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ABSTRACT
In this paper we consider the fundamental problem of routing cus-
tomers among multiple distributed parallel queues to minimize an
objective function based on equilibrium sojourn times, which arises
in a wide variety of distributed computer systems, networks and ap-
plications. We derive optimal solutions to this theoretical schedul-
ing problem under general assumptions for the arrival and service
processes through stochastic-process limits. Our analysis extends
previous studies by providing explicit solutions for the optimal schedul-
ing problem and by considering general single-server queues, in-
cluding correlated arrivals, under both first-come first-serve and
processor-sharing queueing disciplines. In addition, we derive bounds
for the variance of customer waiting times and exploit these results
in order to obtain optimal solutions to the scheduling problem of
interest based on equilibrium sojourn times subject to constraints
on the waiting time variance, which have been ignored in previ-
ous studies. This collection of results allow us to cover risk factors
and incorporate risk management within the context of our opti-
mal scheduling problem. Numerical experiments with data from
a real Web server system demonstrate the potential benefits of our
theoretical results and methods in practice.

1. INTRODUCTION
The fundamental problem of scheduling a stream of customers

among a set of distributed parallel queues to achieve some perfor-
mance objective has received and continues to receive consider-
able attention in the research literature. This is motivated by the
complexity of the theoretical problem and by the importance of the
problem in practice where it arises in a wide variety of distributed
computer applications and distributed computer system and com-
munication network environments. A particular instance of the
general problem is motivated by scalable Web server systems where
incoming user requests are immediately routed to one of a set of
computing nodes by a high-speed, load-balancing router and each
node independently executes the requests routed to it.

We consider the theoretical problem of optimally routing cus-
tomers among multiple distributed heterogeneous single-server par-
allel queues to minimize an objective function based on equilib-

rium sojourn times. This distributed scheduling problem involves
two distinct issues: (i) the routing of customers to the parallel
queues; and (ii) the queueing discipline for serving customers at
each queue. The second issue is addressed by considering both
first-come first-serve (FCFS) and processor sharing (PS) queue-
ing disciplines, given the importance of these disciplines in the
queueing theory literature and in the application areas motivating
our study. We therefore derive optimal solutions to the theoretical
scheduling problem of interest under general assumptions for the
arrival and service processes and under the assumption that cus-
tomers are routed to the parallel queues in a probabilistic manner.
More specifically, we derive explicit solutions for the optimal vec-
tor of probabilities that control the routing of customers upon ar-
rival among a set of heterogeneous general single-server queues
through stochastic-process limits. Our assumption of probabilistic
routing is consistent with previous theoretical studies of this fun-
damental optimization problem, and our solutions can be used for
the parameter settings of other routing mechanisms found in prac-
tice, such as the weights of a weighted round-robin scheme. We
also derive upper bounds for the variance of customer waiting times
within this mathematical framework and exploit these results in or-
der to obtain optimal solutions to the scheduling problem of inter-
est based on equilibrium sojourn times subject to constraints on the
waiting time variance.

Related scheduling problems have received considerable atten-
tion in the research literature. Our scheduling problem is consis-
tent with or a generalization of the problems considered in [29, 30,
4, 23, 5, 9, 27, 8, 15, 25, 13] and the relevant references therein.
A number of these studies [9, 8, 15, 13] have analyzed the per-
formance of specific policies, as opposed to obtaining the optimal
solution. Borst [5] and Sethuraman and Squillante [25] consider the
problem of finding the optimal routing matrix in a multiclass vari-
ant of our scheduling problem, but under the restrictions of Pois-
son arrivals or fluid models for the individual queues. In addition,
these studies provide results on the structural properties of the opti-
mal solution, whereas we derive an explicit solution for the optimal
scheduling problem under general assumptions for the queues. Our
scheduling problem is also related to a global load-balancing op-
timization problem that has received considerable attention in the
literature; e.g., see [29, 30, 4, 23] and the references cited therein.
Ross and Yao [23] consider a problem that is similar to the problem
studied in this paper, with the addition of a dedicated independent
stream of customer arrivals to each server having non-preemptive
priority over the other customers. Bonomi and Kumar [4] consider
a model similar to that in [23] but with additional restrictions, and
in both studies the objective is to minimize the expected response
time taken over the two sets of customers where each arrival stream
is a Poisson process. Our analysis addresses the single-class opti-



mal scheduling problem using different methods than those pro-
posed in [4, 23] and eliminating the restriction of Poisson arrivals
by focusing on general stochastic processes for arrivals. Shanthiku-
mar and Xu [27] consider a scheduling optimization problem that
is most related to our study, but they restrict their attention to inde-
pendent and identically distributed (i.i.d.) arrival and service times
and to the FCFS queueing discipline. Our analysis improves upon
the results in [27] for the problem instance with renewal arrival and
service processes and the FCFS discipline, extends these results to
include the PS queueing discipline, and further considers an impor-
tant form of correlated arrivals based on general regime-switching
processes.

In contrast with [29, 30, 4, 23, 5, 9, 27, 8, 15, 25, 13] and other
related studies, we also derive bounds for the customer waiting time
variance in each of the problem instances considered and then ex-
ploit these results to obtain the solution that minimizes a function
of the equilibrium sojourn times while satisfying constraints on the
waiting time variance. This is important because the potential for
high volatility in the sojourn time performance measure often ob-
served in some system environments can seriously jeopardize the
efficacy of the system if the optimum is only considered within a
first-order context. Hence, it is quite natural to include such second-
order risk factors and use them to address issues related to risk man-
agement in the formulation of the optimal scheduling problem. Fur-
thermore, as part of our derivations of these extensions and other
extensions noted above, we provide bounds to many important per-
formance measures such as the variation of the multidimensional
diffusion process and the moments of the running maximum of the
regime-switching diffusion process.

The scheduling strategy considered in this paper is static in the
sense that the routing probabilities do not change dynamically with
time nor do they depend upon the states of the individual queues.
While dynamic scheduling policies have the potential to outper-
form static policies [34, 11, 31, 10, 18, 32, 28, 14, 16], our focus
in this paper is instead on the classical scheduling problem consid-
ered in previous studies (some of which were noted above) where
the only information available to the routing policy concerns the
overall customer arrival process and the customer service process
at each single-server queue. In addition to its theoretical interest,
this (static) scheduling problem is motivated by distributed system
environments where the complexities and overheads of dynamic
policies tend to outweigh their potential benefits over static poli-
cies. On the other hand, the use of our optimal scheduling solution
in practice can also consist of repeated adjustments of the optimal
routing vector with changes in the system environment, such as
variations in the customer traffic.

The remainder of this paper is organized as follows. We first
present the general model and framework for our analysis of the
scheduling optimization problem. Then in Section 3 we derive the
optimal solution for this problem when customer arrivals follow a
renewal process. Section 4 extends this analysis to consider the
scheduling optimization problem under a general form of corre-
lated arrivals. The results of some numerical experiments are pre-
sented in Section 5, followed by our concluding remarks.

2. MATHEMATICAL MODEL AND FRAME-
WORK

We consider a queueing system consisting of a high-speed router
in front of N heterogeneous single-server parallel queues, as illus-
trated in Figure 1. Customers arrive to the system according to a
general point process A(t) where the (marginal) distribution A of
the corresponding increment process (i.e., interarrival distribution)

on IR+ has mean E[A] = λ−1 and variance Var[A] = σ2
A. Each

customer is routed to one of the queues immediately upon its arrival
according to a probability vector P ≡ [pn]1≤n≤N , independent of
all else; i.e., a customer arrival is independently routed to queue
n with probability pn. The router is assumed to be sufficiently
fast that customers essentially have no service demands and do not
queue at the router. Customer service times are i.i.d. following gen-
eral distributions Sn on IR+ that depend upon the queue where the
customer is served and have mean E[Sn] = µ−1

n and coefficient of
variation C2

Sn
, n = 1, . . . , N , mutually independent of the arrival

and routing processes.

.
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Figure 1: Queueing Network Model of Distibuted Parallel
Queues

Each of the N single-server queues independently serves the cus-
tomers routed to it under either an FCFS or PS queueing discipline.
Let Zn be an independent geometrically distributed random vari-
able having mean p−1

n . Then the customer arrival process for queue
n is a general point process An(t) with (marginal) interarrival dis-
tribution An given by

An =

ZnX
k=1

Xk, (1)

where the sequence of random variables X1, X2, . . . follow the in-
crement process of the exogenous arrival point process A(t). Let
λn = E[An]−1 be the mean arrival rate of customers to queue n,
and let ρn = λn/µn be the traffic intensity for queue n.

In order to be able to handle general arrival and service processes
and obtain explicit solutions to the scheduling optimization prob-
lems of interest, we consider stochastic-process limits for each of
the N queues under the routing vector P as the basis of a general
mathematical framework for our analysis. The core idea of this
approach is to approximate the actual queueing processes by more
mathematically tractable limiting processes, i.e., reflected diffusion
processes in our case, each of which is exact in the limit as the
queueing system approaches its critical value. Hence, the queue-
ing analysis of our mathematical framework consists of two major
components: the verification of the approximation, and the math-
ematical analysis of the approximation process. The verification
is usually carried out through proving various types of weak con-
vergence in probability measures induced by the queueing process;
refer to Billingsley [3] and Whitt [33] for additional details. The



typical procedure consists of applying different scalings of time
and space for the queueing process, and then the stochastic-process
limits are obtained as the scaling parameters go to infinity. This
is the approach taken in Section 3 to handle our queueing sys-
tem under renewal arrival processes. When the random variables
of the interarrival and service times have r finite higher moments,
then the desired stochastic-process limit can be characterized by
a pointwise estimation of the original process and the approxima-
tion process, where the pointwise estimation improves according
to o(T 1/r) and converges to o(log(T )) for finite moment generat-
ing functions. The pointwise estimation is termed the strong ap-
proximation, and it can be easily shown that strong approximation
implies weak convergence; see, e.g., [6, Section 5.5.4] for details.
This is the approach taken in Section 4, where our main contribu-
tion lies in the analysis of the approximation process. More specif-
ically, we analyze a reflected Markov-modulated diffusion process
that represents the stochastic-process limit for each single-server
queue under a regime-switching arrival process. While this class
of stochastic processes is important from a theoretical perspective,
our choice is also motivated by recent studies showing this class of
regime-switching processes to accurately model the type of corre-
lated arrivals found in practice in system environments such as Web
sites [21, 22]. Using integration equation techniques, we are able to
derive a probabilistic characterization of the running maximum of
the Markov-modulated diffusion process, which is the key ingredi-
ent in obtaining the statistics of our reflected diffusion process. In
contrast to the rich literature on convergence results, the research
literature on the analysis of diffusion proccesses as approximations
for general queueing networks is very limited with few known re-
sults except for the simplest case, which is that of the reflected
Brownian motion. Our study therefore provides an important step
forward in an area that has many applications. Moreover, the result
is of independent interest its own right, and also can be applied in
areas such as stochastic control and mathematical finance.

The final major component of our mathematical framework is
to exploit these diffusion approximations of the distributed parallel
queues to calculate the vector of optimal routing probabilities. Let
T be the random variable denoting the equilibrium sojourn time for
customers in the queueing system. From the law of total probabil-
ity we have E[T ] =

PN
n=1 E[Tn] ·P[ customer served at queue n ],

where E[Tn] is the equilibrium sojourn time of customers served at
queue n. Let hn < ∞ be the holding cost, or weight, per cus-
tomer per unit time at queue n. One of the scheduling optimization
problems of interest in this paper is then given by

(OR1) min

NX
n=1

hn E[Tn], (2)

s.t.
NX

n=1

pn = 1, pn ≥ 0. (3)

This formulation is consistent with the objective function consid-
ered in [27]. An alternative optimization problem of interest is ob-
tained by replacing the objective function in (2) with

(OR2) min

NX
n=1

hn E[Tn] pn, (4)

which is consistent with the objective function considered in [5,
25]. In both scheduling optimization problems, the decision vari-
ables are the routing probabilities pn, n = 1, . . . , N . The next
two sections will determine the optimal routing probability vector
both from among all possible solutions and from among those so-
lutions whose variance satisfy certain constraints, under different

assumptions for the exogenous arrival process.

3. RENEWAL ARRIVALS
In this section we consider the case where A(t) is a renewal pro-

cess. Thus, under the independent probabilistic splitting of arrivals
in our model, the arrival process to each of the N queues is also
a renewal process with interarrival distribution as expressed in (1).
From this expression and Wald’s equation [24], we have

E[An] = λ−1
n = λ−1p−1

n ,

Var[An] =
σ2

Apn + λ−2(1 − pn)

p2
n

,

C2
An

= λ2 σ2
A pn + 1 − pn,

where C2
An

is the squared coefficient of variation for the interarrival
distribution at queue n. Each queue n is therefore a GI/GI/1 queue
with arrival and service processes having mean rates λn and µn

and squared coefficients of variation C2
An

and C2
Sn

, respectively.

3.1 FCFS queueing discipline
Our goals are to: (i) establish the stochastic-process limit for

each GI/GI/1 FCFS queue n; (ii) analyze this diffusion process to
obtain an approximation for the corresponding equilibrium sojourn
time; and (iii) use this diffusion approximation to calculate the vec-
tor of optimal routing probabilities. Let un,k represent the time
between the k − 1st and kth customer arrivals at queue n, and let
vn,k represent the service time of the kth customer arrival, k ≥ 1.
Define Un,k ≡ u1,k + . . .+un,k, Vn,k ≡ v1,k + . . .+vn,k, k ≥ 1,
NU

n (t) ≡ max{� : Un,� ≤ t, � ≥ 0}, NV
n (t) ≡ max{� : Vn,� ≤

t, � ≥ 0}, t ≥ 0. Let Cn(t) =
PNU

n (t)

�=1 Vn,� be the cumulative in-
put process, and let Xn(t) = Cn(t)− t be the associated net-input
process, both for queue n, t ≥ 0. We can define the workload pro-
cess for queue n by Ln(t) ≡ Xn(t)− inf{X(s)∧ 0 : 0 ≤ s ≤ t}
and the corresponding queue length process by Qn(t) ≡ NU

n (t)−
NV

n (Cn(t) − Ln(t)), where a ∧ b ≡ min{a, b}, t ≥ 0.
Now let um

n,k and vm
n,k represent the interarrival time and the

service time of the kth customer in the mth instance of queue n
in a sequence of instances of queue n, k ≥ 1. The stochastic-
process limits are then obtained for scaled versions of the stochas-
tic processes associated with the mth instance of queue n such
that the traffic intensities for the sequence of queue n instances
increase successively to the critical value of 1 as m → ∞. In es-
tablishing these stochastic-process limits, we will be using the the-
ory of weak convergence of probability measures on the space D
of all right-continuous functions with finite left-limits on [0,∞);
refer to Billingsley [3] and Whitt [33]. Assuming the sequence
{um

n,k, vm
n,k} is stationary, we define a sequence of queues with

(λm
n )−1 = E[um

n,1] and (µm
n )−1 = E[vm

n,1] which vary such that
ρm

n = (1−m−1/2) → 1 as m → ∞, where ρm
n is the traffic inten-

sity for the mth instance of queue n. Let Lm
n (t) and Qm

n (t) be the
scaled random elements of D associated with the above workload
and queue length processes defined as Lm

n (t) ≡ m−1/2Lm
n (mt)

and Qm
n (t) ≡ m−1/2Qm

n (mt), t ≥ 0, respectively. It then can be
shown that

Lm
n ⇒ Ln as m → ∞, (5)

Qm
n ⇒ Qn as m → ∞, (6)

where ⇒ denotes convergence in distribution, and Ln and Qn are
reflected Brownian motion (RBM) processes.

The stochastic-process limit Qn in (6) for the GI/GI/1 FCFS
queue n can be shown to be an RBM on IR+ with drift λn−µn < 0



and variance λn(C2
Sn

+ C2
An

). More specifically, suppose Qn to
be an RBM defined in this manner and let Qn(t) be the length of
queue n at time t as defined above. Upon applying Theorem 6.16
in [6], we have

sup
0≤t≤T

|Qn(t) − Qn(t)| = o(T 1/r), a.s. (7)

When A and Sn have finite moment generating functions at a neigh-
borhood of zero, this can be further improved to

sup
0≤t≤T

|Qn(t) −Qn(t)| = o(log(T )), a.s., (8)

or equivalently

P[||Qn(t) −Qn(t)||T > C1 log T + x] ≤ C2e
−C3x, (9)

where Ci, i = 1, 2, 3 are constants that are independent of T and
x, and || · ||T denotes the supremum norm for functions on [0, T ].

We know that the RBM with (negative) drift λn − µn < 0 and
variance λn(C2

Sn
+C2

An
) has an invariant measure, which is an ex-

ponential distribution with rate −2(λn−µn)λ−1
n (C2

Sn
+C2

An
)−1.

Using this diffusion approximation, the equilibrium number of cus-
tomers at queue n can be approximated by

E[Qn] ≈ ρn +
λn(C2

An
+ C2

Sn
)

2(µn − λn)
, (10)

and upon applying Little’s Law we obtain the corresponding dif-
fusion approximation for the equilibrium sojourn time at queue n
as

E[Tn] ≈ 1

µn
+

C2
An

+ C2
Sn

2(µn − λpn)

≈ 1

µn
+

λ2σ2
Apn + 1 − pn + C2

Sn

2(µn − λpn)
. (11)

Substituting this into (2) and (4) respectively yields (OR1-IID-FCFS):

min

NX
n=1

hn

»
1

µn
+

λ2σ2
Apn + 1 − pn + C2

Sn

2(µn − λpn)

–
; (12)

and (OR2-IID-FCFS):

min
NX

n=1

hn

»
1

µn
+

λ2σ2
Apn + 1 − pn + C2

Sn

2(µn − λpn)

–
pn; (13)

both subject to (3).
The solution for (OR1-IID-FCFS) can be obtained in closed form

by applying the Lagrange method, which yields the optimal routing
probability for queue n as follows

pn =
µn

λ
−
PN

n=1 µn − λ

λ
×q

hn(λ2σ2
A + λ2 + C2

Sn
)λ − λ2hnµnPN

n=1

q
hn(λ2σ2

A + λ2 + C2
Sn

)λ − λ2hnµn

. (14)

We observe that the objective function in (OR2-IID-FCFS) is con-
vex in the decision variables, and thus its solution can be effi-
ciently computed using known methods in convex optimization;
see, e.g., [2].
Remark: The above analysis holds for i.i.d. interarrival and ser-
vice times that follow general distributions with light-tails. While
this includes distributions with the so-called heavy-tailed property [1],
it does not directly include heavy-tailed distributions for the i.i.d.
interarrival and/or service times. However, our framework based
on stochastic-process limits supports an analysis of such queues.
Refer to [33, 17] for the technical details.

3.2 PS queueing discipline
Our goals in this section are the same as those of the previous

section. An identical sequence of arguments could be made to
show that the stochastic-process limit for the workload process of
the GI/GI/1 PS queue n is as expressed in (5). In fact, it can be
easily established that this result holds for the limiting workload
process of any GI/GI/1 queue under a work conserving queueing
discipline. The stochastic-process limit for the queue length pro-
cess Qn at the GI/GI/1 PS queue n also can be shown to be an
RBM on IR+, but the mean of the diffusion approximation for the
distribution of this stochastic-process limit generally differs from
that of the GI/GI/1 FCFS queue of the previous section. For our
diffusion approximation under the PS queueing discipline, we rely
on Grishechkin [12, 26]. The stochastic-process limit Qn in (6) for
the GI/GI/1 PS queue n can be shown to be an RBM on IR+ with
drift [(1+ C2

Sn
)/2](λn −µn) < 0 and variance λn(C2

Sn
+C2

An
).

We know that the RBM with (negative) drift [(1+C2
Sn

)/2](λn−
µn) < 0 and variance λn(C2

Sn
+ C2

An
) has an invariant measure,

which is an exponential distribution with rate −(1 + C2
Sn

)(λn −
µn)λ−1

n (C2
Sn

+ C2
An

)−1. Using this diffusion approximation, the
equilibrium number of customers at queue n can be approximated
by

E[Qn] ≈ ρn +
λn(C2

An
+ C2

Sn
)

(1 + C2
Sn

)(µn − λn)
, (15)

and upon applying Little’s Law we obtain the corresponding dif-
fusion approximation for the equilibrium sojourn time at queue n
as

E[Tn] ≈ 1

µn
+

C2
An

+ C2
Sn

(1 + C2
Sn

)(µn − λpn)
,

≈ 1

µn
+

λ2σ2
Apn + 1 − pn + C2

Sn

(1 + C2
Sn

)(µn − λpn)
. (16)

Note that the result in (16) is identical to the corresponding FCFS
result in (11) when C2

Sn
= 1. Substituting this result into (2) and

(4) respectively yields (OR1-IID-PS):

min
NX

n=1

hn

»
1

µn
+

λ2σ2
Apn + 1 − pn + C2

Sn

(1 + C2
Sn

)(µn − λpn)

–
; (17)

and (OR2-IID-PS):

min
NX

n=1

hn

»
1

µn
+

λ2σ2
Apn + 1 − pn + C2

Sn

(1 + C2
Sn

)(µn − λpn)

–
pn; (18)

both subject to (3).
The solution for (OR1-IID-PS) can be obtained in closed form

by applying the Lagrange method, which yields the optimal routing
probability for queue n as follows

pn =
µn

λ
−
PN

n=1 µn − λ

λ
×r

hn[µn(λσ2
A
−1)+λ(1+C2

Sn
)]

λ(1+C2
Sn

)

PN
n=1

r
hn[µn(λσ2

A
−1)+λ(1+C2

Sn
)]

λ(1+C2
Sn

)

. (19)

We observe that the objective function in (OR2-IID-PS) is con-
vex in the decision variables, and thus its solution can be effi-
ciently computed using known methods in convex optimization;
see, e.g., [2].



3.3 Optimal routing with risk management
Both sets of solutions above minimize functions of the equilib-

rium sojourn times without any conditions beyond having the rout-
ing probabilities sum to 1. For reasons noted above, we also would
like to determine the optimal solution when side constraints on the
variance of customer waiting times are added. Specifically, we
would like to find the optimal solution subject to some bound on
the customer waiting time variance.

The first step is to derive an expression for the waiting time vari-
ance. In order to have our results apply to both sets of solutions
above (and the set of solutions provided below), we consider for
each queue n a generic RBM Rn having drift ζn < 0 and variance
ωn. We know that the marginal distribution of the steady-state dis-
tribution of this limiting stochastic process is an exponential dis-
tribution with rate −2ζn/ωn. However, it is extremely difficult
to determine the correlation between different variables, which is
required for an exact calculation of the variance of the customer
waiting times. We therefore use an upper bound on the variance as
follows:

Var

"
NX

n=1

pnRn

#
= E

"
NX

n=1

pnRn

#2

−
 

E

"
NX

n=1

pnRn

#!2

≤ N

NX
n=1

p2
nE [Rn]2 −

 
E

"
NX

n=1

pnRn

#!2

= 2N
NX

n=1

p2
nω2

n

(−2ζn)2
−
 

NX
n=1

pnωn

−2ζn

!2

Hence, the added condition based on the variation as a risk factor
can be surrogated by the following side constraint

2N

NX
n=1

p2
nω2

n

(−2ζn)2
−
 

NX
n=1

pnωn

−2ζn

!2

≤ α. (20)

The optimization problems (OR1-IID-FCFS), (OR2-IID-FCFS), (OR1-
IID-PS) and (OR2-IID-PS) are then solved as described above but
with the additional constraint given in (20).

4. REGIME-SWITCHING MODEL
It has been frequently noted that many of the systems modeled

by queueing networks exhibit various correlations and fluctuations
in the arrival and service processes. One effective way to capture
these correlations and fluctuations is to assume a regime-switching
model for the processes. For the type of systems motivating our
study, such correlations structures are especially important in the
arrival process and thus this is our focus herein, although our anal-
ysis can be extended beyond this case. More concretely, we assume
that there is an independent continuous Markov chain δ(t) taking
on values 0, 1, · · · , K with a time homogeneous transition proba-
bility, such that at each Markov state, the arrival rate is Ai. In most
systems, a Markov chain of two state is sufficient to represent the
“peak” and “off-peak” behavior. Hence, to elucidate the exposition,
we shall assume in the sequel that the δ(t) is a continuous Markov
chain on 2 states, i.e., 0 and 1. The analysis can be carried out with
no difficulty for a general finite-state Markov chain.

We start with some strong approximation results for this Markov
modulated queueing system. As in the previous section, we fo-
cus on one of the single-server queues, but instead drop the queue
index n to reduce tedious notational issues. Consider a generic
single-server queue with intervarrival process Â, whose mean is
1/λ̂δ and coeffient of variation is C2

â,δ , and service time distribu-
tion S, whose mean is µ̂δ and coefficient of variation is C2

ŝ,δ . The

subscript δ indicates the state of the Markov chain δ(t). Strong
approximation results can be established for the queueing process.
We then derive an expression for the steady state distribution of
the approximation process, which is a Markov modulated diffusion
process. In the end, we can apply the analysis to obtain the optimal
routing probability for our distributed parallel system.

4.1 Strong approximation
Suppose that δ(t) has the following generator matrix Q = (qij)

with

Q =

„
−γ0 γ0

γ1 −γ1

«
.

We will show that the queue length of this δ-modulated queueing
system can be approximated by a δ-modulated diffusion process. It
should be noted that prior to our work, Choudhury, et al. [7] studied
a similar system. However, their diffusion approximation result is
more restrictive in that it was obtained by forcing the Markov state
to change at the same rate. Our work is more along the lines of
Massey and Mandelbaum [19], in which the queueing process is
approximated on a pointwise basis, and the modulating process will
be the same for the approximating process.

As we showed in the previous section, the queue length process
in a generic GI/GI/1 queue can be approximated by a diffusion
process through the strong approximation. For the Markov mod-
ulated queueing system, between two consecutive time epochs in
which δ(t) changes its state, the queue process behaves like an
GI/GI/1 queue, and thus it can be approximated in a pointwise
manner by a diffusion process. More specifically, when δ(t) = 0,
the queue length process Q0(t) can be strongly approximated by
the following reflected Brownian motion,

X0(t) = σ0W
0(t) + β0t + sup

0≤s≤t
[−σ0W

0(t) − β0t]
+,

where β0 ≡ λ̂0 − µ̂0 and σ0 =
q

λ̂0(C2
â,0 + C2

ŝ,0). Moreover,

there exist constants C0
1 , C0

2 and C0
3 such that

P[||Q0 − X0||T > C0
1 log T + x] ≤ C0

2e−C0
3x

Similarly, the limiting process for Q1(t), i.e., the queue length pro-
cess when δ(t) = 1, is given by

X1(t) = σ1W
1(t) + β1t + sup

0≤s≤t
[−σ1W

1(t) − β1t]
+,

where β1 ≡ λ̂1 − µ̂1 and σ1 =
q

λ̂1(C2
â,1 + C2

ŝ,1), with

P[||Q1 − X1||T > C1
1 log T + x] ≤ C1

2e−C1
3x.

Upon combining them, we have the following result.

THEOREM 4.1. Let Qδ(t) be the queue length process of a Markov-
modulated queueing process, and Z̃δ(t) bethe following Markov
modulated diffusion process,

Z̃δ(t) ≡ σδW
δ(t) + βδt + sup

0≤s≤t
[−σδW

δ(t) − βδt]
+,

then Z̃δ(t) is a strong approximation of Qδ(t).

PROOF. See the appendix.

4.2 Analysis of Markov modulated Brownian
motion

Now we can turn our focus to the probabilistic analysis of the
reflected δ(t)-modulated diffusion process. To proceed withing the



desired optimization framework, several key quantities regarding
the reflected Markov modulated Brownian motions need to be in
place.

First, recall that the stationary average queue length is approxi-
mated by

1

t

Z t

0

E[Z̃δ(s)]ds,

where

E[Z̃δ(s)] = E[σδW
δ(t) + βδt] + E[ sup

0≤s≤t
[−σδW

δ(t) − βδt]
+].

(21)
The first term in Equation (21) can be found via the following
lemma. To simplify the presentation, we shall henceforth assume
that σδ = 1, noting that this assumption can of course be removed
easily when applying our analysis to any real system.

LEMMA 4.2. Let mδ(t) be the mean of the diffusion process
W δ(t)+βδt at time t with initial condition that δ(0) = δ ∈ {0, 1}.
We then have

m0(t) =
γ1β0 + γ0β1

γ0 + β1
t +

γ0(β0 − β1)

(γ0 + γ1)2
[1 − e−(γ0+γ1)t],

m1(t) =
γ1β0 + γ0β1

γ0 + γ1
t +

γ1(β0 − β1)

(γ0 + γ1)2
[1 − e−(γ0+γ1)t].

PROOF. See the appendix.

The second term in Equation (21) can be derived via direct cal-
culations on distributions of the running maximum of a Markov-
modulated diffusion process. Letting Mδ(t) be the running maxi-
mum process with δ(0) = δ ∈ {0, 1}, and upon conditioning on
the time of the first jump τδ of the Markov chain, we then have the
following recursion for the distribution of Mδ(t).

LEMMA 4.3.

P[M0(t) ≥ x] = P[M0(t) ≥ x]P[τ0 ≥ t]

+

Z t

0

P[M0(s) ≥ x]Fτ0(ds)

+

Z t

0

Z x

−∞
P[M1(t − s) ≥ x − y] ×

P[M0(s) ≤ x|X0(s) ∈ dy] ×
FX0(dy)Fτ0(ds) (22)

and

P[M1(t) ≥ x] = P[M1(t) ≥ x]P[τ1 ≥ t]

+

Z t

0

P[M1(s) ≥ x]Fτ1(ds)

+

Z t

0

Z x

−∞
P[M0(t − s) ≥ x − y] ×

P[M1(s) ≤ x|X1(s) ∈ dy] ×
FX1(dy)Fτ1(ds), (23)

where Mδ(t) denotes the running maximum of a Brownian mo-
tion Xδ with drift βδ and variance σδ , Fτδ (ds) denotes the density
function of the duration of the Markov chain δ(t) at state δ = 0, 1,
and FXδ (dy) denotes the density function of the value of the diffu-
sion process X(δ)(t).

Furthermore, upon taking the Laplace transform on both sides of
the equation in the above lemma and expressingZ ∞

0

P (M0(t) ≥ x)e−θtdt = G̃0(x, θ), θ > 0,

we obtain

THEOREM 4.4.

G̃0(x, θ) = H1(x, θ) +
4X

i=1

Z ∞

0

CiG̃
0(y, θ)eKiydy (24)

G̃1(x, θ) = H2(x, θ) +

4X
i=1

Z ∞

0

DiG̃
1(y, θ)eLiydy (25)

where

H1(x, θ) = F1(x, θ) + F2(x, θ)

+
γ0

A1(A1 − µ0)

Z ∞

0

F̄1(z, θ)dz

− γ0

A2(A2 − β0)

Z ∞

0

F̄2(z, θ)dz

− γ0

A2(A2 − β0)

Z ∞

0

F̄1(z, θ)dz

+
γ0

A1(A1 − β0)

Z ∞

0

F̄2(z, θ)dz,

H2(x, θ) = F̄1(x, θ) + F̄2(x, θ)

+
γ1

Ā1(Ā1 − β1)

Z ∞

0

F1(z, θ)dz

− γ1

Ā2(Ā2 − β1)

Z ∞

0

F2(z, θ)dz

− γ1

Ā2(Ā2 − β1)

Z ∞

0

F1(z, θ)dz

+
γ1

Ā1(Ā1 − β1)

Z ∞

0

F2(z, θ)dz,

F1(x, θ) =

Z ∞

0

P (τ0 ≥ t)P (M0(t) ≥ x)e−θtdt,

F2(x, θ) =

Z ∞

0

Z t

0

P (M0(t) ≥ x)γ0e
−γ0se−θtdt,

F̄1(x, θ) =

Z ∞

0

P (τ1 ≥ t)P (M1(t) ≥ x)e−θtdt,

F̄2(x, θ) =

Z ∞

0

Z t

0

P (M1(t) ≥ x)γ1e
−γ1se−θtdt

L1 = −(β0 − A1) + β1 − Ā1, L2 = β1 − Ā1 − (β0 + Ā2),

L3 = −(β0 + A1) + β1 − Ā2, L4 = −(β0 + A2) + β1 − Ā2;

K1 = −(β1 − Ā1) + β0 − A1, K2 = β0 − A1 − (β1 + Ā2),

K3 = −(β1 + Ā1) + β0 − A2, K4 = −(β1 + Ā2) + β0 − A2;

D1 =
γ1γ0

A1Ā1(Ā1 − β0)
, D2 = − γ0γ1

Ā1A2(A2 − β0)
,

D3 = − γ0γ1

Ā2A1(2Ā2 + Ā1 − β0)
, D4 =

γ0γ1

A2Ā2(2Ā2 + A2 − β0)
;

C1 =
γ1γ0

A1Ā1(A1 − β1)
, C2 = − γ0γ1

A1Ā2(Ā2 − β1)
,

C3 = − γ0γ1

A2Ā1(2A2 + A1 − β1)
, C4 =

γ0γ1

A2Ā2(2A2 + Ā2 − β1)
;

A1 =
q

2θ + 2γ0 + β2
0 , A2 =

q
2θ + 2γ0 + 2β2

0 ,

Ā1 =
q

2θ + 2γ1 + β2
1 , Ā2 =

q
2θ + 2γ1 + 2β2

1 .



PROOF. See the appendix.

Observe that Equations (24) and (25) are standard integral equa-
tions of the second type, whose solutions take the following form
(e.g., see [20])

G̃0(x, θ) = H(x, θ) +

Z ∞

0

4X
i=1

CiH(y, θ)eKiydy (26)

Thus, we obtain the Laplace transform of the distribution of the
running maximum process with respect to time t. Various algo-
rithms can be employed to obtain the inverse of the transform. Our
interest is to compute the steady state distribution of the reflected
diffusion process, for which we observe

f(β1, β0, γ0, γ1) (27)

= lim
t→∞

1

t

Z t

0

m0(s) − M0(s)ds

= lim
t→∞

1

t

Z t

0

m0(s) − [

Z ∞

0

P[M0(s) ≥ x]dx]ds

= lim
t→∞

lim
η→0

1

t

Z t

0

m0(s) − [

Z ∞

0

eηxP[M0(s) ≥ x]dx]ds

The Laplace transform with respect to t for the functionZ t

0

Z ∞

0

eηxP[M0(s) ≥ x]dx

is 1
θ
G̃(η, θ). Hence, following Karamata’s Tauberian theorem and

Equation (27), we conclude that

f(β0, β1, γ0, γ1)

= m̃0(0) − lim
η→0

lim
θ→0

Z ∞

0

eηx[H(x, θ)

+

Z ∞

0

4X
i=1

CiH(y, θ)eKiydy]dx (28)

where m̃0(θ) denotes the Laplace transform of m0(t) with respect
to time t.

Finally, given the parameters for the particular Markov modu-
lated queueing system of interest, the optimal routing probabilities
can be obtained by solving the following optimization problem

min

NX
n=1

hnf(pnλ0 − µn, pnλ1 − µn, γ0, γ1), (29)

s.t.
NX

n=1

pn = 1, pn ≥ 0

where λ0 = π0λ and λ1 = π1λ denote the arrival rate when δ(t)
takes on the value of 0 and 1, respectively, π is the invariant prob-
ability vector of Q, and the function f is given in (28).

5. NUMERICAL EXPERIMENTS
We conducted many experiments to further investigate the opti-

mal routing problem and our solution. In this section we present
two sets of such results. The first set of experiments exploit our
closed-form results in previous sections. We compare the different
output of systems under FCFS or PS discipline, and also observe
the impact of the variance of the arrival and service process upon
the optimal routing probability. The second set of experiments are
based on a comparison between the system performance obtained

by simulating the access logs of a commercial Web site with a load-
balancing router and the corresponding performance obtained by
simulating the same access logs under our optimal routing solution.

5.1 Comparison of Different Disciplines and
the Impact of Variance

Consider a system that consists of an arrival stream with unit
arrival rate, two servers with mean service time 0.4 and 0.5. The
holding costs, or weights, for the two queues are h1 = 2 and h2 =
3. In the first experiment, we set the coefficient of variation (CV)
for the two service time distributions to be 2 and 1.5, respectively,
and then we vary the CV for the interarrival distribution from 0.6
to 1.5. In the second experiment, we fix the CV for the interarrival
distribution and that of the service time at the first server, and then
we vary the CV of the service time at the second server from 0.6
to 1.5. The optimal routing probabilities for the queues with FCFS
and PS disciplines are calculated for both experiments. In Figure 2,
the optimal routing probability is plotted. We can observe that the
differences between the two disciplines are quite visible. The FCFS
queues are more sensitive to changes in variance. Moreover, such
changes in variance can yield trends in opposite directions for the
FCFS and PS queues.
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Figure 2: Impact of Variance on Optimal Solution under FCFS
and PS Disciplines

5.2 Comparison with Web Site Data
While the main contribution of this paper is the foregoing collec-

tion of mathematical results, in this section we briefly consider the
potential benefits of our optimal solution based on data from a real
Web site. Specifically, we use the access log data from a large-scale
international commercial Web site that consists of 3 complexes of
servers at different locations, among which the overall offered traf-
fic is geographically partitioned. That is, traffic originating from
any given geographical area is directly routed to an assigned (pri-
mary) server-complex location (unless major portions of a server-
complex location are taken off-line for some reason, in which case
the other 2 locations will take over and serve this traffic). Each
server-complex location consists of 4 server nodes to which in-
coming requests are routed by a front-end, high-speed router. This
router attempts to balance the per-location load across the set of
server nodes within a server-complex location, where each server
node directly serves the client requests routed to it and operates
independently of the other nodes.



Every server node comprising the Web site maintains its own
access log of all client requests that are served by the node. Several
months worth of data from 2003 was available to us. During this
time period, the Web site as a whole served more than 200 requests
per second on average, with a maximum of more than 700 requests
per second during peak traffic intervals. Two stationary intervals
of the access logs were used in our study, one being representative
of stationary peak-traffic intervals and one being representative of
stationary off-peak traffic intervals. Both intervals consist of a few
hours worth of traffic at the Web site. For our purposes here, we
are most interested in the arrival time and service time of the client
requests served by each of the server nodes at all 3 locations. The
access log contains the arrival time of each client request and the
number of bytes comprising the request. We use a simple function
of the byte size of each request (which has been validated against
system measurements) to obtain the corresponding service time,
although it is important to point out that changing the service time
distribution did not change the trends of our results. By simulating
each of these server nodes as a G/G/1 queue under the PS queueing
discipline that is fed as input the sequence of arrival and service
times from the corresponding access logs, we obtain an estimate of
the performance exhibited at the Web site under the existing per-
location routers. For comparison with our approach, we first used
the access log data to compute the parameters of our results for the
corresponding PS queue in Sections 3 and 4, and then we used our
optimal solution for (OR2) with h1 = . . . = h4 = 1 (and no side
constraints) to obtain the optimal vector of routing probabilities.
These probabilities were directly used as the weights of a weighted
round-robin policy that was applied to the aggregate access log for
each location in order to obtain the per-node traces for each of the
4 corresponding server nodes. We then used the same approach to
simulate each server node as a G/G/1 PS queue, but instead with
these per-node traces as input, in order to obtain an estimate of the
performance under our optimal routing solution.

Table 1 provides the corresponding equilibrium sojourn time re-
sults for both peak and off-peak traffic intervals. In particular, we
illustrate the performance of the 12 server nodes under our opti-
mal routing solution relative to the performance under the routing
policy employed at the existing Web site. Negative values imply
that our optimal policy provides lower equilibrium sojourn times
than those obtained under the existing-system routing policy and
quantify such performance improvements, whereas positive values
indicate improvements in the equilibrium sojourn time under the
existing per-location load-balancing routers.

Off-Peak Traffic Peak Traffic

Node 1 -0.2219 0.0913
Node 2 -0.2972 0.7288
Node 3 -0.0535 -0.4046
Node 4 0.0177 -0.6385
Node 5 -0.2989 -0.9643
Node 6 -0.6589 -0.9460
Node 7 -0.8401 -0.9441
Node 8 -0.6710 -0.9673
Node 9 -0.0762 -0.2328
Node 10 -0.3178 -0.1804
Node 11 -0.0698 0.1984
Node 12 0.0119 -0.6373

Table 1: Relative per-node equilibrium sojourn time measures
under optimal and existing-system routing policies.

The results for each server node in Table 1 show that, for the
off-peak traffic intervals, the optimal routing solution always pro-

vides better equilibrium sojourn times than the per-location load-
balancing router employed in the existing system. The only excep-
tions to this are node 4 and node 12, but the difference in each case
is less than 2%. For the peak traffic intervals, we find even more
significant improvements in performance under the optimal rout-
ing policy. The only exceptions to this are nodes 1, 2 and 11, but in
these cases there are relatively larger performance improvements at
other server nodes in the same location. We also observe that the
optimal routing policy tends to provide fairly consistent equilib-
rium sojourn times at each of the server nodes of a given location,
but this is not always the case under the existing system policy as
illustrated in Table 1. Most importantly, the overall equilibrium so-
journ time across all 3 locations (i.e., the objective function used
in this set of experiments) is always better under our optimal rout-
ing solution than under the per-location load-balancing router em-
ployed in the existing system.

6. CONCLUSIONS
In this paper we studied the theoretical problem of optimally

routing customers among multiple distributed heterogeneous single-
server parallel queues to minimize an objective function based on
equilibrium sojourn times. Our study makes the following contri-
butions:

• We derived explicit solutions to the optimal routing problem
under GI/GI/1 FCFS queues and different objective func-
tions, extending and improving the results in [27];

• We derived explicit solutions to the optimal routing problem
under GI/GI/1 PS queues and different objective functions;

• We derived a strong approximation for a reflected diffusion
process, including a probabilistic characterization of the run-
ning maximum of the regime-switching diffusion process;

• We derived explicit solutions to the optimal routing problem
under G/GI/1 queues with correlated arrivals and different
objective functions, where the correlated arrivals are charac-
terized by the general class of regime-switching processes;

• We derived upper bounds for the variance of waiting times
that are used as side constraints for each of the stochastic
routing optimization problems.
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APPENDIX

A. APPENDIX

A.1 Proof Theorem 4.1
We define the random variable N(t) to be the number of jumps

that occur between time 0 and t. It then is clear that for each x,
there exists an M > 0 such that P[N(T ) > M ] ≤ C2e

−C3x.
Thus,

P[ sup
0≤t≤T

|Qδ(t) − Z̃δ(t)| > C1 log T + x]

≤
MX

k=0

P[ sup
0≤t≤T

|Qδ(t) − Z̃δ(t) > C1 log T + x, N(T ) = k]

+P[N(T ) > M ]

≤
MX

k=0


P[ sup

0≤t≤T
|Q0(t) − Z̃0(t)| >

C1 log T + x

k
, N(T ) = k]

+ P[ sup
0≤t≤T

|Q1(t) − Z̃1(t)| >
C1 log T + x

k
, N(T ) = k]

ff
+P[N(T ) > M ]

≤
MX

k=0

2C2e
−C3xP[N(T ) = k] + P[N(T ) > M ] ≤ 3C2e

−C3x

The Theorem is now immediate by the equivalence property of
strong approximations.

A.2 Proof of Lemma 4.2
Starting from time 0, suppose we are in state 0. Then between

time 0 and ∆t, we either see at least one jump from state 0 to 1,
with probability 1 − e−γ0∆t, or we stay in state 0, with probabil-
ity e−γ0∆t and the process starts again afresh, as a result of the



memoryless property of the exponential function. Since
R t

0
dt =R ∆t

0
dt +

R t

∆t
dt, we have

m0(t) = E

Z t

0

βδ(s)ds{1(jumps) + 1(nojumps)}

= P{nojump}∆tβ0 + m0(t − ∆)

+ P{jumps}(1 − e−γ0∆t)m0(t + ∆t ∗ η)

+ O((∆t)2) |η| ≤ 1

= (1 − ∆tγ0)β0∆t + m0(t) − ∆tm′
0(t)

+ γ0∆tm1(t) + O((∆t)2).

A Taylor’s series expansion yields

m′
0(t) + γ0m0(t) − γ0m1(t) = β0,

m′
1(t) + γ1m1(t) − γ1m0(t) = β1,

and after some simple calculations, we obtain

m′′
0 (t) + (γ0 + γ1)m

′
0(t) = γ1β0 + γ0β1,

m0(0) = 0, m′
0(0) = β0,

m′′
1 (t) + (γ0 + γ1)m

′
1(t) = γ1β1 + γ0β0,

m1(0) = 0, m′
1(0) = β1.

Solving this second-order equation with different initial conditions
then yields (2.25), (2.26). �

A.3 Derivation of Theorem 4.4
First note that

LEMMA A.1. Let X(t) = βt + B(t), M(t) = sups≤t X(s),
then for x > y

P (M(s) ≤ x, X(s) ∈ dy)

=
1√
2πs

(exp
−(βs − y)2

2s
− exp(βy − β2s

2
− (2x − y)2

2s
))dy

Upon taking the Laplace transform on both sides of Equation (22),
we see that the left-hand side becomes

Z ∞

0

P (M0(t) ≥ x)e−θtdt = G̃0(x, θ), θ > 0.

Meanwhile, the last term on the right-hand side is given byZ ∞

0

Z t

0

Z x

−∞
P (M1(t − s) ≥ x − y)e−θ(t−s)e−θs

× 1√
2πs

(exp
−(β0s − y)2

2s
− exp(β0y − β2

0s

2
− (2x − y)2

2s
))

γ0e
−γ0sdydsdt

=

Z ∞

s

Z x

−∞

Z ∞

0

P (M1(t − s) ≥ x − y)e−θ(t−s)

× γ0√
2πs

(exp(
−(β0s − y)2

2s
− θs − γ0s)

− exp(β0y − β2
0s

2
− (2x − y)2

2s
− γ0s))dsdydt

=

Z ∞

0

Z ∞

−∞
P (M1(t) ≥ x − y)e−θtdydt

×
Z ∞

0

γ0√
2πs

(exp(
−(β0s − y)2

2s
− θs − γ0s)

− exp(β0y − β2
0s

2
− (2x − y)2

2s
− θs − γ0s))ds

=

Z ∞

0

Z x

−∞
P (M1(t) ≥ x − y)e−θt

×(
γ0

A1
e(β0−A)y − γ0

A2
eβ0y−A2(2x−y))dtdy,

which is obtained with the help ofZ ∞

0

exp(−as2+
−b

s2
)ds =

r
π

4a
exp(−2

√
ab), Re a > 0, Re b > 0.

Now, with a change of variable x − y = z, then the Laplace
transform of Equation (22) becomes

G̃0(x, θ) =

Z ∞

0

γ0G̃
1(z, θ)(

exp((β0 − A1)(x − z))

A1

− exp((β0 − A2)x − (β0 + A2)z)

A2
)dz

+F1(x, θ) + F2(x, θ). (30)

Similarly,

G̃1(z, θ) =

Z ∞

0

γ1G̃
0(y, θ)(

exp((β1 − Ā1)(z − y))

Ā1

− exp((β1 − Ā2)x − (β1 + Ā2)y)

Ā2
)dy +

F̄1(z, θ) + F̄2(z, θ). (31)

Upon combining Equations (30) and (31), we have

G̃0(x, θ)

= γ0

Z ∞

0

(

Z ∞

0

γ1G̃
0(y, θ)(

exp((β1 − Ā1)(z − y))

Ā1

− exp((β1 − Ā2)z − (β1 + Ā2)y)

Ā2
)dy

+F̄1(z, θ) + F̄2(z, θ))

×
»
exp((β0 − A1)(x − z))

A1
− exp((β0 − A2)x − (β0 + A2)z)

A2

–
dz

+F1(x, θ) + F2(x, θ).

Notice that x − y = z, and thus one can continue the calculation
without much trouble from which Theorem 4.4 follows.


