}{ } \cdot \mathrm{~g} \bullet \mathrm{~h} \cdot \mathrm{a}=\mathrm{b}$	00	D116	01001110	$\mathrm{c} \bullet \mathrm{d} \bullet \mathrm{e}^{\prime} \cdot \bar{f}^{\prime} \cdot \mathrm{g} \bullet \mathrm{h} \cdot \bullet \mathrm{a} \neq \mathrm{b}$	10
D16201T10010	$c^{\prime} \cdot d \cdot \bullet \cdot \bar{f} \cdot g \bullet h \prime \cdot a \neq b$	00	D115	$010 \overline{0} 01101$	$c \cdot d \cdot e^{\prime} \cdot \bar{f}^{\prime} \cdot g \bullet h ' \bullet a \neq b$	
D14501T00101	$a \cdot b \cdot e^{\prime} \cdot \bar{f} \cdot g \bullet h ' \bullet c \neq d$	00	D132	$01 \overline{1} 11010$	$a \cdot b \cdot e \cdot \bar{f} \cdot g \cdot h ' \bullet c \neq d$	0
D15101可01001	$a \cdot b \cdot e^{\prime} \cdot \bar{f} \cdot g \bullet h \prime \cdot c \neq d$	00	D126	$010 \overline{10110}$	$a^{\prime} \cdot b \cdot e \cdot \bar{f}^{\prime} \cdot g \bullet h ' \bullet c \neq d$	0

The decoding equation for bit ' F ' can be written as follows:

$$
\left.\begin{array}{rl}
F=f \bullet\left(c^{\prime} \bullet d \cdot\right. & \bullet \\
\bullet & \overline{\mathrm{f}} \bullet g \bullet h^{\prime} \bullet a \oplus b+a \bullet b^{\prime} \bullet
\end{array} e^{\prime} \cdot \overline{\mathrm{f}} \bullet g \bullet h^{\prime} \bullet c \oplus d\right)^{\prime}+,
$$

In the circuit diagram of FIG. 8B, the following net names are used:

$$
n 51=f \bullet n 52 \prime \quad n 52=c^{\prime} \bullet d^{\prime} \cdot e \bullet f \bullet g \bullet h \cdot \bullet a \oplus b+a \bullet b \prime \bullet e^{\prime} \bullet f \bullet g \bullet h \prime \bullet c \oplus d
$$

Decoded Bit K

The ' K ' column of Table 2 and 3 has a value of one for the four coded vectors K107, K125, K170, and K152. The respective coded bits 'hgfedcba' are listed in Table 18.

Table 18. K-bit Decoding

me	hgfedcba	Coding Label	Na	hgfedcba	Coding Label
K107	000	$a \cdot c \cdot d ’ \cdot f \cdot{ }^{\prime} \cdot{ }^{\prime} \cdot{ }^{\prime} \cdot b \neq e$	K17	01111000	$a^{\prime} \cdot c^{\prime} \bullet d \bullet f \cdot g \bullet h ' \bullet b \neq e 1$
K125	0101	$a \bullet c \bullet d ' \bullet f \cdot \bullet g \bullet h ' \bullet b \neq e$	K1	01101010	${ }^{\prime} \cdot c^{\prime} \cdot d \bullet f \cdot g \cdot h \prime \bullet b \neq e$

The decoding equation for bit ' K ' can be written as follows:
$K=a \bullet c \bullet d \cdot \bullet f^{\prime} \bullet g \bullet h^{\prime} \cdot b \oplus e+a^{\prime} \bullet c^{\prime} \bullet d \bullet f \bullet g \bullet h \prime \bullet b \oplus e$
In the circuit diagram of FIG. 8B, the following net name is used:

$$
\mathrm{n} 60=\mathrm{c}^{\prime} \cdot \mathrm{d} \cdot \mathrm{~g} \cdot \mathrm{~h} \cdot \bullet \mathrm{~b} \oplus \mathrm{e}
$$

Validity Checks

Any received vector which does not fit the trellis of FIG. 2 is invalid. Since only 68 vectors out of the total of 2568 -bit vectors are valid, there are a total of 188 invalid vectors. The circuitry to verify that a vector belongs to the set of valid vectors is less complex than circuitry which flags invalid vectors. The validity checks can be derived directly from the trellis of FIG. 2 by using three sets of overlapping complementary circuits which pass through the center nodes labelled with the numbers 4,6 , and 4.

$$
\begin{aligned}
\text { VALID }=(a \oplus b \bullet c \oplus d+ & b \oplus c \bullet a \oplus d) \bullet(e \oplus f \bullet g \oplus h+f \oplus g \bullet e \oplus h)+ \\
& (c \bullet d \bullet a \oplus b+a \bullet b \bullet c \oplus d) \bullet\left(g \cdot \bullet h^{\prime} \bullet e \oplus f+e^{\prime} \bullet f \cdot g \oplus h\right)+ \\
& \left(a \oplus b \bullet c^{\prime} \bullet d^{\prime}+a^{\prime} \bullet b^{\prime} \bullet c \oplus d\right) \bullet(g \bullet h \bullet e \oplus f+e \bullet f \bullet g \oplus h)
\end{aligned}
$$

In the circuit diagram of FIG. 8B, the following net names are used:

```
n61 =a\oplusb\bulletc\oplusd+b\oplusc\bulleta\oplusd
n63 = c•d\bulleta }\oplus\textrm{b}+\textrm{a}\bullet\textrm{b}\cdot\textrm{c}\oplus\textrm{d
n65 = c'`d'}\cdota\oplusb+a'\bulletb' c c\oplus
n67 = n61 •n62
n69 = n65•n66
```

$\mathrm{n} 62=\mathrm{e} \oplus \mathrm{f} \bullet \mathrm{g} \oplus \mathrm{h}+\mathrm{f} \oplus \mathrm{g} \bullet \mathrm{e} \oplus \mathrm{h}$

PCa	PA -
- PCb	nB ${ }^{\text {O }}$
PCc	nC O
- PCd	ND ${ }^{\text {P. }}$
PCe	PE
- PCf	PF
- PCg	PK
- PCh	NVAL O
- O NCa	
- -NCb	0
- -NCc	0
- ${ }^{\text {a }} \mathrm{NCd}$	0
- -NCe	${ }^{0}$
- -NCf	∞
$\cdots \mathrm{OHCg}$	\pm
- 0 NCh	

Circuit Implementation of the 8B/6B-P Decoder

FIG.8A is a symbol of the decoder circuit showing the inputs and outputs. FIG. 8B is the logic diagram of the decoder circuit. It has not yet been simulated and verified by design tools, so it may be afflicted with minor errors.

Alternate Implementation of Decoder

As for encoding, all the decoding equations for the bits A through F, bit K, and the validity check have complementary features which can be exploited for simplification by the use of the Exclusive OR function. The transformed equations A through F, bit K, and VALID are presented here:
$B=b \oplus\left(a \oplus \overline{b^{\prime}} \bullet \bar{b} \oplus c \cdot c \oplus d^{\prime} \bullet e \oplus f \bullet g \bullet h^{\prime}\right)$
FIG. 8A

$$
C=c \oplus\left(a \oplus b^{\prime} \bullet b \oplus d^{\prime} \bullet d \oplus e \bullet \oplus{ }^{\prime} \cdot g \bullet h^{\prime}\right)
$$

$$
D=d \oplus\left(a \oplus b \bullet b \oplus c^{\prime} \bullet c \oplus \overline{d^{\prime}} \bullet \bar{d} \oplus e^{\prime} \bullet e \oplus f \bullet g \bullet h^{\prime}\right)
$$

$A=a \oplus\left[\left(e \oplus f \bullet g \bullet h^{\prime}\right) \bullet\left(\bar{a} \oplus b \bullet b \oplus c^{\prime} \bullet c \oplus d \bullet d \oplus e^{\prime}+\bar{a} \oplus b \bullet b \oplus e^{\prime} \bullet c \oplus d+\bar{a} \oplus b^{\prime} \bullet b \oplus c^{\bullet} c \oplus d^{\prime}\right)\right]$
$E=e \oplus\left[\left(a \oplus b \bullet g \bullet h^{\prime}\right) \bullet\left(b \oplus c^{\prime} \bullet c \oplus d \bullet d \oplus \overline{e^{\prime}} \cdot \bar{e} \oplus f \bullet c \oplus d^{\prime} \bullet d \oplus \bar{e} \cdot \bar{e}^{\bullet} \oplus f^{\prime}\right)\right]$
$F=f \oplus\left[\left(a \oplus b \cdot g \cdot h^{\prime}\right) \bullet\left(c \oplus d^{\prime} \cdot d \oplus e \bullet e \oplus \overline{f^{\prime}}+b \oplus e^{\prime} \cdot c \oplus d \bullet e \oplus \bar{f}\right)\right]$
$K=d \oplus\left[\left(b \oplus e \cdot g \bullet h^{\prime}\right) \bullet\left(a \oplus c^{\prime} \bullet c \oplus d^{-} \bullet d \oplus f^{\prime}\right)\right]$
VALID $=(a \oplus b \bullet c \oplus d+b \oplus c \cdot a \oplus d) \bullet(e \oplus f \bullet g \oplus h+f \oplus g \bullet e \oplus h)+$
$\left(a \oplus b \bullet c \oplus d^{\prime}+a \oplus b^{\prime} \bullet c \oplus d\right) \bullet\left(e \oplus f \bullet g \oplus h^{\prime}+e \oplus f^{\prime} \cdot g \oplus h\right) \bullet(c \oplus g \bullet d \oplus h+a \oplus e \bullet b \oplus f)$

Implementation Summary

An encoding circuit for the 6B/8-P code can be built with 69 Standard Primitive Logic Cells (2 x INV, 8 x NAND3, 20 x NAND2, 26 x NOR3, 10 x NOR2, 3 x XNOR2). Assuming complementary inputs, there are no more than five cells in any logic path. Similarly, the decoding circuit including the validity check requires no more than 78 cells (2 x INV, 3 x NAND3, 19 x NAND2, 10 x NOR4, 7 x NOR3, 28 x NOR2, 9 x XNOR2) and no more than five cells in any logic path.

References

1. IBM US Patent 5,699,062, Widmer, "DC Balanced $(0,5) 8 B / 10 B$ Transmission Code having Local Parity", Dec. 16, 1997.
2. IBM Research Report RC19106 (83280) 8/13/93, A. X. Widmer, "Error Correction Based on Transmission Code Violations and Parity".
3. IBM US Patent 5,740,186, Widmer, "Apparatus and Method for Error Correction Based on Transmission Code Violations and Parity", Apr. 14, 1998.
4. US Patent Application Serial No. 10\323,520, A. X. Widmer, "Error Correction with Low Latency for Bus Structures".
5. IBM US Patent 4,486,739, Franaszek and Widmer, "Byte Oriented DC Balanced (0,4) 8B/10B Partitioned Block Transmission Code", Dec. 4, 1984.
6. Petar Pepeljugoski, "Comparison of ISI penalty and sensitivity to low-frequency cutoff for 5B/6B, 6B/8B and 8B/10B codes, Internal Memo, dated Sept. 2003.

File Name: Code6B8BLPAR_RC

