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Abstract

The optimality of shortest remaining processing time (SRPT) and its variants with respect to min-
imizing mean sojourn times are well known. Some recent studies have further argued that SRPT does
not unfairly penalize large customers in order to benefit small customers, and thus have proposed the use
of SRPT to improve performance in computer systems under various applications such as Web sites and
databases. On the other hand, the variance of customer sojourn times is another important property of
performance in these systems. We therefore consider alternative approaches to scheduling customers in
queueing systems with the goal of providing mean sojourn times relatively close to those obtained under
SRPT while also providing better variance properties. Our analysis includes deriving expressions for the
mean and variance of customer sojourn times in these queueing systems, as well as for the parameters
of the alternative scheduling policies. These results illustrate and quantify a fundamental performance
tradeoff between decreasing the mean sojourn time and increasing the sojourn time variance, and vice
versa. Our mathematical framework is then exploited to determine scheduling policies and their control
parameters in order to optimize general functions of the mean and variance of sojourn times in queueing
systems.

1 Introduction

Stochastic models and related queueing-theoretic results have played a fundamental role in the design of

scheduling strategies of both theoretical and practical interest. This has been especially the case in single-

server queues; refer to [12, 34, 33, 35, 22, 41] and the references cited therein. In particular, it is well

known that scheduling the service of customers according to the shortest remaining processing time (SRPT)

policy and its variants minimizes the mean sojourn time of customers [33, 22, 41]. Some recent studies have

further argued that SRPT does not unfairly penalize large customers in order to benefit small customers,

and therefore these studies propose the use of SRPT to improve performance in Web sites [11, 1, 15] and

database systems [27].

However, as Schrage and Miller point out in their original study [34], the SRPT policy can raise several

difficulties for a number of important reasons. Such difficulties can arise from the inability to accurately

predict service times, or the complicated nature of implementing the preemptive aspect of the SRPT policy

which requires keeping track of the remaining service times of all waiting customers as well as of the
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customer in service. Preemption can also incur additional costs, and thus one might want to avoid the

preemption of customers in service whose remaining service time is not much larger than that of a new

arrival. The results of a recent study further suggests that the workloads found at various commercial

Web sites consist of multiple classes of customers based on the different service requirements of these

customers [14].

We therefore consider a corresponding multiclass priority queue as an alternative to SRPT for scheduling

the service of customers, with the goal of providing mean sojourn times close to their optimal values.

In fact, Schrage and Miller [34] have demonstrated that scheduling policies similar to multiclass priority

queues can alleviate some of the potential difficulties with SRPT while achieving mean sojourn times that

are nearly as good as those under SRPT. Moreover, the approach based on the multiclass priority queue

has the added advantage of not requiring to know precisely the service time of each customer. Instead, one

only needs to be able to partition the workload into different classes where the service times within each

class are relatively close to each other and the service times across classes are relatively different. This also

provides an additional dimension that can be used to determine the optimal multiclass priority and its control

parameters.

On the other hand, minimizing the mean customer sojourn time is only one of several important schedul-

ing properties, and a priority policy that yields a small gain in first moment sojourn times can perform very

poorly in terms of other measures of performance such as higher moments [41]. In particular, it often has

been argued that a system with reasonable and predictable sojourn time may be more desirable than a system

that is faster on average but highly variable [8, 23, 9, 36]. The original study of Schrage and Miller [34],

however, does not consider any issues related to the variance of customer sojourn times. Thus, we con-

sider versions of the corresponding multiclass priority queue, using a first-come first-serve (FCFS) ordering

within each class, as alternative approaches for scheduling the service of customers in queueing systems,

with the goal of providing mean sojourn times relatively close to those obtained under SRPT while also

providing better variance properties. Serving customers within each class according to an FCFS queueing

discipline can reduce the sojourn time variance within each class (among disciplines that do not affect the

per-class queue length distribution) [17] and can reduce the preemptions among customers with fairly sim-

ilar service times, whereas the priority discipline among the classes can yield a service ordering somewhat

close to SRPT, provided that the service time variability within each class is relatively low. As we shall

demonstrate and quantify, there is an important tradeoff between decreasing (respectively, increasing) the

mean sojourn time and increasing (respectively, decreasing) the sojourn time variance, especially at heavy

traffic intensities.

For consistency with the Schrage and Miller study [34], we analyze both single-class SRPT M/G/1

queues and multiclass Fixed Priority (FP), or Head-of-the-Line (HOL), M/G/1 queues. The M/G/1 FP queue,

however, is somewhat limited for our purposes to control the first two moments of customer sojourn times.

We therefore consider in detail another multiclass M/G/1 priority queue in which customers are scheduled
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according to general functions of the time customers spend in the system. This priority queueing discipline

is called time-function scheduling (TFS) [13] and the time-function parameters provide the ability to further

control the first two moments of customer sojourn times. More precisely, the priority of each customer

increases according to a monotonically nondecreasing per-class function of its time in the system and the

customer with the highest instantaneous priority value in the queue is selected for service at each scheduling

epoch. Under the assumption of linear time-functions, which shall be our focus in this paper, the priority

of each customer increases linearly with its time in system. As part of our analysis, we derive expressions

for the first two moments of the per-class sojourn times in non-preemptive linear TFS M/G/1 queues, which

generalizes the limited first moment results in the research literature and provides for the first time second

moment sojourn time results. We also derive closed-form expressions to determine a set of TFS control

parameters that (exactly) satisfy a given vector of sojourn times, whereas to the best of our knowledge, the

only previous results of this type published in the research literature are based on an iterative scheme to

obtain a (approximate) solution for systems with more than two classes [24]. Note further that the study

in [24] focuses on a very different problem and it does not consider second moment properties, although our

results can be exploited within the context of the study in [24].

Our results demonstrate that the linear TFS policy can satisfy desired mean sojourn times while also

providing better variance properties. Another more fundamental and general objective of interest to us is

based on functions that combine both the mean and variance of customer sojourn times in a flexible manner

so as to realize the goals of a broad spectrum of applications. Specifically, in determining the optimal

scheduling policy, we formulate the problem as a function of the first two moments of customer sojourn

times to maximize the overall utility of the system, where we exploit recent results in portfolio theory

to obtain a general mean-variance utility function and use this to explore a spectrum of mean-variance

objectives. Our analysis includes determining how to optimally segment the service time distribution of the

single-class workload from the original M/G/1 SRPT preemptive-resume queue into the per-class service

time distributions of the multiclass workload to be used in the FP and linear TFS M/G/1 queues. These

results are obtained based on our derivations for the first two moments of the sojourn times in linear TFS

M/G/1 queues. Finally, we use simulation together with traces from a large-scale production Web site to

explore these same issues under non-M/G/1 type environments. Our results, however, are consistent with

those obtained for the M/G/1 queues.

2 M/G/1 Queue Scheduling Policies

Consider the standard M/G/1 queue in which customers arrive according to an independent Poisson source

with rate λ and customer service times are independent and identically distributed (i.i.d.) having a com-

mon distribution function F (·) with finite first two moments E[S] = µ−1 =
∫∞
0 t dF (t) and E[S2] =∫∞

0 t2 dF (t). Let ρ = λ/µ denote the traffic intensity, where we assume throughout that ρ < 1. When

preemption is allowed, we shall focus on preemptive-resume scheduling disciplines in which preempted
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customers resume service where they left off without any penalties. Let T denote the random variable for

the customer sojourn time, W the random variable for the customer waiting time, and R the random variable

for the customer residence time, where T = W + R. Note that when preemption is not allowed, then R

follows the service time distribution F (·), and thus E[R] = E[S] and E[R2] = E[S2]. Our primary focus

in this section will be on obtaining expressions for the first two moments E[T ] and E[T2] of the customer

sojourn times.

For multiclass versions of this M/G/1 queue, we shall use the index k to refer to class k = 1, . . . ,K.

More specifically, the arrival stream of class k customers follows an independent Poisson process with rate

λk such that λ =
∑K

k=1 λk. The class k customer service times are i.i.d. according to a common distribution

function Fk(·) with finite first two moments E[Sk] = µ−1
k =

∫∞
0 t dFk(t) and E[S2

k ] =
∫∞
0 t2 dFk(t),

where µ−1 =
∑K

k=1 µ−1
k (λk/λ). (Note in particular that this supports the so-called heavy-tailed property

considered in [1].) Let ρk = λk/µk denote the traffic intensity for class k, and thus ρ = λ/µ =
∑K

k=1 ρk.

We shall consider priority scheduling disciplines among classes where customers within each class are

served in an FCFS manner. Let Tk denote the random variable for the class k sojourn time, Wk the random

variable for the class k waiting time, and Rk the random variable for the class k residence time, where

Tk = Wk + Rk. From the total law of probability, we then have

E[T ] =
K∑

k=1

E[Tk] P[ customer belongs to class k ]

=
K∑

k=1

E[Tk]
λk

λ
, (1)

E[T 2] =
K∑

k=1

E[T 2
k ] P[ customer belongs to class k ]

=
K∑

k=1

E[T 2
k ]

λk

λ
. (2)

Kleinrock [18, 20] first established an M/G/1 conservation law that will be useful for our purposes

below. Specifically, for a non-preemptive M/G/1 queue under any work-conserving scheduling policy, the

mean per-class waiting times E[Wk] must satisfy

K∑
k=1

ρkE[Wk] =
ρE[W0]
1 − ρ

. (3)

2.1 Shortest Remaining Processing Time

The shortest remaining processing time (SRPT) policy schedules in a preemptive manner the customer with

the smallest remaining processing time at every point in time. An analysis of M/G/1 SRPT preemptive-
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resume queues was first derived by Schrage and Miller [34], from which one can obtain expressions for the

first two moments of the customer sojourn times as follows

E[T ] = E[R] + E[W ], (4)

=
∫ ∞

0

1 − F (t)
1 − ρ(t)

dt

+
λ

2

∫ ∞

0

{∫ p
0 t2dF (t) + p2(1 − F (p))

(1 − ρ(p))2

}
dF (p), (5)

E[T 2] = E[R2] + 2E[R]E[W ] + E[W 2], (6)

=
∫ ∞

0

{∫ p

0

λ
∫ t
0 y2dF (y)
1 − ρ(t)

dt

+
[∫ p

0

dt

1 − ρ(t)

]2}
dF (p)

+ 2
(∫ ∞

0

1 − F (t)
1 − ρ(t)

dt

)
(

λ

2

∫ ∞

0

{∫ p
0 t2dF (t) + p2(1 − F (p))

(1 − ρ(p))2

}
dF (p)

)

+ λ

∫ ∞

0

∫ p
0 t3dF (t) + p3(1 − F (p))

3(1 − ρ(p))3

+ 2λ2

∫ ∞

0

{(∫ p
0 t2dF (t) + p2(1 − F (p))

) ∫ p
0 t2dF (t)

2(1 − ρ(p))4

}
, (7)

where ρ(p) = λ
∫ p
0 tdF (t).

2.2 Fixed Priority

The fixed priority (FP) scheduling policy (also known as the head-of-the-line (HOL) priority policy), in

which the service of class k customers has priority over class k′ customers for all 1 ≤ k < k′ ≤ K, has

received considerable attention in the research literature. In particular, it is well-known that the first two

moments of the class k sojourn times in M/G/1 FP preemptive-resume queues are given by

E[Tk] =

∑k
j=1 λjE[S2

j ]

2(1 − ρ+
k−1)(1 − ρ+

k )
+

E[Sk]
1 − ρ+

k−1

, (8)

E[T 2
k ] =

∑k
j=1 λjE[S3

j ]

3(1 − ρ+
k−1)

2(1 − ρ+
k )

+
E[S2

k ]
(1 − ρ+

k−1)
2

+

(∑k−1
j=1 λjE[S2

j ]

(1 − ρ+
k−1)

2
+

∑k
j=1 λjE[S2

j ]

(1 − ρ+
k−1)(1 − ρ+

k )

)
E[Tk], (9)

5



where ρ+
k ≡ ∑k

j=1 ρj . Variants of these results were first obtained by Miller [29], Takács [38] and

Welch [40].

Similarly, the first two moments of the class k sojourn times in non-preemptive M/G/1 FP queues can

be expressed as

E[Tk] =

∑K
j=1 λjE[S2

j ]

2(1 − ρ+
k−1)(1 − ρ+

k )
+ E[Sk], (10)

E[T 2
k ] =

∑K
j=1 λjE[S3

j ]

3(1 − ρ+
k−1)2(1 − ρ+

k )

+

(∑k
j=1 λjE[S2

j ]
)(∑K

j=1 λjE[S2
j ]
)

2(1 − ρ+
k−1)

2(1 − ρ+
k )2

+

(∑k−1
j=1 λjE[S2

j ]
)(∑K

j=1 λjE[S2
j ]
)

2(1 − ρ+
k−1)

3(1 − ρ+
k )

+ E[Sk]. (11)

Variants of equation (10) were first given by Cobham [7], whereas variants of equation (11) were first

obtained by Kesten and Runnenburg [16].

2.3 Linear Time-Function Scheduling

The corresponding sojourn time results for the linear time-function scheduling (TFS) policy, where the pri-

ority of each customer increases according to a linear function of its time in system with slope bk and offset

zero and the highest priority customer among all classes is served in either a non-preemptive or preemptive-

resume manner with ties broken in an FCFS manner, are much less well established in the research literature.

Kleinrock [18, 19, 22] derives expressions for the mean sojourn time in the non-preemptive and preemptive-

resume cases under exponential service time distributions. (Note in particular that, while the analysis in [22]

starts with M/G/1 assumptions instead of the M/M/1 assumptions in [18, 19], Kleinrock subsequently adds

the restriction of exponential service times in [21].) However, to the best of our knowledge, more general

first moment sojourn time results are lacking and no second moment sojourn time results are available in the

research literature.

In this section we derive expressions for the first two moments of the per-class sojourn times in non-

preemptive linear TFS M/G/1 queues, thus filling major gaps in the research literature. Our approach is

based on a generalization of classical approaches for decomposing the per-class sojourn times in multiclass

M/G/1 priority queues that rely primarily on the PASTA (Poisson Arrivals See Time Averages) property [41]

and Little’s Law [25]. We focus on non-preemptive linear TFS in part because Schrage and Miller tend to

favor non-preemptive over preemptive-resume disciplines due to the additional overhead of the latter. It is

important to note, however, that our extensive simulation results with both preemptive and non-preemptive

versions of all scheduling policies considered herein demonstrate the same trends under preemptive priority
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policies as those shown in this paper for non-preemptive priority policies. Furthermore, we are currently

working to extend the results derived in this section to handle the case of preemptive-resume linear TFS

M/G/1 queues. Assume throughout that b1 ≥ b2 ≥ . . . ≥ bK ≥ 0.

2.3.1 Moments of Sojourn Times

Consider an arbitrary arrival at some time t of a so-called tagged customer of class k in a non-preemptive

linear TFS M/G/1 queue. Let Njk be the random variable denoting the number of class j customers in the

system at time t that receive service before the tagged class k customer, let Mjk be the random variable

denoting the number of class j customers that arrive after time t and receive service before the tagged class

k customer, and let W0 be the random variable denoting the residual life of the customer in service at time

t. Then the waiting time of the tagged class k customer can be expressed as

Wk = W0 +
K∑

j=1


Njk∑

i=1

Xji +
Mjk∑
i=1

Xji


 , (12)

for k = 1, . . . ,K, from which we obtain the first two moments of the class k sojourn times

E[Tk] = E[Wk] + E[Sk], (13)

E[T 2
k ] = E[W 2

k ] + 2E[Wk]E[Sk] + E[S2
k], (14)

in terms of

E[Wk] = E[W0] + E


 K∑

j=1


Njk∑

i=1

Xji +
Mjk∑
i=1

Xji




 , (15)

E[W 2
k ] = E[W 2

0 ] + 2E


W0

K∑
j=1


Njk∑

i=1

Xji +
Mjk∑
i=1

Xji






+ E






K∑
j=1


Njk∑

i=1

Xji +
Mjk∑
i=1

Xji






2
 , (16)

where Xj1,Xj2, . . . is a sequence of i.i.d. random variables such that Xji
d=Sj for all j = 1, . . . ,K.

Under the assumptions of a non-preemptive M/G/1 queue, it can be easily shown that the first two

moments of the residual life of the customer in service at time t are given by

E[W0] =
K∑

k=1

ρk
E[S2

k]
2E[Sk]

, E[W 2
0 ] =

K∑
k=1

ρk
E[S3

k]
3E[Sk]

. (17)
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Upon multiplying equation (12) for any pair k, k′ and taking expectations, we obtain

E[WkWk′ ] = E[W 2
0 ] + E


 K∑

j=1


Njk∑

i=1

Xji +
Mjk∑
i=1

Xji






E


 K∑

j=1


Njk′∑

i=1

Xji +
Mjk′∑
i=1

Xji






+ E


W0

K∑
j=1


Njk∑

i=1

Xji +
Mjk∑
i=1

Xji






+ E


W0

K∑
j=1


Njk′∑

i=1

Xji +
Mjk′∑
i=1

Xji




 (18)

Similarly, multiplying equation (12) for each k by W0 and taking expectations yields

E[W0Wk] = E[W 2
0 ] + E


W0

K∑
j=1


Njk∑

i=1

Xji +
Mjk∑
i=1

Xji




 . (19)

Observe that Mjk = 0 with probability 1 for all j ≥ k since no customer with an equal or smaller slope

bj and arrival time after t can overtake the tagged class k customer. Moreover, the priority of the tagged

class k customer when it starts service is given by bkWk, and thus Mjk is the number of class j customers

arriving in the interval (t, t+Zj) such that bkWk = bj(Wk −Zj), or equivalently Zj = [1− (bk/bj)]Wk. It

then follows from applications of the first 2 moments of Little’s Law [25, 4, 3] under our model assumptions

that

E[Mjk] = λjE[Zj] = λj[1 − (bk/bj)]E[Wk], (20)

E[M2
jk] = (λ2

j/2)E[Z2
j ] + E[Mjk]

= (λ2
j/2)E[W 2

k ][1 − 2(bk/bj) + (bk/bj)2]

+E[Mjk], (21)

for j < k = 1, . . . ,K.

We further observe that all class j ≤ k customers in the system at time t will receive service before the

tagged class k customer, since its smaller or equal slope bk and arrival time t prevents the tagged class k

customer from overtaking those class j customers who arrived before time t. It therefore follows from the

PASTA property and the first 2 moments of Little’s Law [25, 4, 3] that

E[Njk] = λjE[Wj], (22)

E[N2
jk] = (λ2

j/2)E[W 2
j ] + E[Njk], (23)
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for all j ≤ k = 1, . . . ,K. Now consider a class j > k customer who arrives at time t′ < t, is in the system at

time t, and receives service before the tagged class k customer. These conditions based on the definition of

Njk for j > k are satisfied by a class j customer provided that t− t′ < Wj ≤ t− t′+Wk. The upper limit is

required to ensure that the priority of the class j customer at time t−t′+Wk (i.e., bj(t−t′+Wk)) is not less

than the priority of the tagged class k customer at the same time (i.e., bkWk). From bkWk = bj(t− t′ +Wk)

we obtain the relationship t − t′ + Wk = bk/(bk − bj)(t − t′). Since the arrivals of such class j customers

follow a non-homogeneous Poisson process, and the time dependent arrival moments can be expressed as

functionals of Wj , we have

E[Njk] =
∫ ∞

0
λjP[y < Wj ≤ bk

bk − bj
y]dy,

= λjE[Wj] − λj
bk − bj

bk
E[Wj]

= λjE[Wj]
bj

bk
, (24)

E[N2
jk] =

(
λjE[Wj]

bj

bk

)2

+ λjE[Wj]
bj

bk
, (25)

for all j > k = 1, . . . ,K − 1.

To complete our solution, we derive the remaining measures conditional on the waiting time for the

tagged customer Wk. In particular, upon conditioning on Wk, it is easy to see that Mjk is conditionally

independent of the other variables. We therefore have

W 2
k = E[W 2

k |Wk] = E[W 2
0 |Wk]

+ 2E


W0

K∑
j=1


Njk∑

i=1

Xji +
Mjk∑
i=1

Xji


∣∣∣Wk




+ E






K∑
j=1


Njk∑

i=1

Xji +
Mjk∑
i=1

Xji






2 ∣∣∣Wk


 (26)
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and

E






K∑
j=1


Njk∑

i=1

Xji +
Mjk∑
i=1

Xji






2 ∣∣∣Wk




=
K∑

j,�=1,j �=�


E


Njk∑

i=1

Xji

N�k∑
i=1

X�i

∣∣∣Wk




+E


Mjk∑

i=1

Xji

∣∣∣Wk


E

[
M�k∑
i=1

X�i

∣∣∣Wk

]

+E


Njk∑

i=1

Xji

∣∣∣Wk


E

[
M�k∑
i=1

X�i

∣∣∣Wk

]


+
K∑

j=1


E




Njk∑

i=1

Xji




2 ∣∣∣Wk


+ E




Mjk∑

i=1

Xji




2 ∣∣∣Wk




+E




Njk∑

i=1

Xji




Mjk∑

i=1

Xji


∣∣∣Wk




 . (27)

Since Njk can be treated as a Poisson random variable, we obtain

E


Njk∑

i=1

Xji

N�k∑
i=1

X�i

∣∣∣Wk




= E




N0
j�k+Nj

j�k∑
i=1

Xji

N0
j�k+N�

j�k∑
i=1

X�i

∣∣∣Wk




= E


E




N0
j�k+Nj

j�k∑
i=1

Xji

N0
j�k+N�

j�k∑
i=1

X�i

∣∣∣Wk, N
0
j�k






= E[Sj]E[S�]E
[
E[(N0

j�k)
2|Wk] + E[N0

j�k|Wk]E[N j
j�k|Wk]

+E[N0
j�k|Wk]E[N �

j�k|Wk] + E[N j
j�k|Wk]E[N �

j�k|Wk]
]

(28)

Observe that the variance of N0
j�k is the same as the covariance of Njk and N�k, and thus it can be uniquely

determined by the measures E[Wj|Wk], E[W�|Wk] and E[WjW�|Wk].
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The continuation of our calculations yields

E[W0

Njk∑
i=1

Xji|Wk] = E[E[W0

Njk∑
i=1

Xji|Wk,W0]|Wk]

=
E[Sj]bj

bk
E[W0[E[Wj|W0,Wk]|Wk]

=
E[Sj]bj

bk
E[W0Wj|Wk] (29)

and

E


Njk∑

i=1

Xji

N�k′∑
i=1

X�i


 = E




Njk∑

i=1

Xji

N�k′∑
i=1

X�i


 ∣∣∣Wk,Wk′




= E[Sj]E[S�]E[E[NjkNjk′ |Wk,Wk′ ]]. (30)

Once again, given the knowledge that Njk and Njk′ are Poisson random variables, the same arguments as

above can be used to finalize this result.

The next two theorems summarize our main results based on the foregoing derivations.

Theorem 1. In a non-preemptive linear TFS M/G/1 queue, the mean waiting time of class k = 1, . . . ,K

customers can be expressed as

E[Wk] =
(E[W0]/(1 − ρ)) −∑K

i=k+1 ρiE[Wi](1 − bi/bk)

1 −∑k−1
i=1 ρi(1 − bk/bi)

, (31)

with the overall mean sojourn time given by

E[T ] =
K∑

k=1

(

(E[W0]/(1 − ρ)) −∑K
i=k+1 ρiE[Wi](1 − bi/bk)

1 −∑k−1
i=1 ρi(1 − bk/bi)

+E[Sk])
λk

λ
. (32)

Proof. Upon substituting (20), (22) and (24) into the expression that results from applying Wald’s equa-

tion [41] to (15), we have

E[Wk] =
E[W0] +

∑k
i=1 ρiE[Wi] +

∑K
i=k+1 ρiE[Wi](bi/bk)

1 −∑k−1
i=1 ρi(1 − bk/bi)

.
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The triangular set of equations in (31) then follows from the conservation law given in (3) and straightfor-

ward algebra. Adding E[Sk] to (31) and substituting the result into (1) yields (32).

Theorem 2. The second moment of the customer sojourn times in a non-preemptive linear TFS M/G/1 queue

is given by equations (2), (14) and (16) which can be efficiently computed from equations (17) – (30).

Proof. To solve for E[T2
k ] in (14) and substitute the result in (2), we need to determine the measures E[W2

k ],

E[WkWk′ ] and E[W0Wk] provided in (16), (18) and (19), respectively, which yields a system of K(K+1)/2

equations of unknowns. It follows from the above derivations that all of the terms in these equations can be

expressed as linear functions of the unknowns and that the coefficient matrix is triangular and nonsingular.

Hence, the second moment of the class k sojourn times can be obtained in a very efficient manner by

exploiting these properties of the system of linear equations derived above.

2.3.2 Setting of Policy Control Parameters

The set of slopes {b1, . . . , bK} represent the control parameters available to us in non-preemptive linear TFS

M/G/1 queues to achieve any feasible vector of desired sojourn times (E[T∗1 ], . . . , E[T ∗
K ]). We therefore

derive closed-form expressions to determine a set of control parameters {b1, . . . , bK} that satisfy a given

vector (E[W ∗
1 ] = E[T ∗

1 ] − E[S1], . . . , E[W ∗
K ] = E[T ∗

K ] − E[SK ]) by inverting the mapping in (31) for any

K ≥ 2. It is important to note that, to the best of our knowledge, the only previous results of this type

published in the research literature are based on an iterative scheme to obtain a solution for systems with

more than two classes [24].

The mean waiting time for customers of class k in non-preemptive linear TFS M/G/1 queues as a func-

tion of the per-class control parameters is given by (31). Observe the very simple dependence that E[Wk]

has on the control parameters, namely the slopes bk only appear as ratios. It follows from equation (31)

with b1 ≥ b2 ≥ . . . ≥ bK that any feasible objective vector must have E[W0] ≤ E[W ∗
1 ] ≤ E[W ∗

2 ] ≤
. . . ≤ E[W ∗

K ]. Further observe that the scheduling policy decisions are not changed upon scaling all control

parameters by any fixed constant, and thus without loss of generality we set bK = 1. Additional feasi-

bility requirements for the vector (W∗
1 , . . . ,W ∗

K) can be readily verified as part of the following recursive

algorithm by ensuring the corresponding variables satisfy the obvious constraints.

12



Following [30, 37], we define

αk ≡
K∑

i=1

λiE[S2
i ]

2(1 − ρ)
−

K∑
i=k+1

ρiE[Wi],

βk ≡ 1 −
k−1∑
i=1

ρi,

Ck ≡
K∑

i=k+1

ρibiE[Wi],

Dk ≡
k−1∑
i=1

ρi

bi
.

Upon substituting (17) and these definitions into equation (31), we obtain

E[Wk] =
αk + Ck/bk

βk + bk Dk
.

Substituting the relationship Dk = Dk+1 − ρk/bk and βk+1 = βk − ρk from the above definitions and

simplifying then yields

bk =

−(E[Wk]βk+1 − αk) ±
√

(E[Wk]βk+1 − αk)
2 + 4CkE[Wk]Dk+1

2E[Wk]Dk+1
,

for k = 1, . . . ,K − 1. Since b1 ≥ b2 ≥ . . . ≥ bK = 1, we have

bk =

−(E[Wk]βk+1 − αk) +
√

(E[Wk]βk+1 − αk)
2 + 4CkE[Wk]Dk+1

2E[Wk]Dk+1
, (33)

for k = 1, . . . ,K − 1.

Observe that the value of bk in equation (33) depends only on the values of b1, . . . , bk−1. We then have

the following algorithm to recursively obtain the control parameters bK−1, . . ., b1 that can be used to achieve

any feasible vector of desired sojourn times (E[T∗
1 ], . . . , E[T ∗

K ]) in the corresponding non-preemptive linear

TFS M/G/1 queue. First initialize the class K variables: CK = 0; bK = 1; DK = E[W0]/(1−ρ)−βKE[WK ]
E[WK ] .

The corresponding variables for classes k = K − 1,K − 2, . . . , 2, 1 are then computed consecutively as

13



follows:

Ck = Ck+1 + ρk+1bk+1E[Wk+1] (34)

bk =

−(E[Wk]βk+1 − αk) +
√

(E[Wk]βk+1 − αk)
2 + 4CkE[Wk]Dk+1

2E[Wk]Dk+1
(35)

Dk =
αk + Ck/bk − βkE[Wk]

bkE[Wk]
(36)

3 Comparison of Scheduling Policies

With the motivation and issues provided in the introduction, we now consider the properties of the first two

moments of the customer sojourn times in SRPT, FP, and linear TFS M/G/1 queues based on the results

derived in the previous section. We first focus on the variability properties of the different M/G/1 queues

and then we turn to general functions of both the mean and variance of customer sojourn times.

3.1 Variance Properties

As originally suggested by Schrage and Miller [34] and extended herein to also consider second moment

properties, one can attempt to approximate the mean sojourn times in M/G/1 SRPT preemptive-resume

queues with an appropriately chosen multiclass M/G/1 FP queue. Based on numerical experiments with the

results in Section 2 (some to be presented later in this section) and simulations with data from a large-scale

production Web site (some to be presented in Section 5), both of which were conducted as part of our present

study, we consistently observed that among the various policies which can achieve similar mean customer

waiting times, the performance measures of the M/G/1 queue under a linear TFS policy tend to have the

smallest variability properties.

To further investigate this idea more formally, let us consider a special case with only two classes of

customers (K = 2) where we compare the performance of M/G/1 queues under linear TFS and random

priority policies. A random priority policy with parameter α ∈ [0, 1] can be realized as follows: at the

beginning of each busy period, we will decide whether to give fixed priority to class 1 or class 2 where,

in the long run, the proportion of busy periods in which class 1 has priority over class 2 is α. It is easy

to see that under this policy, both the first and the second moments of the waiting time will be the convex

combination of the moments of the two fixed priority policies.

Turing to the linear TFS policy, consider equation (12) where, for our purposes here, only M12 and N21

need to be examined. From our derivation in Section 2.3, we know that upon conditioning on the proper σ-

algebra, M12 follows a Poisson distribution with mean A(1− b1/b2) and N21 follows a Poisson distribution

with mean A(b1/b2), where A and B are linear combinations of unknowns. Hence, when we solve for
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the linear TFS control parameters to achieve the same mean waiting time as the random priority policy of

interest, we will obtain an affine relationship between α and b1/b2. On the other hand, the second moment

of the customer waiting times under this linear TFS policy will be a quadratic function of b1/b2, i.e., a

convex function. In then follows from these two properties that the linear TFS policy can always provide

lower customer waiting time variance than under the random priority policy while providing the same mean

customer waiting time performance.

3.2 Mean-Variance Utility Functions

Even though we have considerable numerical, simulation and formal evidence that the linear TFS policy can

satisfy desired mean sojourn times while also providing better variance properties, the more fundamental

and general objective of interest to us is based on functions that combine both the mean and variance of

customer sojourn times in a flexible manner so as to realize the goals of a broad spectrum of applications.

Given the first moment of customer sojourn times as the natural candidate measure for performance, the

corresponding second moment is usually associated with risks through the use of moment inequalities, such

as Chebeschev’s inequality [41]. Therefore, in determining the optimal scheduling policy, we can formulate

the problem as a function of the first two moments of customer sojourn times to maximize the overall utility

of the system. Similar practices have been widely adapted in the field of finance, ever since H. Markowitz

popularized the basic idea; see [26].

This so-called mean-variance approach is quite popular in portfolio theory and its applications, and a

wide range of specific functional forms for two-parameter preferences have been proposed and used; e.g.,

refer to [28, 6, 32]. In particular, the following functional form for utility

U(θ, σ) = θa − σb, (37)

where θ and σ are the mean and standard deviation of the measure of interest and a and b are function

parameters, has been proposed and empirically evaluated [32]. This utility function is able to exhibit a

broad spectrum of risk attitudes by appropriately choosing values for the parameters a > 0 and b ∈ R. For

example, the choices a > 1, a = 1 and a < 1 respectively represent decreasing, constant and increasing

absolute risk aversion, whereas the choices a > b, a = b and a < b respectively represent decreasing,

constant and increasing relative risk aversion. Moreover, Wagener [39] has recently shown the functional

form in (37) to be very efficient from a computational perspective and to have much greater flexibility in

covering the wide range of risk attitudes of interest than other functional forms that are commonly used in

practice.

We therefore use an equivalent form for the utility function in (37) where the variance of customer

sojourn times is used instead of the standard deviation such that θ = E[T ], σ = E[T2]−E[T ]2 and b = b/2.

A three class queueing system with Poisson arrivals is considered. The proportions of customer class 1,

2 and 3 are 80%, 14% and 6% respectively. Meanwhile the mean service time for the three classes are 1,
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20 and 1000. Experiments are conducted for both SRPT and linear time function(LTF) rule under different

traffic intensity ρ. To make the comparison fair, for each ρ, we set the slopes in the time function schedule so

that the mean waiting time is close to that of SRPT. Besides the fact that time function scheduling provides

smaller variances as our results demonstrate above, we also observe the significance of the impact of the

policy in terms of the utility function. In Figure 1, we observe that the impact of the policy change is visibly

more significant than the changes of variability in the service time. In the figure, vertically, we compare the

utility function for these two policies with different coefficients of variation for the service time; horizontally,

we compare the impact of the different selection of (a, b). In Figure 2, we fixed the system behavior, and

show the general shape of the utility function when the relative (a, b) value changes. We see that in general

it is a concave function, and the derivatives has a descending trend when the traffic intensity ρ increases.

4 Partitioning of Service Times into Classes

Our analysis in Sections 2 and 3 assumes that the workloads for the multiclass FP and linear TFS M/G/1

queues have been previously determined. However, in order to completely determine the optimal scheduling

policy and its control parameters, it is equally important to obtain the best segmentation of the customer

service times to determine the multiclass workloads. In this section, we consider how to optimally segment

the service time distribution of the single-class workload from the original M/G/1 SRPT preemptive-resume

queue into the per-class service time distributions of the multiclass workload to be used in the FP and linear

TFS M/G/1 queues.

More specifically, we consider the set of variables {p0, p1, . . . , pK−1, pK} used to designate the priority

class of customers according to whether their service times are in the interval (pk−1, pk], such that BL =

p0 ≤ p1 ≤ . . . ≤ pK−1 ≤ pK = BU where BL and BU are lower and upper bounds on the customer service

times, respectively. Given such a partitioning, the class k customer service times are i.i.d. according to a

common distribution function with finite first three moments E[Sk] =
∫ pk

pk−1
t dF (t), E[S2

k] =
∫ pk

pk−1
t2 dF (t)

and E[S3
k ] =

∫ pk

pk−1
t3 dF (t), respectively. We now can formulate the problem of the optimal partitioning of

the customer service times into a multiclass workload as part of determining the optimal scheduling policy

and its control parameters as a function of the first two moments of customer sojourn times to maximize the

overall utility of the system.

(OP) max
p1,...,pK−1

E[T ]a − (E[T 2] − E[T ]2)b/2 (38)

s.t. BL = p0 ≤ p1 ≤ . . . ≤ pK−1 ≤ pK = BU (39)

The decision variables are the partition points {p1, . . . , pK−1}, and the parameters a and b are chosen to

weight the first two moments of the customer sojourn times according to the application area of interest.

In general, the objective function is nonlinear in the decision variables but its solution can be efficiently
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computed using known methods in nonlinear optimization; e.g., see [2, 10]. However, in many cases of

interest, the objective function is convex in the decision variables, and thus its solution can be very efficiently

computed using known methods in convex optimization; e.g., refer to [2].

5 Simulation Experiments

While the main contribution of this paper is the foregoing collection of mathematical results, in this section

we briefly consider the queueing behavior in an Internet environment to apply and extend our understanding

of the relationship between SRPT and linear TFS. Specifically, we use the access log data from large-scale

production Web sites. The access logs contain several pieces of useful information about each client request

served by the corresponding server. This includes the arrival time epoch of the kth request served on the ith

server of the Web site, and the number of bytes comprising this client request. The unit of time in the access

logs available to us is one second, which is quite standard. There can be tens to hundreds of client requests

within a second at each server during peak traffic periods for the production Web sites of interest.

Even though the Web sites considered in our study serve dynamic content, we use the byte size of each

request as an estimate of the service time for the request. This is both reasonable and accurate for the

production Web sites of interest for a number of important reasons. While most of the pages are dynamic,

the vast majority of the requests found at each server are for static objects. These production Web sites can

also exploit techniques that keep track of each database update and the dynamic pages affected by the update

so that these dynamic pages can be prebuilt upon such a database update, and this in turn makes it possible to

serve dynamic pages exactly like static content [5]. Moreover, measurements of the time to serve the static

objects, as well as to serve the dynamic pages using these techniques, demonstrate that these service times

fit extremely well to a linear function of the byte size of the object or page, and that applying this function

to the byte sizes yields service times with the same stochastic properties as those shown herein for byte

sizes [5]. We therefore focus in this section on the number of bytes comprising each client request, which

has the added benefit of making our results comparable to those of many previous studies. In particular,

we use a measurement-based function of the byte size of each client request as an accurate estimate of the

service time for the request.

We identify and focus on sufficiently long stationary intervals of traffic periods found in our analysis

of the access logs from each server of every Web site. Of particular interest are peak traffic periods, given

the importance of such intervals in capacity planning, dynamic resource allocation and other applications of

performance analysis and control. These stationary intervals of peak traffic are comprised of traffic periods

whose lengths are on the order of several hours and consist of at least several hundred-thousand data points.

Hence, the corresponding arrival and service processes extracted from the Web site access logs are stationary

sequences, which is confirmed by the stationarity testing method recently proposed in [31]. Moreover, in

the interest of space, we will henceforth focus on a representative access log from a specific server of a

particular Web site.
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In this set of experiments, arrival times and service times are extracted from the trace of a Web site, and

then they are fed into a single server queue following the SRPT and TFS rules. The outcome is presented

consistent with the mean-variance scheme we have discussed. The utility function with a = 0.25, b = −1

and a = 0.25, b = 0.5 respectively for different intensities(ρ) are plotted in Figure 3. From the figure on the

right, we can see the impact of different scheduling policies. In the figure on the left, the impact can not be

distinguished, we believe that this is the result of the correlations in the arrival stream and between arrival

and service in the Web trace.

6 Conclusions

The optimality of shortest remaining processing time (SRPT) and its variants with respect to minimizing

mean sojourn times are well known. Some recent studies have further argued that SRPT does not unfairly

penalize large customers in order to benefit small customers, and thus have proposed the use of SRPT to

improve performance in computer systems under various applications such as Web sites and databases. On

the other hand, minimizing the mean customer sojourn time is only one of several important scheduling

properties, and a priority policy that yields a small gain in first moment sojourn times can perform very

poorly in terms of other measures of performance such as higher moments. In particular, it often has been

argued that a system with reasonable and predictable sojourn time may be more desirable than a system that

is faster on average but highly variable. We therefore considered alternative approaches to scheduling cus-

tomers in queueing systems with the goal of providing mean sojourn times relatively close to those obtained

under SRPT while also providing better variance properties. Our analysis included deriving expressions

for the mean and variance of customer sojourn times in these queueing systems, as well as for the control

parameters of the alternative scheduling policies. These results illustrated and quantified a fundamental per-

formance tradeoff between decreasing the mean sojourn time and increasing the sojourn time variance, and

vice versa. Our mathematical framework is then exploited to determine scheduling policies and their control

parameters in order to optimize general functions of the mean and variance of sojourn times in queueing

systems. More specifically, in determining the optimal scheduling policy, we formulated the problem as a

function of the first two moments of customer sojourn times to maximize the overall utility of the system,

where we exploited recent results in portfolio theory to obtain a general mean-variance utility function and

used this to explore a spectrum of mean-variance objectives. Our analysis included determining how to opti-

mally segment the service time distribution of the single-class workload from the original SRPT queue into

the per-class service time distributions of the multiclass workloads to be used in our alternative scheduling

policies.
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Fig.2 Behavior of the utility function 
under different traffic intensity
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Webdata, a=0.25, b=-1

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

0.3 0.6 0.8 0.9

rho

U

SRPT

LTF

Webdata,a=0.25, b=0.5
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Fig. 3. Effects of policy for webdata
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