
RC23431 (W0411-128) November 12, 2004
Computer Science

IBM Research Report

MEMSIM User Guide

Karthick Rajamani
IBM Research Division

Austin Research Laboratory
11501 Burnet Road
Austin, TX 78758

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Contents

1 Introduction 2
1.1 Organization of Server Main-Memory System . 2
1.2 Design of MEMSIM . 4

2 Usage 5
2.1 Source Distribution . 6
2.2 DRAM and Memory System Parameters . 6
2.3 Memory Trace Format . 7
2.4 Configuration-File Format . 7
2.5 Memsim as a Memory System Service or Component . 8

3 Sample Runs 10
3.1 Example 1: Scaled Down System . 10
3.2 Example 2: Modeling a small (no-SMI) system . 16
3.3 Example 3: Running Memsim as a Memory Service Program . 20

1

Chapter 1

Introduction

This document is a user guide for MEMSIM, a main-memory system simulator. Memsim, developed at the
IBM Austin Research Lab, provides paramaterized models of state-of-the-art server memory-system components,
right from the organization of the memory-controllers to the timing and power of individual SDRAM devices.
Models are also provided for design options such as different interleaving schemes, open/closed-page policies,
and dynamic power-management. Additionally, new schemes can be constructed using functions in the existing
code-base as building blocks (approaches to extend the simulator are not covered in this document).

1.1 Organization of Server Main-Memory System

A typical high-end multi-processor server system would have multiple memory controllers managing access to
multiple sets of DRAM memory. In the past, memory controllers have been customized chips designed to manage
a specific organization of SDRAM designed for a particular server family. Future server designs appear to bring
the memory controller into the processor chip to reduce delays between the controller and processors among other
reasons. In Memsim, we model a generic data path (characterized by its width and frequency) between a memory
controller and processors independent of the controller location.

Figure 1.1 shows the logical organization of the memory system similar to that modeled in Memsim. The
memory controller depicted has command and data interfaces, read/write command queues, and data buffers
aspects of which are modeled in Memsim. In addition, it would have additional components such as request-
reordering queues and error-handling logic which are not modeled in Memsim.

In high-end server systems, memory controllers are, often, not directly connected to the SDRAM devices.
Buffers, that we would refer to as Synchronous Memory Interface (SMI) chips, intervene in the connection between
the controller and memory. SMIs allow the desired higher-frequency and lower path widths on the controller
side and accomodate the slower frequency (and the compensating wider path widths) on the SDRAM side. The
figure shows two (independent) ports for the controller with 4 SMIs under each. The SMIs at the same port
act in conjunction resulting in transfer of command and data along all of them simultaneously i.e. the path to
the SDRAM at one port is the sum of the paths from the 4 SMIs attached to that port. The SDRAM devices
themselves are organized on Dual Inline Memory Modules (DIMMs), multiple ones of which are attached to each
SMI. Concurrent accesses could be in progress at the multiple DIMMs attached to an SMI.

The DIMMs are composed of multiple memory-chips (also called memory-devices). x4, x8, and x16 memory-
devices (denoting the number of bits accessed on a single request) are typical. A subset of these memory-chips
supply the entire bit-width of the DIMM. This subset is known as a rank. The DIMMs may be uni-ranked or
may have multiple ranks. The memory-chips are typically quad-banked allowing concurrent accesses to proceed
even with a single rank of devices on a DIMM. The devices are configured to operate in burst-mode, wherein data
can be read from or written into a bank on successive edges of the memory clock for the duration of the burst
(typically of length 4).

When a cache-line request (fill or writeback) is presented to the memory-controller, it is first mapped to the

2

L3 Cache

Data InterfaceCommand Interface

Read Queue Write Queue Read/Write
Buffers

Port 0 Port 1

SMI 0 SMI 1 SMI 2 SMI 3

DIMMs

SMI 0 SMI 1 SMI 2 SMI 3

DIMMs

Line-Size = 512 B

16 B

16 B

4 B4 B

8 B 8 B

Figure 1.1: Logical Organization of Memory Subsystem of an IBM POWER4 System. The dashed-line depicts
the command/address-flow and the solid-lines for the data-flow. The widths of the data-lines are labelled and are
given in bytes.

3

requisite port. The SMIs that are connected to the port provide the entire width of the port. This is achieved by
having each SMI provide a portion of the overall width of the port. For instance, as shown in figure 1.1, the SMIs
provide 16 bytes of data by each SMI providing 4 bytes. On the other hand, the DIMMs provide 8 bytes worth
of data each to the SMIs on a single transfer. For a cacheline worth of data from DIMMs under the 4 SMIs, one
would need to employ a burst access (for example a burst length of 4 would provide a cacheline of 128 bytes worth
of data for the organization shown in the figure). The width of the data paths and the DIMMs are configurable in
Memsim as are the frequencies of the different paths and the SDRAM burst lengths.

For the individual memory-chips, the memory-controller may employ a close-page-autoprecharge policy or
an open-page policy. Reading or writing data from/to a bank involves three distinct operations, each of which
has a certain latency and power-cost. The three operations are precharge-delay (

�����
), the RAS-to-CAS delay

(
�������

), and the column access-time (
��	

). The close-page policy is the simplest to implement. Here, after a
burst-access to a bank is complete, the memory-controller closes the row and issues an auto-precharge on that
bank. For this policy, there is a constant access latency of

��������
��	
, regardless of whether the next access

to the bank is to the same row or not. On the other hand, with an open-page policy, the row is kept open even
after the burst, so that if there is good row-locality (eg. some streaming access-pattern is encountered), we need
to pay only the

��	
penalty. However, if the access maps to a different row, the currently open row needs to be

closed, precharged, and new row needs to be opened, incurring a penalty of
������
��������
��	

. Further, to
implement an open-page policy, the memory-controller needs to keep track of open pages on the banks. Memsim
can be configured to use either the open-page or the close-page policy and an additional (experimental) hybrid
policy. While the experimental hybrid policy is for illustrative purposes, it can be easily extended to support very
effective adaptive page policies.

SDRAMs support clock-disabled low power modes: power-down and self-refresh. Because of its high exit
latency the self-refresh mode is less useful high-performance server main memory systems. The current version of
Memsim provides support for two dynamic SDRAM power management policies that use power-down - one using
power-down immediately after a request completes if no pending requests are present for the same set of devices
and another that waits a specified duration for new requests before entering power-down. Additional variations
can be implemented by extending the functions provided to support these two policies.

1.2 Design of MEMSIM

The MEMSIM simulator uses an event-driven model and is written in C using the CSIM toolkit developed by
Mesquite Software Incorporated. The timing and contention behavior of the underlying memory-system is mod-
elled using CSIM facilities, which consists of a server and its associated queue, for which a service-discipline is
defined (which is first-come first-serve by default). The simulator can be driven by either a memory-trace or by
communicating requests to it through a custom shared memory interface. The latter can can be used to be integrate
Memsim with a processor simulator. Each entry of the trace needs to specify:

Memsim is highly customizable. Parameters relating to the organization of the memory system are customiz-
able through a configuration file or on the command-line. Currently, SDRAM timing and power characteristics
are specified in a separate header file - Memsim is compiled for a specific SDRAM device type. Policy level
parameterization are also configurable through the same input configuration file. MEMSIM also provides a set
of interface functions for implementing specific interleaving policies that govern operations like a mapping of a
cache-line to a memory-controller or a DIMM segment to a particular bank. Supported interleaving strategies
are spread or round-robin interleaving vs fill at each of the controller, rank and bank levels. In a spread strategy
consecutive addresses to a level go to different components at that level. In a fill strategy, consecutive addresses
to the same level go to the same component till it is full. Customization of the interleaving to support additional
strategies requires source modifications to alter the specific interleaving functions.

4

Chapter 2

Usage

Running Memsim without any options will provide the usage information similar to the following:

Usage: ./memsim <sizeformatGB> config=<Mem-configfile> source=<SHM | path to tracefile> [options]
[options]:
nrecords=<max records> |
debugon | norefresh | slowadvance | noprintstats
pathshort | smipathshort | procpathshort |
smicmddelay=<delay in pclks> | mccmddelay=<delay in pclks> |
smisharedrw |
smireadwidth=<width in bits> | smiwritewidth=<width in bits> |
bufferedsmireads=0/1 | bufferedsmiwrites=0/1 |
oldnobuffersoln |
noscaleactstby |
reportinterval=<nrecords>
selfalign

The path to the input configuration file (config=) and source (source=) are compulsory parameters to
the command. They need to precede all other parameters, which are optional. Format of the configuration file is
discussed in section 2.4. The source file format is discussed in section 2.3. When the source is specified as ’SHM’,
Memsim works as a memory request service program instead of a trace-driven one. In this mode, Memsim can
work in consort with another program/simulator which can model other components and feeds memory requests
to Memsim. A brief overview of this mode is provided in section 2.5.

Some other useful command-line parameters:

nrecords=max records Specifies the maximum number of records to process.

debugon Turns on the output of debug messages (to stderr).

norefresh Turns off the modeling of periodic auto-refresh operations.

pathshort Models zero delay for data transfer along the controller-processor path and the SMI-controller path.

smipathshort Zero delay for the SMI-controller path.

procpathshort Zero delay for the controller-processor path.

smicmddelay=delay in pclks and mccmddelay=delay in pclks Command processing times at the SMI and at
the memory controller.

smisharedrw Shared (bidirectionsl) data path between SMI and controller for reads and writes.

5

bufferedsmireads=0/1 and bufferedsmiwrites=0/1 Whether writes and reads can be buffered at the SMIs or
not.

noscaleactstby Turn of the energy-scaling option for number of active banks in a device (use same energy for
the presence of active banks on a device independent of the number of active banks) - default is to scale the
energy by the number of active banks. This is an ’alternative’ power model.

selfalign If the addresses generated in the trace are not aligned to MEMDATA LENGTH Memsim will signal an
error and quit. Using this option lets Memsim continue using the ’aligned’ address in place of the problem
value. In practice, unaligned addresses would determine the burst-mode to be signaled to the SDRAM
determining the order of the bytes in the response.

2.1 Source Distribution

The source distribution consists of the following files:

1 Userguide.pdf (this document).

2 dram model.h: the header file that lists the values for the DRAM parameters.

3 memsim.c: the main source file containing all the memory simulation code.

4 memsim.h: the main header file that includes default parameter values.

5 memsim service.c: source for linking memsim with a another simulator or trace generation program using
shared memory.

6 memsim comm.h: header for memsim-other program communication.

7 Makefile.

8 sample.trace, sample2.trace: sample input trace files.

9 sample.config, sample2.config: sample input configuration files.

2.2 DRAM and Memory System Parameters

Key DRAM timing and current parameters are coded into the header file dram model.h. It is important that all the
values here be entered from the data sheet for the DRAM parts that would be used or from actual measurements.
It does not make sense to use the current set of hard-coded values as default !

Notes:

1 PCLK FREQ is the processor clock frequency in hz. The smallest time-step for memsim is 1 cycle of this fre-
quency. PCLK BY DRAMCLK is the ratio of the processor clock frequency to the DRAM clock frequency
(for DDR SDRAM, this is still the ratio of processor clock to memory clock e.g. for DDR400 one would
use 200MHz as the value for the memory clock to derive this ratio). TRANSFER PER CLOCK is 1 for
SDR SDRAM and 2 for DDR SDRAM.

2 All the DRAM timing constraint paramemters are given in units typically used in datasheets. tRP, tRCD, tRAS,
tRC, tRRD, tRFC, and tREFI are in nanoseconds. CL, tDQSS, tWR, and tWTR are in DRAM clock cycles.

3 The maxVdd and nomVdd values are in volts, the IDDX values are in amperes, and WattperDQ (max DC power
per data and data-strobe pins) is in watts. The calculation of WattperDQ is dependent on the SDRAM data-
sheet parameter IOL and actual on-dimm and termination resistances. The hard-coded resistance values are
arbitrary ones, though considered ’typical’. Use values of parts from your actual memory design.

6

2.3 Memory Trace Format

Memsim adopts a very simple ascii trace format. Each record has to be present in its own line and has four fields
separated by white-spaces:

1 Integer timestamp in processor clocks (64-bit value).

2 Integer address (64-bit value).

3 Size of the request: Currently the value for this parameter is ignored. The size of all requests is assumed to be
the value for the parameter MEMDATA LENGTH defined in file memsim.h.

4 Single bit for request type: A 0 denoting read request or a 1 denoting write request.

2.4 Configuration-File Format

The inputs that define the memory system organization are specified in a configuration file identified to Memsim
on the command-line with the ’config=’ option. Each line in the configuration file gives the description of one
parameter and its value. The parameters (i.e. their description) has to exactly match the list below. Skipping a
parameter is allowed (hard-coded default would be used), but not changing the order in which they are given in
the configuration file. File sample.config in the distribution is one such configuration file.

The descriptions of the parameters are:

� Physical Memory Size (MB): This is size of the physical memory to be simulated and is specified in
Megabytes. It is divided up equally between all the memory controllers. Default is 4096MB.

� Memory Controllers: Total number of memory-controllers in the system. Default is 1.

� Number of Ports Per Memory Controller: Number of populated ports on each memory controller in the
system. Default is 1.

� Enable MC Interleaving: ”1” if Spread interleaving is to be used; ”0” if cache-line Fill scheme is desired.
Default is 0.

� MC Queue Length: This is the length of the combined read/write request-queue in each memory-controller.
Default is 16.

� SMIs Per Port: Number of Synchronous Memory Interfaces attached to a memory-controller port. This is
also the number of channels per memory controller port. Default is 4.

� DIMMs Per SMI: Number of Dual In-Line Memory Modules attached to each SMI. Default is 4.

� Banks Per Chip: Number of banks within each memory-device/chip. Default is 4.

� DIMM Width: Bit-width of a DIMM for data (excluding parity/ECC). Default is 64.

� Device Width: Bit-width of a DRAM memory-device. DIMM Width divided by Device Width establishes
the number of devices per rank. Default is 8.

� Device Capacity: Capacity of a memory-device in kilobytes. Default is 32KB (256Mb).

� Devices Per DIMM: The number of memory-devices resident on a DIMM. This divided by the number of
devices per rank establishes the number of ranks on a DIMM. Default is 8.

� DRAM Burst Length: Burst-length of the DRAM devices. Default is 4.

7

� Rows Per Bank: Number of rows in each DRAM bank. Default is 8K.

� Columns Per Bank: Number of columns in each DRAM bank. Default is 1K.

� Enable Interleaved Bank-Fill: ”1” if the Bank-Interleave scheme is to be used; ”0” if Bank-Fill is the
choice. Default is 1.

� DRAM Page Policy: The page policy to be adopted at beginning of the run for all DRAM rows/pages. ”1”
for open-page; ”0” for close-page-autoprecharge policy. Default is 0.

� Enable Hybrid Page-Policy: ”0” if only open- or close-page alone;”1” for the last-access policy. The
last-access policy decides on the new policy for a row based on what would have been more beneficial for
the last access. The policy for a row can potentially change with every access. Default is 0.

� Enable Power Managemenet: ”1” if power-downs are to be used; ”0” otherwise. Default is 0.

� Power Management Policy: ”0” for the Immediate Powerdown policy; ”1” for Delayed Powerdown. De-
fault is 0.

� Power Down Check Interval: Number of processor-clocks to use for the Delayed Powerdown power-
management policy. Default is 100.

� Enable Interleaved Rank-Fill: ”1” to enable Rank-Interleave scheme;”0” for Rank-Fill. Default is 1..

� Buffered SMI Reads: “1” to enable reads to be buffered at the SMI. If buffered, the read from the DRAM
and the transfer to the memory controller proceed in sequence but independently. If “0” i.e. not buffered
the transfer to the memory controller proceeds in conjunction with the read from the DRAM. No buffer size
limits are placed for buffered SMI reads. Default is “0”.

� Buffered SMI Writes: “1” to enable writes to be buffered at the SMI. If buffered, the transfer of data on
the write from the memory controller and to the DRAM proceed in sequence but independently. If “0” i.e.
not buffered the transfer to the memory controller proceeds in conjunction with the write to the DRAM. No
buffer size limits are placed for buffered SMI writes. Default is “1”.

2.5 Memsim as a Memory System Service or Component

In addition to being used as a trace-driven simulator, Memsim can serve as a component simulating the main
memory system in a larger simulation environment. Memsim can be considered as a memory system service in
that situation interacting with a client program. Memory requests are passed to Memsim through shared memory
with synchronization between the client program and Memsim carried out using semaphores. Memsim is written
to interact with a cycle-accurate client program synchronizing every cycle.

The files memsim service.c and memsim comm.h provide the facilities for communication and syn-
chronization between Memsim and the client program. The file memsim service.c also contains the code
for a sample client program (that reads a trace file and feeds the requests to Memsim) that can be built with the
provided Makefile.

The API calls that a client program would use include:

commClientInit() Initializes the shared variable pointers on the client side, among other things.

commClientSynchTime() Synchronizes with memsim for the current clock tick in the client program to have
both programs move in lock-step.

sendRecord() Sends a record from the client program to Memsim (actually the shared memory from where
Memsim will pick it up).

8

commCheckForResponse() Look for responses from Memsim for memory requests submitted.

The main() function in memsim service.c that is compiled in for memsim client (with the flag
COMPILE AS CLIENT) illustrates the usage of these calls.

9

Chapter 3

Sample Runs

In this chapter, we illustrate the use of MEMSIM by walking through a couple of examples.

3.1 Example 1: Scaled Down System

In the first one, the input workload is a memory-trace whose filename is sample.trace. The configuration-file
name is sample.config. The contents of sample.trace is like:

0 536871168 128 0
0 536871040 128 0
0 536870784 128 0
1 536870656 128 0
2 536871296 128 0
3 536871424 128 0
4 536870528 128 0
4 536870912 128 0
7 640 128 0
11 512 128 0
13 256 128 0
17 128 128 0
18 768 128 0
19 896 128 0
26 0 128 0
27 384 128 0
...

In the above trace snippet, the first field gives the timestamp of the request in processor-cycles, the second
field the memory-address. The third and fourth fields specify the size of the request (which is same as the cache
line-size) and the request-type respectively (which in the above snippet is composed of only reads).

The contents of the sample.config file are:

Physical Memory Size (MB): 1024
Memory Controllers: 8
Enable MC Interleaving: 1
MC Queue Length: 64
SMIs Per Port: 4
DIMMs Per SMI: 4
Banks Per Chip: 4

10

DIMM Width: 64
Device Width: 8
Device Capacity: 512
Devices Per DIMM: 16
DRAM Burst Length: 4
Rows Per Bank: 128
Columns Per Bank: 1024
Enable Interleaved Bank-Fill: 1
DRAM Page Policy: 0
Enable Hybrid Page Policy: 0
Enable Power Management: 1
Power Management Policy: 0
Power Down Check Interval: 0
Enable Interleaved Rank-Fill: 1
Buffered SMI Reads: 0
Buffered SMI Writes: 1

The above configuration represents a a 1GB system composed of eight memory-controllers, each having four
SMIs per port. Each SMI has four x64 DIMMs underneath it and each DIMM is dual-ranked with x8 devices of
512KB each. In this example, the size of the system has been scaled down by a factor of 64 from an actual system.
Essentially the system being modeled is a 64GB system with same number of devices as the simulated system. A
close-page policy is used with immediate power-down power management policy. Interleaving is used at all the
levels - controller, rank and bank. In order to run the simulation, at the command-prompt we need to type:

memsim config=sample.config source=sample.trace

The output of MEMSIM for this run is:

Command: ./memsim config=sample.config source=sample.trace
Physical Memory Size (MB): 1024
Memory Controllers: 8
Enable MC Interleaving: 1
MC Queue Length: 64
Bus Retry Cycles: 32
SMIs Per Port: 4
DIMMs Per SMI: 4
Banks Per Chip: 4
DIMM Width: 64
Device Width: 8
Device Capacity: 512
Devices Per DIMM: 16
DRAM Burst Length: 4
Rows Per Bank: 128
Columns Per Bank: 1024
Enable Interleaved Bank-Fill: 1
DRAM Page Policy: 0
Enable Hybrid Page Policy: 0
Enable Power Management: 1
Power Management Policy: 0
Power Down Check Interval: 0
Enable Interleaved Rank-Fill: 1
Number of records to be processed: 0
Buffered SMI Reads: 0
Buffered SMI Writes: 1

11

***** OVERALL EXECUTION STATISTICS *****

Total Simulation Time: 46980.000000 Processor Clocks (0.000023 Seconds)
Number of records read 10000, requests processed 10000
REFRESH Tried = 192, Delayed 192, Maximum Delay 200.00, Average Delay 57.64, Average Access Delay 19.55, Average Precharge Delay 38.08

***** ENERGY STATISTICS *****

Total EACT: 0.00264815 J Average PACT: 112.735128 W
Total EWR: 0 J Average PWR: 0.000000 W
Total ERD: 0.000962963 J Average PRD: 40.994592 W
Total EDQ: 0.000198374 J Average PDQ: 8.445057 W
Total EREF: 0.000258844 J Average PREF: 11.019346 W
Total EACT_STBY: 0.00215361 J Average PACT_STBY: 91.681977 W
Total EPRE_STBY: 0.000372536 J Average PPRE_STBY: 15.859325 W
Total EPRE_PDN: 0.000293559 J Average PPRE_PDN: 12.497176 W
Total EACT_PDN: 0 J Average PACT_PDN: 0.000000 W
Total Energy: 0.00688803 J Average Power: 293.232601 W

Components of Active-Standby Energies:

Total EACT_STBY - Wakeup: 0 J Average EACT_STBY - Wakeup: 0.000000 W

Components of Precharge-Standby Energies:

Total EPRE_STBY - Wakeup: 0.000127956 J Average EPRE_STBY - Wakeup: 5.447235 W
Total EPRE_STBY - Device-Idle: 0.00024458 J Average EPRE_STBY - Device-Idle: 10.412090 W
Total EPRE_STBY - tRP: 0 J Average EPRE_STBY - tRP: 0.000000 W

***** PER-MC ENERGY STATISTICS *****

ACT WR RD DQ REF ACT_STBY PRE_STBY ACT_PDN PRE_PDN
MC 0 0.000331 0.000000 0.000120 0.000025 0.000032 0.000269 0.000049 0.000000 0.000037
MC 1 0.000331 0.000000 0.000120 0.000025 0.000032 0.000270 0.000049 0.000000 0.000036
MC 2 0.000331 0.000000 0.000120 0.000025 0.000032 0.000271 0.000049 0.000000 0.000036
MC 3 0.000331 0.000000 0.000120 0.000025 0.000032 0.000271 0.000049 0.000000 0.000036
MC 4 0.000331 0.000000 0.000120 0.000025 0.000032 0.000270 0.000049 0.000000 0.000036
MC 5 0.000331 0.000000 0.000120 0.000025 0.000032 0.000262 0.000030 0.000000 0.000038
MC 6 0.000331 0.000000 0.000120 0.000025 0.000032 0.000270 0.000049 0.000000 0.000036
MC 7 0.000331 0.000000 0.000120 0.000025 0.000032 0.000270 0.000049 0.000000 0.000036

***** PER-MC POWER STATISTICS *****

ACT WR RD DQ REF ACT_STBY PRE_STBY ACT_PDN PRE_PDN
MC 0 14.081 0.000 5.120 1.055 1.377 11.471 2.087 0.000 1.555
MC 1 14.092 0.000 5.124 1.056 1.377 11.487 2.084 0.000 1.554
MC 2 14.103 0.000 5.128 1.056 1.377 11.540 2.081 0.000 1.551
MC 3 14.081 0.000 5.120 1.055 1.377 11.520 2.076 0.000 1.552
MC 4 14.092 0.000 5.124 1.056 1.377 11.506 2.089 0.000 1.552
MC 5 14.103 0.000 5.128 1.056 1.377 11.166 1.274 0.000 1.626
MC 6 14.092 0.000 5.124 1.056 1.377 11.511 2.080 0.000 1.553

12

MC 7 14.092 0.000 5.124 1.056 1.377 11.483 2.088 0.000 1.554

***** POWER-DOWN STATISTICS (In Processor Clocks)*****

Number of rank power downs: 5618
Number of Delayed Requests Due to Power-Down: 5618

***** ROW-HIT STATISTICS *****

Total Row Hits: 2
Address-Reuse Hits: 0

Total Row Misses: 9998
Cold-Bank Misses: 256
Row-Switch Misses: 9742

***** UTILIZATION STATISTICS *****

MEMORY-BUS
0 1 2 3 4 5 6 7

0.425 0.426 0.426 0.425 0.426 0.426 0.426 0.426

***** MC-SMI Bus Usage (In Processor Clocks)*****

Port Bus 0: Read Delay 7150 (average 11, num 628), Write Delay 0 (average 0, num 0)
Port Bus 1: Read Delay 7222 (average 11, num 630), Write Delay 0 (average 0, num 0)
Port Bus 2: Read Delay 7653 (average 12, num 636), Write Delay 0 (average 0, num 0)
Port Bus 3: Read Delay 7622 (average 12, num 634), Write Delay 0 (average 0, num 0)
Port Bus 4: Read Delay 7396 (average 12, num 630), Write Delay 0 (average 0, num 0)
Port Bus 5: Read Delay 1288 (average 31, num 41), Write Delay 0 (average 0, num 0)
Port Bus 6: Read Delay 7456 (average 12, num 634), Write Delay 0 (average 0, num 0)
Port Bus 7: Read Delay 7167 (average 11, num 627), Write Delay 0 (average 0, num 0)

***** STALL STATISTICS *****

Total Number of Stalls: 0

Total Number of Real Stalls: 0, Time Stalled = 0

PER-MC STALLS

0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0

13

***** DRAM MODES (Percentage of Overall Time)*****

nReqs nActs Time(pclks)ACT_STBY ACT_STBY_WAKEUP PRE_STBY_WAKEUP PRE_STBY_DEV_IDLE PRE_STBY_RP RD WR REF ACT_PDN PRE_PDN
Dev-00-00 157 157 46980 27.79% 0.00% 1.72% 4.18% 0.00% 6.68% 0.00% 0.89% 0.00% 65.42%
Dev-00-01 156 156 46980 27.70% 0.00% 1.70% 4.15% 0.00% 6.64% 0.00% 0.89% 0.00% 65.56%
Dev-00-02 156 156 46980 27.64% 0.00% 1.70% 4.17% 0.00% 6.64% 0.00% 0.89% 0.00% 65.60%
Dev-00-03 156 156 46980 27.59% 0.00% 1.70% 4.14% 0.00% 6.64% 0.00% 0.89% 0.00% 65.67%
Dev-00-04 156 156 46980 27.54% 0.00% 1.68% 4.20% 0.00% 6.64% 0.00% 0.89% 0.00% 65.68%
Dev-00-05 156 156 46980 27.60% 0.00% 1.72% 4.20% 0.00% 6.64% 0.00% 0.89% 0.00% 65.58%
Dev-00-06 156 156 46980 27.65% 0.00% 1.68% 4.09% 0.00% 6.64% 0.00% 0.89% 0.00% 65.68%
Dev-00-07 156 156 46980 27.72% 0.00% 1.72% 4.17% 0.00% 6.64% 0.00% 0.89% 0.00% 65.49%
Dev-01-00 158 158 46980 27.91% 0.00% 1.75% 4.28% 0.00% 6.73% 0.00% 0.89% 0.00% 65.17%
Dev-01-01 156 156 46980 27.65% 0.00% 1.68% 4.09% 0.00% 6.64% 0.00% 0.89% 0.00% 65.68%
Dev-01-02 156 156 46980 27.67% 0.00% 1.70% 4.15% 0.00% 6.64% 0.00% 0.89% 0.00% 65.58%
Dev-01-03 156 156 46980 27.70% 0.00% 1.70% 4.15% 0.00% 6.64% 0.00% 0.89% 0.00% 65.56%
Dev-01-04 156 156 46980 27.66% 0.00% 1.70% 4.17% 0.00% 6.64% 0.00% 0.89% 0.00% 65.57%
Dev-01-05 156 156 46980 27.61% 0.00% 1.70% 4.11% 0.00% 6.64% 0.00% 0.89% 0.00% 65.67%
Dev-01-06 156 156 46980 27.62% 0.00% 1.68% 4.15% 0.00% 6.64% 0.00% 0.89% 0.00% 65.65%
Dev-01-07 156 156 46980 27.69% 0.00% 1.72% 4.15% 0.00% 6.64% 0.00% 0.89% 0.00% 65.54%
Dev-02-00 158 158 46980 28.08% 0.00% 1.75% 4.22% 0.00% 6.73% 0.00% 0.89% 0.00% 65.06%
Dev-02-01 156 156 46980 27.75% 0.00% 1.68% 4.10% 0.00% 6.64% 0.00% 0.89% 0.00% 65.58%
Dev-02-02 157 157 46980 27.91% 0.00% 1.75% 4.17% 0.00% 6.68% 0.00% 0.89% 0.00% 65.28%
Dev-02-03 156 156 46980 27.75% 0.00% 1.70% 4.13% 0.00% 6.64% 0.00% 0.89% 0.00% 65.53%
Dev-02-04 156 156 46980 27.89% 0.00% 1.70% 4.09% 0.00% 6.64% 0.00% 0.89% 0.00% 65.43%
Dev-02-05 156 156 46980 27.74% 0.00% 1.70% 4.10% 0.00% 6.64% 0.00% 0.89% 0.00% 65.57%
Dev-02-06 156 156 46980 27.75% 0.00% 1.70% 4.14% 0.00% 6.64% 0.00% 0.89% 0.00% 65.52%
Dev-02-07 156 156 46980 27.69% 0.00% 1.72% 4.17% 0.00% 6.64% 0.00% 0.89% 0.00% 65.52%
Dev-03-00 157 157 46980 27.83% 0.00% 1.75% 4.17% 0.00% 6.68% 0.00% 0.89% 0.00% 65.36%
Dev-03-01 156 156 46980 27.75% 0.00% 1.70% 4.12% 0.00% 6.64% 0.00% 0.89% 0.00% 65.53%
Dev-03-02 156 156 46980 27.86% 0.00% 1.70% 4.12% 0.00% 6.64% 0.00% 0.89% 0.00% 65.43%
Dev-03-03 156 156 46980 27.74% 0.00% 1.70% 4.10% 0.00% 6.64% 0.00% 0.89% 0.00% 65.56%
Dev-03-04 156 156 46980 27.75% 0.00% 1.70% 4.12% 0.00% 6.64% 0.00% 0.89% 0.00% 65.54%
Dev-03-05 156 156 46980 27.61% 0.00% 1.72% 4.19% 0.00% 6.64% 0.00% 0.89% 0.00% 65.59%
Dev-03-06 156 156 46980 27.76% 0.00% 1.68% 4.10% 0.00% 6.64% 0.00% 0.89% 0.00% 65.56%
Dev-03-07 156 156 46980 27.88% 0.00% 1.72% 4.10% 0.00% 6.64% 0.00% 0.89% 0.00% 65.40%
Dev-04-00 158 158 46980 27.94% 0.00% 1.75% 4.26% 0.00% 6.73% 0.00% 0.89% 0.00% 65.16%
Dev-04-01 156 156 46980 27.65% 0.00% 1.70% 4.16% 0.00% 6.64% 0.00% 0.89% 0.00% 65.59%
Dev-04-02 156 156 46980 27.82% 0.00% 1.70% 4.13% 0.00% 6.64% 0.00% 0.89% 0.00% 65.46%
Dev-04-03 156 156 46980 27.64% 0.00% 1.70% 4.17% 0.00% 6.64% 0.00% 0.89% 0.00% 65.60%
Dev-04-04 156 156 46980 27.74% 0.00% 1.70% 4.15% 0.00% 6.64% 0.00% 0.89% 0.00% 65.52%
Dev-04-05 156 156 46980 27.58% 0.00% 1.72% 4.19% 0.00% 6.64% 0.00% 0.89% 0.00% 65.62%
Dev-04-06 156 156 46980 27.68% 0.00% 1.68% 4.15% 0.00% 6.64% 0.00% 0.89% 0.00% 65.59%
Dev-04-07 156 156 46980 27.84% 0.00% 1.72% 4.11% 0.00% 6.64% 0.00% 0.89% 0.00% 65.43%
Dev-05-00 157 157 46980 27.01% 0.00% 3.36% 0.29% 0.00% 6.68% 0.00% 0.89% 0.00% 68.44%
Dev-05-01 156 156 46980 26.86% 0.00% 3.30% 0.21% 0.00% 6.64% 0.00% 0.89% 0.00% 68.74%
Dev-05-02 157 157 46980 26.99% 0.00% 3.34% 0.29% 0.00% 6.68% 0.00% 0.89% 0.00% 68.49%
Dev-05-03 156 156 46980 26.77% 0.00% 3.36% 0.26% 0.00% 6.64% 0.00% 0.89% 0.00% 68.72%
Dev-05-04 156 156 46980 26.95% 0.00% 3.32% 0.25% 0.00% 6.64% 0.00% 0.89% 0.00% 68.59%
Dev-05-05 156 156 46980 26.83% 0.00% 3.34% 0.20% 0.00% 6.64% 0.00% 0.89% 0.00% 68.73%
Dev-05-06 156 156 46980 26.87% 0.00% 3.36% 0.19% 0.00% 6.64% 0.00% 0.89% 0.00% 68.68%
Dev-05-07 157 157 46980 27.07% 0.00% 3.38% 0.20% 0.00% 6.68% 0.00% 0.89% 0.00% 68.45%
Dev-06-00 157 157 46980 27.78% 0.00% 1.75% 4.20% 0.00% 6.68% 0.00% 0.89% 0.00% 65.39%
Dev-06-01 156 156 46980 27.79% 0.00% 1.70% 4.09% 0.00% 6.64% 0.00% 0.89% 0.00% 65.53%
Dev-06-02 156 156 46980 27.81% 0.00% 1.70% 4.11% 0.00% 6.64% 0.00% 0.89% 0.00% 65.47%
Dev-06-03 156 156 46980 27.68% 0.00% 1.70% 4.13% 0.00% 6.64% 0.00% 0.89% 0.00% 65.59%
Dev-06-04 156 156 46980 27.66% 0.00% 1.70% 4.14% 0.00% 6.64% 0.00% 0.89% 0.00% 65.60%

14

Dev-06-05 156 156 46980 27.60% 0.00% 1.72% 4.20% 0.00% 6.64% 0.00% 0.89% 0.00% 65.59%
Dev-06-06 156 156 46980 27.69% 0.00% 1.68% 4.11% 0.00% 6.64% 0.00% 0.89% 0.00% 65.62%
Dev-06-07 157 157 46980 27.98% 0.00% 1.75% 4.10% 0.00% 6.68% 0.00% 0.89% 0.00% 65.28%
Dev-07-00 157 157 46980 27.72% 0.00% 1.75% 4.22% 0.00% 6.68% 0.00% 0.89% 0.00% 65.42%
Dev-07-01 156 156 46980 27.63% 0.00% 1.70% 4.13% 0.00% 6.64% 0.00% 0.89% 0.00% 65.64%
Dev-07-02 156 156 46980 27.74% 0.00% 1.70% 4.11% 0.00% 6.64% 0.00% 0.89% 0.00% 65.54%
Dev-07-03 156 156 46980 27.65% 0.00% 1.70% 4.16% 0.00% 6.64% 0.00% 0.89% 0.00% 65.60%
Dev-07-04 156 156 46980 27.58% 0.00% 1.70% 4.18% 0.00% 6.64% 0.00% 0.89% 0.00% 65.64%
Dev-07-05 156 156 46980 27.58% 0.00% 1.72% 4.18% 0.00% 6.64% 0.00% 0.89% 0.00% 65.62%
Dev-07-06 156 156 46980 27.61% 0.00% 1.68% 4.18% 0.00% 6.64% 0.00% 0.89% 0.00% 65.64%
Dev-07-07 157 157 46980 27.93% 0.00% 1.75% 4.10% 0.00% 6.68% 0.00% 0.89% 0.00% 65.33%

***** RESPONSE TIME STATISTICS (In Processor Clocks)*****

BOX 1: Read Request-Time

statistics on elapsed times

minimum 105.000000 mean 145.382600
maximum 404.000000 variance 1547.488166
range 299.000000 standard deviation 39.338126
observations 10000 coefficient of var 0.270583

cumulative
lower limit frequency proportion proportion

100.00000 5510 0.551000 0.551000 ********************
125.00000 43 0.004300 0.555300 .
150.00000 1845 0.184500 0.739800 *******
175.00000 1260 0.126000 0.865800 *****
200.00000 1251 0.125100 0.990900 *****
225.00000 24 0.002400 0.993300 .
250.00000 14 0.001400 0.994700 .
275.00000 16 0.001600 0.996300 .
300.00000 10 0.001000 0.997300 .
325.00000 3 0.000300 0.997600 .
350.00000 18 0.001800 0.999400 .
375.00000 4 0.000400 0.999800 .
400.00000 2 0.000200 1.000000 .

statistics on population

initial 0 minimum 0 mean 30.945636
final 0 maximum 76 variance 260.114456
entries 10000 range 76 standard deviation 16.128064
exits 10000 coeff of variation 0.521174

BOX 2: Write Request-Time

statistics on elapsed times

> no data recorded since creation or reset

15

statistics on population

initial 0 minimum 0 mean 0.000000
final 0 maximum 0 variance 0.000000
entries 0 range 0 standard deviation 0.000000
exits 0 coeff of variation 0.000000

All of the output is sent to stderr. The output has the following sections:

� Command line and configuration options.

� Overall execution and refresh statistics (the latter can be ignored except when developing extensions or
changing the refresh code).

� Total SDRAM Energy and Power Statistics (with breakdown of consumption in different activities/states).

� Energy totals per memory controller.

� If power management was used, then the number of times power down was used and its effect on subsequent
requests.

� SDRAM row/page hit statistics - can be used as a measure of how effective a particular page policy would
be (stats are independent of actual policy used). A row hit indicates a new request to a bank was to the
same row (open or closed) as the previous request to that bank and a miss indicates that new request is to a
different row.

� Memory controller (MC) bus utilization (fraction of time used), delay on the MC-SMI bus due to contention
between the multiple ranks and banks under the SMI.

� Statis tics on the stalls the simulator encountered due to the controller queues being full (whenever any of
the memory controller’s queue is full, the entire simulation stalls).

� Rank-wise access/state statistics on the SDRAM devices.

� Read and write request response time statistics - note the stall time does not count towards the response
time statistics (response time begins only after the request has been added to a memory controller queue).

3.2 Example 2: Modeling a small (no-SMI) system

For example 2, consider a smaller system with a single memory controller, no SMIs, and 4 uni-ranked DIMMs
with width 64, with the memory controller accessing 2 DIMMs at a time (i.e. a 128-bit path from the memory
controller to the DIMMs). This organization would be similar to a ’dual-bank’ PC memory system with 2 slots.
For a cache-line size of 128 bytes, a burst length of 8 would suffice to access a complete cache line in one request.
To model the absence of the SMIs, but yet model the contention on the SDRAM to memory controller buses
we can adopt the following approach in the current version of Memsim. On the command line we can use the
options bufferedsmireads=0 and bufferedsmiwrites=0 (or equivalent lines in the configuration file), smisharedrw
and smicmddelay=0. This will force the code to model a zero delay SMI, with the only latency seen between the
memory controller and SDRAM being the SDRAM access time. The contention for the controller-DIMM bus
between the multiple ranks or slots (and banks on the same rank) will still be modeled for this zero latency SMI.

The output for such a run is given below:

16

Modeling zero processing delay at SMI
Command: ./memsim config=sample2.config source=sample2.trace smisharedrw smicmddelay=0 smireadwidth=64 smiwritewidth=64
Physical Memory Size (MB): 1024
Memory Controllers: 1
Enable MC Interleaving: 0
MC Queue Length: 16
Bus Retry Cycles: 32
SMIs Per Port: 2
DIMMs Per SMI: 2
Banks Per Chip: 4
DIMM Width: 64
Device Width: 8
Device Capacity: 32768
Devices Per DIMM: 8
DRAM Burst Length: 8
Rows Per Bank: 8192
Columns Per Bank: 1024
Enable Interleaved Bank-Fill: 1
DRAM Page Policy: 1
Enable Hybrid Page Policy: 0
Enable Power Management: 1
Power Management Policy: 0
Power Down Check Interval: 0
Enable Interleaved Rank-Fill: 1
Number of records to be processed: 0
Buffered SMI Reads: 0
Buffered SMI Writes: 0

***** OVERALL EXECUTION STATISTICS *****

Total Simulation Time: 1622660.000000 Processor Clocks (0.000811 Seconds)
Number of records read 10000, requests processed 10000
REFRESH Tried = 208, Delayed 208, Maximum Delay 151.00, Average Delay 111.71, Average Access Delay 13.63, Average Precharge Delay 98.08

***** ENERGY STATISTICS *****

Total EACT: 0.000548034 J Average PACT: 0.675476 W
Total EWR: 0.000167644 J Average PWR: 0.206629 W
Total ERD: 0.000773452 J Average PRD: 0.953314 W
Total EDQ: 0.000159334 J Average PDQ: 0.196387 W
Total EREF: 0.000140207 J Average PREF: 0.172812 W
Total EACT_STBY: 0.00103451 J Average PACT_STBY: 1.275077 W
Total EPRE_STBY: 0.000154144 J Average PPRE_STBY: 0.189990 W
Total EPRE_PDN: 3.59778e-07 J Average PPRE_PDN: 0.000443 W
Total EACT_PDN: 0.00168486 J Average PACT_PDN: 2.076667 W
Total Energy: 0.00466255 J Average Power: 5.746794 W

Components of Active-Standby Energies:

Total EACT_STBY - Wakeup: 0.000103613 J Average EACT_STBY - Wakeup: 0.127708 W

Components of Precharge-Standby Energies:

Total EPRE_STBY - Wakeup: 2.14444e-06 J Average EPRE_STBY - Wakeup: 0.002643 W

17

Total EPRE_STBY - Device-Idle: 0.000152 J Average EPRE_STBY - Device-Idle: 0.187347 W
Total EPRE_STBY - tRP: 0 J Average EPRE_STBY - tRP: 0.000000 W

***** PER-MC ENERGY STATISTICS *****

ACT WR RD DQ REF ACT_STBY PRE_STBY ACT_PDN PRE_PDN
MC 0 0.000548 0.000168 0.000773 0.000159 0.000140 0.001035 0.000154 0.001685 0.000000

***** PER-MC POWER STATISTICS *****

ACT WR RD DQ REF ACT_STBY PRE_STBY ACT_PDN PRE_PDN
MC 0 0.675 0.207 0.953 0.196 0.173 1.275 0.190 2.077 0.000

***** POWER-DOWN STATISTICS (In Processor Clocks)*****

Number of rank power downs: 8033
Number of Delayed Requests Due to Power-Down: 8033

***** ROW-HIT STATISTICS *****

Total Row Hits: 6015
Address-Reuse Hits: 0

Total Row Misses: 3985
Cold-Bank Misses: 2
Row-Switch Misses: 3983

***** UTILIZATION STATISTICS *****

MEMORY-BUS
0

0.099

***** MC-SMI Bus Usage (In Processor Clocks)*****

Port Bus 0: Delay 2495 (average 30, num 83)

***** STALL STATISTICS *****

Total Number of Stalls: 0

Total Number of Real Stalls: 0, Time Stalled = 0

PER-MC STALLS

18

0

0

***** DRAM MODES (Percentage of Overall Time)*****

nReqs nActs Time(pclks)ACT_STBY ACT_STBY_WAKEUP PRE_STBY_WAKEUP PRE_STBY_DEV_IDLE PRE_STBY_RP RD WR REF ACT_PDN PRE_PDN
Dev-00-00 5984 4004 1622660 30.31% 2.46% 0.05% 7.74% 0.00% 9.90% 4.85% 0.90% 60.89% 0.11%
Dev-00-01 4016 135 1622660 18.87% 2.46% 0.06% 0.69% 0.00% 9.90% 0.00% 0.90% 79.28% 0.19%

***** RESPONSE TIME STATISTICS (In Processor Clocks)*****

BOX 1: Read Request-Time

statistics on elapsed times

minimum 83.000000 mean 111.021663
maximum 422.000000 variance 1202.367106
range 339.000000 standard deviation 34.675166
observations 8032 coefficient of var 0.312328

cumulative
lower limit frequency proportion proportion

75.00000 5842 0.727341 0.727341 ********************
100.00000 66 0.008217 0.735558 .
125.00000 28 0.003486 0.739044 .
150.00000 1985 0.247136 0.986180 *******
175.00000 6 0.000747 0.986927 .
200.00000 2 0.000249 0.987176 .
225.00000 18 0.002241 0.989417 .
250.00000 19 0.002366 0.991783 .
275.00000 19 0.002366 0.994148 .
300.00000 12 0.001494 0.995642 .
325.00000 11 0.001370 0.997012 .
350.00000 9 0.001121 0.998132 .
375.00000 7 0.000872 0.999004 .
400.00000 8 0.000996 1.000000 .

statistics on population

initial 0 minimum 0 mean 0.549546
final 0 maximum 2 variance 0.341874
entries 8032 range 2 standard deviation 0.584700
exits 8032 coeff of variation 1.063970

BOX 2: Write Request-Time

statistics on elapsed times

minimum 128.000000 mean 140.816565

19

maximum 379.000000 variance 535.857031
range 251.000000 standard deviation 23.148586
observations 1968 coefficient of var 0.164388

cumulative
lower limit frequency proportion proportion

125.00000 1923 0.977134 0.977134 ********************
150.00000 1 0.000508 0.977642 .
175.00000 1 0.000508 0.978150 .
200.00000 7 0.003557 0.981707 .
225.00000 3 0.001524 0.983232 .
250.00000 3 0.001524 0.984756 .
275.00000 20 0.010163 0.994919 .
300.00000 3 0.001524 0.996443 .
325.00000 1 0.000508 0.996951 .
350.00000 0 0.000000 0.996951
375.00000 6 0.003049 1.000000 .

statistics on population

initial 0 minimum 0 mean 0.170786
final 0 maximum 1 variance 0.141618
entries 1968 range 1 standard deviation 0.376322
exits 1968 coeff of variation 2.203473

3.3 Example 3: Running Memsim as a Memory Service Program

In addition to using Memsim as a stand-alone, trace-driven memory system simulator it can also be used as a
component of a larger simulation environment or as a memory system service to a client program. The API
supporting this is contained in the files memsim comm.h and memsim service.c. The attached Makefile also
generates a sample client program memsim client. memsim client reads in memory requests from a trace
file and feeds it to memsim just like requests could be fed to memsim from a different simulation environment.
Both programs synchronize with the other for each of the (processor) clock cycles they simulate. To use memsim
in this fashion, one would first start memsim as follows:

memsim config=sample.config source=SHM <any other options>

And then the program feeding the requests to Memsim would be started. If that program is memsim client
it takes in two arguments - the first one is the trace file and the second one is the number of records, for e.g. :

memsim_client sample.trace 9999

For another program to synchronize and use Memsim it would have to use the Memsim communication API
as it is used in the main() function in memsim service corresponding to memsim client.

20

