
RC23425 Revised (W0507-140) July 19, 2005
Computer Science

IBM Research Report

Scheduling Processor Voltage and Frequency in Server and
Cluster Systems

Ramakrishna Kotla
Department of Computer Science

University of Texas at Austin
Austin, TX

Soraya Ghiasi, Tom Keller, Freeman Rawson
IBM Research Division

Austin Research Laboratory
11501 Burnet Road
Austin, TX 78758

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Scheduling Processor Voltage and Frequency in Server and Cluster Systems

Ramakrishna Kotla,
Department of Computer Science

University of Texas at Austin
kotla@cs.utexas.edu

Soraya Ghiasi, Tom Keller and Freeman Rawson
IBM Austin Research Laboratory

{sghiasi,tkeller,frawson}@us.ibm.com

Abstract
Modern server farm and cluster sites consume large

quantities of energy both to power and cool the
machines in the site. At the same time, less power
supply redundancy is offered and power companies
and government officials are requesting power
consumption be reduced during certain time periods.
These trends lead to the requirement of responding to
rapid reductions in the maximum power the site may
consume. Each possible solution must respond to the
new power budget before a cascading failure occurs.
Available techniques include powering down some
nodes or slowing all nodes in a system uniformly.
This work instead examines the feasibility of slowing
nodes non-uniformly in response to their
performance demands. This approach provides an
opportunity to reduce the performance loss caused by
a reduction in the power budget.

This paper uses the execution characteristics of the
work currently running on each processor of the
system or cluster to predict the performance of the
work at the available frequency settings. The
scheduling mechanism selects the lowest frequency
for the processor that provides essentially all of the
available performance of the work. It ensures that the
selected frequency fits within the available global
power budget and, if not, reduces it so that it does.
The paper demonstrates the approach using a simple,
synthetic benchmark and then validates it using
additional, real-world applications.

1. Introduction

System-level and processor power is now a first-
order design constraint across all classes of
computing devices. While the primary problem for
embedded and laptop computers is battery life and,
thus, total energy consumption over time, the most
important problem for servers and server clusters is
maximum power [1]. Server computing environments
have limitations on their internal power-delivery and
cooling systems as well as installation limits on the
total power and cooling available in the external
environment. Prior work has led to the development
of processor frequency and voltage scaling as a way
to reduce processor power, which is often the single
most important contributor to system-level power
consumption. In the past, dynamic voltage and
frequency scaling have found their primary

application in embedded and laptop machines. This
paper considers how to use them to control maximum
power dissipation in SMP servers and server clusters.

Earlier work [2] demonstrates that workloads vary
in their level of memory intensity, both between
different workloads and within a workload’s
execution lifetime. Given that secondary cache and
memory speed are unaffected by processor frequency
scaling, memory-intensive workloads exhibit
performance saturation at a characteristic frequency
related to their level of memory intensity. Raising the
frequency above the saturation point yields no further
benefit in performance. The previous work
considered only a single application at a time and
used post-processing to determine the most
appropriate frequency for each job.

This research considers how to identify and use an
appropriate frequency, and corresponding voltage, for
the aggregate workload on each processor. There are
four main advantages to scheduling frequencies and
voltages rather than work. First, it avoids the
overhead of moving work from one processor to
another. Second, it overcomes the difficulty generally
experienced in cluster environments that work
migration is difficult or impossible. Third, it allows
systems vendors to implement necessary power
control mechanisms without requiring changes to the
operating system’s scheduler. This is crucial in many
environments since the vendor either does not have
the source for the operating system or encounters
difficulties and delays in getting the necessary
changes accepted by a larger community. Finally,
scheduling frequencies and voltages to processors as
proposed in this paper does not depend on a detailed
analysis of program phases and execution sequences.
Instead, it relies on data from the performance
counters on all processors in the system or cluster.
While this sacrifices some accuracy, its simplicity
makes it attractive, especially when the primary goal
is to ensure that power remains under some
maximum.

The research presented here makes a number of
contributions beyond the prior work in the area.
• It uses the known phenomena of workload

diversity and performance saturation with the
predictive performance model of [2] to determine
an appropriate frequency setting for each processor
based on observed behavior.

• It applies frequency and voltage scheduling, as
opposed to work scheduling, to a new domain,
servers and server clusters. Previously, frequency
and voltage scheduling was used primarily on
mobile and client systems.

• It targets multi-programmed, multi-tasking
systems.

• It ensures that the power remains below some
global maximum value and responds to changes in
the power limit by adjusting the frequencies and
voltages appropriately.

• The techniques developed can be implemented in a
number of different ways and in different portions
of the hardware/software stack. In particular, it
does not require changes to the operating system
and its scheduling code.

• The results apply to server clusters as well as SMP
systems.
The results reported here represent a prototype

implementation and its initial evaluation rather than a
definitive study of the underlying ideas and
techniques.

2. Motivation

In order to better illustrate the ideas contained in
this paper, a motivating example is introduced and
used in the paper. The underlying details of the
example are presented here. The system contains of
four 140W CPUs, which consume 75% of the total
system power. The entire system, including CPUs,
memory, fans, etc., consumes 746W. Each power
supply is only capable of providing 480W. There are
different failure modes which can require a reduction
in total system power, including site air conditioning
failures, requests from outside parties to cap power
consumption, and failure of a power supply. The
example focuses on the last possibility, but the
mechanism developed in this paper works in other
situations as well.

When a power supply fails, the system must
quickly respond to the failure of the power supply or
a cascade failure can occur where the second power
supply will also fail. At time T0, the power supply
fails and by time T0+∆Τ, the system must be under
the new power limit or the second power supply will
fail. Time ∆Τ is a characteristic of the power supply
and can be quantified. The problem then becomes
one of developing a mechanism which can bring the
system under the new power limit in less than time
∆Τ with a minimal loss in workload performance.

3. Related Work

The approach used in this work draws heavily from
two distinct areas of prior research – dynamic
frequency and voltage scaling as well as

heterogeneous cores. Underlying details and
additional prior work can be found in [2].

3.1. Dynamic Frequency and Voltage Scaling
Transmeta’s LongRun [7] and Intel’s Demand

Based Switching [8] respond to changes in demand,
but do so using a very simple model. In both
schemes, an increase in CPU utilization leads to an
increase in frequency and voltage while a decrease in
utilization leads to a corresponding decrease. Neither
one makes any use of information about how
efficiently the workload uses the processor or about
its memory behavior. Instead, they rely on simple
metrics like the number of non-halted cycles in an
interval of time.

Flautner and Mudge [3] explored the use of
dynamic frequency and voltage scaling in the Linux
operating system with a focus on average power and
total energy consumption. They examined laptop
applications and the interaction between the system
and the user to determine the slack due to processor
over-provisioning. They used frequency and voltage
scaling to reduce power while consuming the slack
by running the computation slower. Their Vertigo
system dynamically uses multiple performance-
setting algorithms to reduce energy.

Elnozahy, et al. [15] extended the ideas found in
[3] to the domain of web server farms. They explore
the use of DVS to respond to changes in server
demands. They also examine the use of request
batching to gain larger reductions in power during
periods of low demand. The two techniques
compliment each other, but neither provides a means
to address peak power

This work differs by responding to easily observed
changes in memory subsystem demands. It scales
frequency and voltage in response to changes in
available power and observed changes in memory
behavior. Frequency and voltage scaling are
performed only when the memory subsystem
indicates there are a large number of memory stalls in
the current phase, or the system is over its power
limit due to a reduction in available power.

3.2. Heterogeneous Processors
The scheduling scheme described in this paper

creates an environment in which an SMP server has
heterogeneous processors since they differ in
frequency and voltage. Prior work on single-ISA,
heterogeneous processors falls into two distinct
categories. The first uses a processor family which
may be run at the same frequency, while the second
category uses a processor family which cannot be run
at the same frequency.

Single frequency heterogeneous processors have
been studied by Kumar, et al. ([4], [5], [6]). Their
work uses different generations of the Alpha

processor family scaled into the same technology
generation and run at the same frequency. The goal
of the work is to minimize energy consumption while
maintaining performance. The authors use a variety
of metrics to identify which jobs should be assigned
to which core, with all cores running simultaneously.
Trial-and-error testing is used to identify the best-
suited core. In contrast, this paper predicts
performance to find the appropriate core.

Ghiasi and Grunwald ([9], [10], [11]) explored
single-ISA, heterogeneous cores of different
frequencies and different microarchitectures for
controlling the thermal characteristics of a system.
Applications run simultaneously on multiple cores
and an operating system component monitors and
directs applications to the appropriate job queues.

This work uses a single generation in IBM’s
PowerPC processor family, but cores are run at
different frequencies. It also differs from prior work
by using a commercial product and direct evaluation
of techniques, rather than relying on simulation.

3.3. Hardware Approaches
Stanley-Marbell, et al, [12], propose a hardware

mechanism that does frequency selection based on
predicted performance loss. It makes use of the
memory behavior of the workload to determine when
the processor can run more slowly due to a heavy use
of the cache and memory subsystem. It differs by
virtue of its focus on microprocessor changes for the
uniprocessing environment. The details of the
performance model are also different since [12]
works from processor/memory overlap values while
this paper uses access counts.

Impact of CPU/Memory Balance at Different Frequencies

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Frequency

N
o
rm

al
iz
ed

 T
h
ro

u
g
h
p
u
t
(P

er
ce

n
ta

g
e)

0

10

20

30

40

50

60

70

80

90

100

30%CPU-70%Mem

70%CPU-30%Mem

90%CPU-10%Mem

96%CPU- 4%Mem

100%CPU-0%Mem

Figure 1: Performance saturation (Kotla, et. al [2])

4. Scheduling Mechanism

On a system or cluster whose processors support
dynamic frequency and voltage scaling, the
environment needs a mechanism to determine what
frequency and voltage to assign to each processor.
This section presents a methodology for predicting
the performance impact of different frequency
settings, given counts of the cache and memory
accesses, and then using the predictions to guide the
assignment of frequencies and voltages in order to
meet power constraints and reduce average power
dissipation.

4.1. Performance Saturation
Workloads often cannot make use of all of the

available frequency due to the latencies associated
with cache and memory accesses. This phenomenon
is referred to here as performance saturation. Many

programs obtain a limited benefit from increasing
processor frequency due to the slow speed of
memory relative to the processor. At some point, the
speed of a program making memory references is
limited by the speed of the memory. The ratio of
memory-intensive to CPU-intensive work in a
workload determines the saturation point as
illustrated for a simple program by Figure 1.

Figure 1 illustrates that performance saturation
allows the frequency to be reduced without a
noticeable impact on application performance. Even
when the power constraint is severe enough to
require some performance penalty, it is generally
possible to take advantage of performance saturation
to minimize the overall performance penalty of the
power-management action.

4.2. Workload Diversity and Phases
Workload diversity and the existence of different

phases within a single workload are well-known and

oft-used phenomena. Given an initial assignment of
work to processors and strong or complete affinity of
work to its originally assigned processors, it is
reasonable to suppose systems and clusters often
exhibit an overall diversity of behavior. The work
running on some processors is more memory-
intensive than the work running on other processors.

Unless the system explicitly load balances the
memory intensity across the processors, it is likely
that the system shows different cache and memory
access rates on different processors. In clusters,
where load balancing is difficult and expensive, if
possible at all, diversity is even more common and
more likely to persist over time. The tendency to
assign work in a cluster by tiers where some
machines run the web server, some the processing
logic and some the database accentuates the level of
diversity and stabilizes the phenomenon over time.
This approach uses the aggregate behavior of all
applications on a given processor, but workload
diversity is still observed.

4.3. Predicting Performance at Frequency f
Since scaling-enabled processors typically offer

only a fixed, small set of operating frequencies [13],
predicting the performance impact on the current
workload on a processor, in terms of its effect on the
observed instructions per cycle (IPC), can be done by
calculating a projected IPC at each available
frequency. Existing processor hardware, such as that
found in the IBM Power4, has performance counters
that a scheduling mechanism may use to gather the
number of accesses to each level of the memory
hierarchy in an interval of time. To do the necessary
IPC projection, the performance model used here and
in [2] breaks the IPC into frequency-dependent and
frequency-independent components.
���������		�
���
�����������������������������������

with infinite L1 caches and no stalls��� is a constant
that takes into account both the instruction-level
parallelism of the workload and the processor
resources available to extract it. Each Nx is a count of
the number of occurrences of a particular type of
cache or memory reference, as provided by the
performance counters, and each Tx is the time
consumed by each reference. Tx is pre-determined for
the particular processor by measurement of memory
latencies and is assumed constant for simplicity1.

1 In reality, this is not true and is a source of error, but in practice
it does yield a reasonable approximation for the purpose of
frequency and voltage scheduling. Two different possible
approaches have been investigated, but neither is used here. The
first approach, described in [2], involves taking measurements at
two separate frequencies. The second approach instead uses both
best and worst case latencies to provide best and worst case bounds
on performance at each frequency[17].

At any given frequency, this equation can be used

to predict the IPC at another frequency given the
number of misses at the various levels in the memory
hierarchy as well as the actual time it takes to service
a miss. This provides a mechanism for identifying the
performance loss of a processor. As expected, the
more memory-intensive a workload is, as indicated
by the high memory subsystem references, the more
feasible it is to lower the frequency (and voltage) to
save power without impacting the performance.

The scheduling algorithm uses the predicted IPC
and the frequency used in the prediction to calculate
the performance impact of running at that frequency.
The following equations calculate the performance
difference, PerfLoss(f, g) between the workload at the
current frequency g and at the target frequency f.
Values of PerfLoss(f, g) greater than 0 indicate a
performance gain while those less than 0 show a
performance loss.

4.4. Applying Power Limits to Frequencies
To schedule frequencies and voltages based on a

power constraint, the scheduler must first convert
frequency and voltage values to corresponding power
values. At each available frequency, the minimum
voltage necessary to reliably drive that frequency is
selected.

The equation P = CVdd
2f + βVdd

2 gives the power
as a function of frequency and voltage. C is the
capacitance, and β is process- and temperature-
dependent. The first term is the active power while
the second is the static power which is due primarily
to leakage. A typical computational approach is to
calculate in advance the maximum power associated
with each available frequency setting using the
minimum acceptable voltage. This calculation
ignores clock gating, but it provides an upper bound
on power. When selecting a frequency for a particular
maximum power, the system can then just select the
highest frequency that yields a power value less than
the maximum. Since the scheduler is scheduling
voltages and frequencies across a set of processors,
the power must represent the aggregate processor
power consumption of the entire system.

() () *

() ()
(,)

()

Perf f IPC f f

Perf f Perf g
PerfLoss f g

Perf f

=

−
=

inststall CC

Instr

Cycles

nsInstructio
IPC

+
=≡

_
2 32 _ 3_ _

1
1 1

()*
other stalls

memL LL stalls L stalls mem stalls
C

N T N T N T f
Instr Instrα

=
+ + + +

5. The Scheduling Procedure

Given the tools presented in the previous section, a
scheduler may calculate the frequency setting for
each processor that yields the lowest power under the
constraints of the maximum total power and the
bound on the performance loss. If both constraints
cannot be met, the scheduler must meet the power
constraint while coming as close to the performance
constraint as possible. For simplicity, the scheduling
mechanism described here operates in two passes
although it is possible to implement in a single pass
scheduler.

Figure 2 shows the overall structure of the
frequency and voltage scheduling procedure. It
provides a simplified view showing only a single
processor of an SMP or a single node of a cluster
even though the algorithm schedules frequency and
voltage across all processors and nodes. However, the
power limit is a global one. The system uses power
status and measurement data to determine the value
of the limit and to monitor compliance with it.

�
�
�
�
��
��
�
�	
�

�

�

��
�
�

�
�	
�

�

����
���� �������	
��

�	
�

����	��������������	������������	�����������

����

����	��	��������

�������	�	�
��������
������
����

 ��!��
���
"������

#�$��������

#�$�����
�����������	���������
�	����������	����������%�&�
�'��

(����)�����

Figure 2: Scheduling structure.
Three possible triggers for changing frequency and

voltage are considered here. First, the global power
limit may change, due, for example, to the loss or the
restoration of a power supply in the system. Second,
there is a periodic readjustment of the voltage and
frequency based on the expiration of a timer.
Although the period of the timer, T, is a parameter to
the mechanism, it is, for convenience, selected to be a
multiple of the dispatch period, t, of the nodes.
Generally, the multiplier, n, is fairly large to help
stabilize the scheduler and amortize the overhead of
both the inter-processor communication required and
the frequency and voltage changes.

Finally, there are processors that idle by running a
tight, CPU-intensive, loop rather than by halting. The
Power4+ used in this research is such a processor.
The scheduling mechanism runs the CPU-intensive
idle loop at the highest frequency allowed by the
power constraints. To avoid this problem, the
scheduler needs input from the firmware or operating
system indicating the processor is idle. On receiving

this signal, it ignores the predictor and sets the
frequency and voltage to their minimum values.
When a processor exits from the idle loop, the idle
detection mechanism sends the scheduler another
signal indicating that the processor is no longer idle
and that normal operation should resume. If the
processor idles by halting and has a performance
counter that tracks the number of halted cycles, then
there is no need for the idle indicator.

The acceptable performance loss, �, is also a
parameter to the algorithm. When overall power is
not tightly constrained, � bounds the performance
loss of the workload on each processor. Due to the
relatively small number of possible frequency
settings, it is not always possible to achieve very
small values of �, and its value must be greater than
the minimum performance step caused by a change in
frequency and voltage.

The mechanism described here is applicable to
systems with a small, fixed set of available
frequencies. This approach may prove
computationally undesirable in systems with many
frequencies or systems that do continuous frequency
scaling. The computational limitations can be
overcoming by extending the mechanism to include
the identification of an “ideal frequency” at which to
run the workload on a processor. The ideal
frequency, fideal, is the frequency at which little or no
performance is lost. The calculation of fideal is based
on the two limiting cases, CPU-intensive and
memory-intensive, from the IPC prediction equation
discussed above.

fideal = fmax if IPC > 1;

otherwise fideal =

 max

_ max

* (,)*(1)

* * * (,)*(1)mem all

Instructions Perf t f

Instructions T Perf t f

ε
α α ε

−
− −

where Tmem_all = NL2TL2 + NL3TL3 + NmemTmem ������

is a small constant used to indicate how much
performance loss will be tolerated. This extension is
not discussed further here. The fixed frequency set
implementation provides a simpler illustration of the
procedure used to schedule frequencies and voltages.

In both the fixed frequency set and non-fixed
frequency set cases, the value of � is used to bound
the amount of performance lost by reducing the
frequency. The goal of the scheduler is to have
PerfLoss(fmax, f) < �, where fmax is the nominal
maximum frequency. For each possible frequency
setting, the algorithm calculates the predicted IPC of
the aggregate workload on that processor at that
frequency. It then computes the performance loss
versus the performance at fmax and chooses the

smallest value that still has a performance loss less
than �.

It is important to note that ε may not limit the
performance loss to less than ε. The ε limit is applied
to a predicted performance which may be incorrect.
Similarly, the use of aggregate performance counter
data on each processor may mask the presence of a
high CPU-intensity application among many
memory-intensive applications. A reduced frequency
in such a case will produce a larger performance loss
than predicted. Phase transition can also cause a
larger performance loss than predicted, particularly
when the new phase requires a higher frequency due
to more CPU-intensive instructions.

The data used in calculating the performance loss
is aggregated across all programs running on a
particular processor. The scheduler does not
explicitly take multiprogramming or program phase
transitions into account, but does work in their
presence. This simplification comes at some cost in
accuracy. The use of power measurement to monitor
the total power consumption ensures that the system
stays below the absolute limit. If necessary, the
global limit may contain a margin of safety that
forces a downward adjustment of frequency and
voltage before any hardware-related, critical power
limits are reached.

Figure 3: Frequency and voltage scheduling
algorithm.

Figure 3 shows the frequency and voltage
scheduling algorithm. Step 1 iterates through all of
the processors of the system and calculates the
predicted IPC values, using the equation of Section
1.1, based on the target frequency settings and the
observed values of the performance counters. The
frequency selected is the lowest frequency that is

predicted to keep the performance loss within �.
Although one more commonly thinks of downward
adjustments in frequency, step 2 may, in fact, adjust
it upward if a higher value is required to meet the
performance loss criterion. At step 2 the algorithm
adjusts the frequencies downward, if necessary, until
the power constraint is met, selecting downward
adjustments that have the least impact on
performance. In step 2, for each n and p, the value of
fless is the next lower frequency in F below the fn,p.
Finally, at step 3, the algorithm relies on a table look-
up to determine the lowest voltage setting allowed for
the selected frequency of each processor. It may be
the case that the voltage table is different for each
processor if there is significant process variation
among them.

The frequency and voltage scheduler reacts to the
observed behavior of the workloads assigned by the
operating system or cluster management software to
each processor. On standard SMP operating systems,
the kernel does some form of load balancing. Clusters
also typically try to balance the load as well through
clever initial assignments of work to nodes. However,
there is nothing in the frequency and voltage
scheduler that attempts to balance the system. It only
attempts to minimize total power within the
constraints of the limitation on maximum power and
a bound on the performance lost.

Using the example system introduced in Section 2,
the following is a sample calculation. The available
frequency settings are: 1.0GHz, 0.9GHz, 0.8GHz,
0.7GHz, and 0.6GHz. At time T0, a power supply
fails. The system identifies and schedules frequencies
for each processor. The system had a 294W total
power constraint on its processors. The ε-contrained
(Step 1) and actual frequency (Step 2) vectors for the
system were found to be [1.0GHz, 0.7GHz, 0.8GHz,
0.8GHz] and [0.9GHz, 0.6GHz, 0.7GHz, 0.7GHz]
respectively. The actual frequency vector has
corresponding power and performance loss vectors of
[109W, 48W, 66W, 66W] and [3.5%, 8%, 7%, 10%].

During the time between T0 and T1, the aggregate
characteristics of the jobs running on Processor 0
change, becoming more memory intensive. At time
T1, the calculations are performed again. Processor 0
has a new ε-constrained frequency of 0.6GHz,
resulting in a new ε-contrained frequency vector of
[0.6GHz, 0.7GHz, 0.8GHz, 0.8GHz]. It is now
possible to schedule all processors at their ε-
contrained frequencies, resulting in a power vector
of [48W, 66W, 84W, 84W] for a total power
consumption of 282W. In this case, the performance
loss vector is now [ε%, ε%, ε%, ε%] because all
aggregate workloads are scheduled appropriately. It
is important to note that while the aggregate
workload on a given processor does not suffer a

Let F = f0, f1, …, fmax be the possible
processor frequencies in ascending order

(1) for n in Nodes
 for p in Procs(n)
 for all fi in F
 calculate IPC(fi), PerfLoss(fmax, fi)
 fn,p = min fi such that PerfLoss(fmax, fi)����

����
��	�����n,p > Pmax
 select n, p with smallest PerfLoss(fmax, fless)
 fn,p = fless

(3) for n in Nodes
 for p in Procs(n)
 vn,p = MinVoltage(fn,p)

performance loss, individual jobs may. This is a
limitation of this approach, but in systems where job
migration is difficult, this may be acceptable.

6. Prototype Implementation

To evaluate the frequency and voltage scheduler
proposed in the previous section, the authors
implemented a prototype version on an IBM pSeries
system running Linux. The prototype runs on a single
SMP. The development of a prototype for the cluster
environment remains as future work.

The frequency and voltage scheduler (fvsst)
prototype relies on an approximation of frequency
scaling and cannot actually scale voltages. The
underlying hardware provides mechanisms for
throttling the pipeline use by interspersing the
dispatch, fetch or commit cycles with dead cycles.
Fetch throttling is used to mimic the effects of
frequency scaling. Throttling can be used to cover the
entire range from 0% to 100% frequency. This work
assumes throttling yields the same power and
performance results that using different frequencies
for the processors would but ignores the settling time.
Although not completely accurate, microbenchmarks
indicate that this is a reasonable first approximation
for the hardware used in the experimental studies.

The Power4+ processor used in the current
generation of pSeries machines provides performance
counters for cache and memory accesses. The
prototype is a privileged user-level daemon process
implemented as a single-threaded program. It relies
on pre-existing kernel support to read the
performance counters on all of the processors and to
throttle them when necessary. This implementation is
an initial prototype, and Section 9 discusses some
possible enhancements.

The program collects the performance-counter data
periodically and, after some number of collection
cycles or when given a signal with a new frequency
limit, executes the scheduling calculation and
throttles the processors accordingly. The program
generates both scheduling and performance counter
data logs that provide performance and frequency
information for monitoring and data analysis. Due to
the limitations of the hardware, the program does not
do any voltage calculations or detailed power
computations. However, the data collected is
sufficient for post-processing to determine the
amount of power that would have been saved.

The Linux scheduler limits the choice of values for
t, the dispatch cycle and the interval between
readings of the performance counters. Values for t of
less than 10 milliseconds interfere with the time
quantum used in the operating system and result in
inaccurate data collection. The values of T, the
interval between scheduling calculations, are

generally 10 times of those of t. Although it is
feasible to change the frequency and voltage more
often, it is not necessary to do so when considering
aggregate behavior only.

7. Evaluation Methodology

This section describes the experimental platform,
the metrics used to evaluate the benchmark results,
and the benchmarks themselves.

7.1. Experimental Platform
The experiments described in this paper were

performed on an IBM PowerPC-based pSeries P630
[14] system consisting of 4 1GHz Power4+ cores
operating at a core voltage of 1.3 volts. Each core has
a private 32 KB L1 instruction cache and a 64 KB L1
data cache. Two adjacent cores share a unified 1.44
MB data cache as well as a 32 MB L3. The machine
has 4 GB of main memory. Using experimentation, it
was determined that the nominal latency to various
levels of the memory hierarchy are as follows: 4 to 5
processor cycles to the L1 caches, 15 cycles to the L2
cache, 113 cycles to the L3 cache, and 393 cycles to
memory. These values are used by the scheduling
implementation. The experimental platform runs
SUSE Linux with a 2.6.5 kernel with modifications
to support CPU throttling. An earlier prototype was
developed on an experimental platform running
Gentoo Linux with a 2.6.7 kernel with similar
modifications to support CPU throttling.

The Power4+ cores have the property that they idle
hot. The observed IPC of the idle loop is quite high,
generally around 1.3, based on measurements taken
for this paper. None of the idle-detection techniques
discussed above are currently implemented.

Frequency
(MHz)

Power
(Watts)

Frequency
(MHz)

Power
(Watts)

250 9 650 57
300 13 700 66
350 18 750 75
400 22 800 84
450 28 850 95
500 35 900 109
550 41 950 123
600 48 1000 140

Table 1:Frequencies available for scheduling
Power estimates for each available frequency in the

system are generated by the Lava power estimation
tool developed by Devgan[16]. Lava is a circuit-level
tool used to determine the shape of the power versus
voltage and frequency curves for a particular
technology. The peak power for frequencies
considered by the scheduler is listed in . Power
estimates for frequencies below 500 MHz are likely
to be inaccurate, but extremely low frequencies were
included in the experiment to find out what range of

frequencies is truly required. In the event of a power
supply failure with limited redundancy, extremely
low frequencies may be required.

7.2. Metrics
 The fvsst prototype must be evaluated by a

variety of metrics. The predictor component must
provide accurate predictions. fvsst, as a whole, must
not impose a significant performance impact on the
system. In power-constrained systems, it is also
important to study the impact on power and
performance.

7.3. Benchmarks
This work is a preliminary study of prediction to

guide frequency and voltage scheduling. Evaluation
has been done with the synthetic benchmark used in
[2], which allows one to measure the performance
variability of a program with an adjustable ratio of
CPU-intensive to memory-intensive operations. The
synthetic benchmark is a single-threaded program
that accepts parameters that determine the ratio of
memory-intensive to CPU-intensive work as well as
the length of phases. It currently supports two (2)
phases, but each phase may be of a different length
and different memory-to-CPU intensity. It is
constructed so that a miss in the L1 is highly likely to
result in a memory access due to the large memory
footprint. The program reports its performance in
terms of throughput from its phases.

Although the synthetic benchmark provides an
excellent tool for studying scheduler behavior, it does
not truly mimic a real world application. In light of
this, four additional benchmarks have been selected
for study. These benchmarks are gzip, gap, and mcf
from SPECCPU2000, and health from Olden. gzip
and gap are CPU-intensive applications while mcf
and health are memory-intensive applications.

8. Experimental Results

This section gives the results of the experiments
run to evaluate the frequency and voltage scheduler
using the prototype implementation. All results were
run with T of 100 ms and t of 10 ms. When results
are reported for only a single benchmark, the
benchmark was run on CPU 3, and the remaining
CPUs ran a “hot” idle. Results for only the CPU with
a benchmark of interest assigned to it are shown here.

8.1. Predictor Accuracy and Prototype Overhead
 The predictor used by fvvst must provide accurate

predictions for this approach to be feasible. At the
same time, the overhead of using fvsst must be low

enough that it does not produce a significant negative
impact on overall system performance. The error in
the predictor is shown in Table 2. The final column
of the table (CPU3*) is the deviation when the
initialization and exit phases of the synthetic
benchmark are eliminated from consideration. These
results indicate that the predictor works well when
the program is not in an initialization or termination
phase. The remaining error is partially attributable to
a bias in the predictor. The predictor currently does
not account for non-memory stalls and uses constant
memory latencies. These shortcomings are acceptable
given the need for rapid response to power supply
failure.

IPC deviation CPU
intensity
%

CPU0 CPU1 CPU2 CPU3 CPU3*

100 0.009 0.008 0.01 0.3 0.1
75 0.009 0.007 0.01 0.2 0.05
50 0.008 0.007 0.01 0.2 0.05
25 0.008 0.007 0.009 0.2 0.04
Table 2: Predictor Error. CPU3* is the error
excluding initialization and termination phases.

Figure 4 shows the performance impact of running
fvsst on the reported throughput of the synthetic
benchmark is small. The performance degradation is
more noticeable with the more CPU-intensive
settings, but it is still no more than 3%. The fvsst
implementation has not been optimized, and the
performance impact should be lower when it is. The
performance degradation reported here includes both
the overhead of fvsst and the performance lost due to
mispredictions.

0

50

100

150

200

250

300

25% 50% 75% 80% 85% 90% 95% 100%
����������	�
����������	�
����������	�
����������	�

Synthetic Throughput w/o fvsst

Synthetic Throughput with fvsst

Figure 4: Performance Impact of fvsst scheduler
on the synthetic benchmark.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30 35 40 45 50

1-Second Intervals

IP
C

IPC 100%, 20% Freq 100%, 20% Normalized Power

Figure 5: fvsst response to phase behavior

8.2. Phase Behavior
Figure 5 illustrates that fvsst accommodates and

responds to phase changes. The frequency tracks
closely with changes in the measured IPC. The
settings of T and t are small enough to detect phase
behavior because it occurs over a time-scale longer
than 100 ms. The settings for T and t studied here
obscure smaller phases and do not take advantage of
them to reduce power. Figure 5 illustrates that IPC
and the desired frequency trend together.
Additionally, the power consumption of the system
tracks the changes in frequency.

0

0.2

0.4

0.6

0.8

1

1.2

������ ������ ������ �������

Normalized CPU-Intensive Performance

Normalized Memory-Intensive Performance

Figure 6: Performance impact of power limits

8.3. Response to Changes in Power Limits
One of the key motivations for doing power

management in servers is to keep the system below a
maximum power constraint. Due to environmental
changes or failures of power supplies, the amount of
power available may drop during system operation.
To avoid failures, the system must be able to adapt to
these changes. shows the performance impact of the
scheduler under various power limits on the synthetic
benchmark for its two phases, CPU-intensive at
100% intensity, and memory-intensive at 20%
intensity. The results are for the system configured to
use only a single processor. The performance values

are normalized to their values at full power. For the
memory-intensive phases, there is no degradation,
while, for the CPU-intensive phases, the degradation
is slightly less than one-to-one with the degradation
in frequency since there are some memory-related
stalls even in the CPU-intensive phase of the
program.

Figure 7 illustrates the impact of power constraints
more directly on a configuration consisting of a
100% CPU intensive phase and a 75% CPU intensive
phase. When the CPU is able to run at full power, and
thus full frequency, the high CPU-intensity phases
can be accommodated. When the power limit is
dropped to 75 Watts (a maximum frequency of 750
MHz), the high CPU-intensity phases can no longer
be scheduled without suffering a performance loss.
After an additional drop in power, to a limit of 35
Watts and frequency of 500 MHz, neither phase can
be scheduled without performance loss. Both phases
are now scheduled at the power-constrained
frequency

0E+00

2E+08

4E+08

6E+08

8E+08

1E+09

1E+09

0 500 1000 1500

Time (100 ms)

F
re

q
u

en
cy

0

20

40

60

80

100

120

140

160
P

o
w

er
 (

W
at

ts
)

Power-Constrained Frequency
Scheduled Frequency
Maximum Power

Figure 7: Power-constraints and responsiveness

8.4. Other Applications
Table 3 contains the power and performance results

for the additional benchmarks studied. Performance
loss is normalized against unconstrained performance
and smaller numbers indicate larger performance
losses. The CPU-intensive applications, gzip and gap,
suffer noticeable, but sub-linear performance
degradations as the power constraint is tightened. The
memory-intensive applications, mcf and health,
illustrate that it is possible to run certain applications
under tighter power constraints without suffering a
performance loss. In this case, neither benchmark lost
performance at a power constraint of 75W. Both
show significant performance loss at a budget of
35W because both possess large phases which would
need to be scheduled at 600MHz (48W), exceeding
the power constraint.

 gzip gap mcf health
Perf @ 140W 1 1 1 1
Perf @ 75W .79 0.8 .99 1
Perf @ 35W .52 0.54 .81 .72
Energy @ 140W .94 0.88 .43 .43
Energy @ 75W .68 0.67 .43 .43
Energy @ 35W .47 0.47 .31 .35

Table 3: Performance and power under constraint
The energy reduction provided by fvsst is

significant even in the case where the processor may
consume full power if it requires the corresponding
frequency. CPU-intensive applications use less
energy than the application running on a system
which does not respond to changes in frequency

needs. Even CPU-intensive applications have phases
which are unable to utilize all of the resources of the
pipeline. The energy reduction for memory-intensive
applications is even larger. Even while providing full
performance, the CPU consumes only 43% of the
energy of a non-fvsst enabled system.

Figure 8 shows the frequency distribution of the
benchmarks at different power-constrained
frequencies. The frequency distribution at 1000Mhz
indicates the desired frequencies in an unconstrained
system. For the CPU-intensive applications gzip and
gap, the effect of a power-constrained frequency cap
is obvious at 750MHz. The two applications initially
divided time primarily between 1000MHz and
950MHz. Once the frequency is limited to 750MHz,
the two CPU intensive applications must run at the
fastest frequency available. This limitation is
reflected in the 500MHz maximum frequency case as
well. The memory-intensive applications mcf and
health do not show such behavior until the frequency
limit drops to 500MHz. Both mcf and health have
very similar performance characteristics and
frequency distributions at 1000MHz and 750MHz. In
particular, both applications spend the majority of
their execution times executing with a frequency of
650MHz. Small differences in the frequency
distribution do occur. When the frequency is limited
to 750MHz, the work that was originally done at
frequencies faster than 750MHz is now executed at
750MHz instead. This shift in execution frequency
had little effect on the performance of mcf and
health.

0% 20% 40% 60% 80% 100%

gzip-1000

gzip-500

gap-1000

gap-500

mcf-1000

mcf-500

health-1000

health-500

b
en

ch
m

ar
k-

M
ax

F
re

q
u

en
cy

(M
H

z)

% Time at Each Frequency

1000MHz

950MHz

900MHz

850MHz

800MHz

750MHz

700MHz

650MHz

600MHz

550MHz

500MHz

450MHz

400MHz

Figure 8: Percentage of time at each frequency

0

100

200

300

400

500

600

700

800

900

1000

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Time (10 ms)

F
re

q
u

en
cy

 (M
H

z)

selected freq desired freq

Figure 9: Actual and desired frequencies for gap at 750MHz (power limit of 75W)

0

100

200

300

400

500

600

700

800

900

1000

11750 11950 12150 12350 12550 12750 12950

Time (10 ms)

F
re

q
u

en
cy

 (
M

H
z)

selected freq desired freq

Figure 10: Magnification of time slice from Figure 9

0

0.2

0.4

0.6

0.8

1

1.2

100 105 110 115 120 125

Time Interval (100ms)

F
re

q
u

en
cy

 (
G

H
z)

Frequency, e=0.01 Frequency, e=0.001 Frequency, e=0.0001

Figure 11: εεεε impact on frequency prediction

 The actual frequency used and desired frequency
for gap at 75W (750 MHz) are shown in

Figure 9. The application displays distinct phases.
These phases have different frequency requirements.
The actual and desired frequencies track closely, but

because of the frequency limit of 750MHz, gap
cannot run at any frequencies higher than 750MHz.
Figure 10 is an enlargement of a section of

Figure 9. It illustrates how closely the frequencies
track as well as a flattening effect at 750MHz when

gap spends more time at 750MHz than it did
previously.

Finally,
Figure 11 illustrates the impact of different values

of ���, the performance loss constraint on the predicted
frequency for gzip. fvsst has similar, although not
identical behavior for different values of ��. A value
of 0.0001 provides the tightest �performance bound,
but other options perform comparably. A small
degree of workload shifting occurs under larger �
values, but the general characteristics remain the
same. Smaller values of � tend to run at higher
frequencies for longer periods.

9. Conclusions

This study demonstrates the value of scheduling
frequencies and voltages rather than using a fixed set
of frequencies and voltages and moving work to the
processors with the appropriate performance
characteristics. A scheme that schedules frequencies
and voltages is applicable to environments such as
clusters where migrating work is difficult. It also
offers the advantage that one can implement it
outside the operating system. Since operating system

schedulers are, at best, difficult to change and, in
many cases, impossible to alter, this is a tremendous
advantage to system developers. The use of
predictors makes it easier to manage the system and
allows the system to take advantage of the natural
diversity in workload to reduce power consumption
at a minimal loss in performance.

Although this paper represents a start, this research
is by no means complete. The mechanism presented
here can be viewed as using the concept of ε-
diminishing returns. The idea is that the scheduler
considers all of the available frequency settings,
determines the performance loss at each one and then
���!�� ���� ���		���� ���� ����� ������
������ �� ��� ����

current performance. Rather than calculating the
performance loss at each available frequency, the
scheduler could instead calculate fideal. The idea is
that the scheduler treats frequencies continuously
rather than discretely and scales to the frequency
determined by ε.

The paper reports on a preliminary implementation
and a limited evaluation. Much more prototyping and

measurement remain to be done. Currently, the
implementation of the scheduler is as a single-
threaded program using the kernel to collect the
performance counter data. A better one would use
multiple threads, two per processor. One thread on
each processor collects the performance counter data
from the counters at user level while the other one
controls the throttling or frequency and voltage
scaling for it. The prototype lacks an idle detection
mechanism. For reasons of predictability, the code
normally runs at the maximum round-robin priority.
The Linux scheduler elongates the dispatch quanta
for such threads, which is a source of overhead and
inaccuracy when the applications also use the
maximum priority.

10. Acknowledgment

This material is based upon work supported by the
Defense Advanced Research Projects Agency
(DARPA) under Contract No. NBCH3039004.

11. References

[1] Charles Lefurgy, Karthick Rajamani, Freeman Rawson,
Wes Felter, Mike Kistler and Tom W. Keller, “Energy
Management for Commercial Servers”, Computer, volume
36, number 12, December, 2004, pages 39-48.
[2] R. Kotla, A. Devgan, S. Ghiasi, T. Keller and F.
Rawson, “Characterizing the Impact of Different Memory-
Intensity Levels”, IEEE 7th Annual Workshop on
Workload Characterization (WWC-7), October, 2004.
[3] K. Flautner and T. Mudge, “Vertigo: Automatic
performance-setting for Linux”, Proceedings of the 5th
Symposium on Operating Systems Design and
Implementation (OSDI’02), December, 2002, pages 105-
116.
[4] Rakesh Kumar, Keith Farkas, Norman P. Jouppi,
Partha Ranganathan, and Dean M. Tullsen, “A Multi-Core
Approach to Addressing the Energy-Complexity Problem
in Microprocessors”, Workshop on Complexity-Effective
Design, 2003.
[5] Rakesh Kumar, Keith Farkas, Norman P. Jouppi,
Partha Ranganathan, and Dean M. Tullsen, “Single-IA
Heterogeneous Multi-Core Architectures: The Potential for
Processor Power Reduction”, Proceedings of the 36th
International Symposium on Microarchitecture, December,
2003.
[6] Rakesh Kumar, Dean M. Tullsen, Parthasarathy
Ranganathan, Norman P. Jouppi, Keith I. Farkas, “Single –
ISA Heterogeneneous Multi-Core Architectures for
Multithreaded Workload Performance”, Proceedings of the
31st International Symposium on Computer Architecture,
June, 2004.
[7] Transmeta Corporation, “Transmeta LongRun
Dynamic Power/Thermal Management”,
http://www.transmeta.com/crusoe/longrun.html.
[8] Deva Bodas, “New Server Power-Management
Technologies Address Power and Cooling Challenges”,

Technology@Intel,
http://www.intel.com/update/contents/sv09031.htm.
[9] S. Ghiasi and D. Grunwald, “Aide de Camp:
Asymmetric Dual Core Design for Power and Energy
Reduction”, Technical Report CU-CS-964-03, Department
of Computer Science, University of Colorado, Boulder,
May, 2003.
[10] S. Ghiasi and D. Grunwald, “Thermal Management
with Asymmetric Dual Core Designs”, Technical Report
CU-CS-965-03, Department of Computer Science,
University of Colorado, Boulder, May, September, 2003.
[11] S. Ghiasi, “Aide de Camp: Asymmetric Multi-Core
Design for Dynamic Thermal Management”, Ph. D. thesis,
Department of Computer Science, University of Colorado,
Boulder, July, 2004.
[12] P. Stanley-Marbell, M. Hsiao and U.Kremer, “A
Hardware Architecture for Dynamic Performance and
Energy Adaptation”, Power-Aware Computer Systems,
Lecture Notes in Computer Science 2325, Springer Verlag,
2002.
[13] Intel Corporation, “Intel Pentium M: Enhanced
SpeedStep Technology”, http://developer.intel.com.
[14] Guilian Anselmi, Derrick Daines, Stephen Lutz,
Marcelo Okano, Wolfgang Seiwald, Dave Williams and
Scott Vetter, pSeries 630 Models 6C4 and 6E4 Technical
Overview and Introduction, IBM Corporation, December,
2003.
[15] E.N. Elnozahy, M. Kistler, and R. Rajamony,
“Energy Conservation Policies for Web Servers”,
Proceedings of the 4th Annual Usenix Symposium on
Internet Technologies and Systems, Usenix Association,
2003.
[16] A. Devgan, “LAVA: Leakage Avoidance and
Analysis”, IBM User’s Guide, 2004.
[17] R. Kotla, S. Ghiasi, T. Keller, and F. Rawson,
“Scheduling for Heterogeneous Processors in Server
Systems”, Proceedings of Computing Frontiers 2005, 2005,
To appear.

