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Abstract

We study a manufacturing system with a two-stage production referred to as the Fabrication
and Fulfillment processes. The first stage (Fabrication) is a Build-to-Plan (Push) process in which
the parts are replenished, tested, and assembled into subassemblies according to the product level
build plan. The subassembly inventory is kept in stock ready for the final assembly of the end
products. The second stage (Fulfillment) is an Assembly-to-Order (Pull) process, which means that
final assembly starts after the customer order is received and no finished goods inventory is kept for
end products.

One important issue in the planning process is to address the trade-off between the capacity
utilization and inventory cost reduction while striving to meet the quarter-end peak demand. We
present a nonlinear optimization model to minimize the total inventory cost subject to the service
level constraints and the machine capacity constraints. This results in a convex program with linear
constraints. Efficient solution algorithms are developed using piecewise linear approximation, and
heuristics are developed based on the Dynamic Programming formulation of the problem. Several
variations of the model are formulated to incorporate additional features in practice. Numerical
analyses are presented to show the performance improvement generated by the optimal solutions
over the “as is” production-smoothing strategy.

∗Research undertaken while an academic visitor at IBM Research Division, T.J. Watson Research Center.



1 Introduction

A push system is a traditional supply chain where production and distribution are based on forecasts.

However, it is difficult to predict customer demand, and therefore difficult to match supply and demand.

Thus, a push system is very susceptible to the bullwhip effect in the supply chain. On the other hand,

in a pure pull system, production is driven by customer demand rather than forecast, which leads to

zero inventory, reduced impact from the bullwhip effect, and improved service levels. Unfortunately, it

is very difficult to implement a pull supply chain strategy if there are certain constraints in the supply

chain, such as supply and production capacity limitations, long lead times, etc. Furthermore, a pull

strategy is less likely able to take advantage of economies of scale offered by batch production or fully

loaded trucks, since production and distribution are in response to specific customer demand.

Electronic commerce and the Internet are fundamentally changing the nature of supply chains. Con-

sumers are becoming more and more comfortable using the Internet as a purchasing source. Typically,

Internet customers demand immediate fulfillment of customized products. The challenges imposed by

the Internet economy have led companies to look for a new supply chain strategy that takes advantage

of the best of both push and pull systems. A hybrid push-pull supply chain system has been suggested

to be the right model that combines mass production (push, or make-to-stock, like detroit flow lines)

with small-batch production (pull, or make-ot-order, like flexible manufacturing) to achieve “mass cus-

tomization” for production in the Internet age.

IBM Server Group (SG) manufactures high-end server computers. To deal with increasingly com-

plex configuration requirements and tremendous pressures for responsive order fulfillment, a two-stage

Push/Pull production strategy, also known as the Fabrication and Fulfillment strategy, has been imple-

mented at IBM SG. The first stage (Fabrication) is a Build-to-Plan (Push) process in which the parts are

replenished, tested, and assembled into subassemblies according to product level build plans. The sec-

ond stage (Fulfillment) is an Assembly-to-Order (Pull) process, which means that final assembly starts

after the customer order is received and no finished goods inventory is kept for end products. By having

most of manufacturing tasks completed in the first stage of production, hence allowing a shorter cycle

time in the second stage, SG can delay the commitment of resources until customer orders are finalized

with detailed product configurations and required ship dates.

It has been observed that customer order volumes for high-end server computers exhibit a cyclic

pattern typically skewed to the end of a quarter (and more so to the end of a year), creating an undesirable

demand/capacity mismatch. Obviously, it would not be cost effective to simply build a production

capacity to meet the peak demand. The two-stage production strategy enables the management of such

demand and capacity mismatch by building up the component/subassembly inventory in the first stage
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during the low-demand periods, in preparation for the end-of-quarter peak demand.

There exist two types of capacity constraints in the entire production process, namely the machine

capacity and the labor capacity. Typically, the labor capacity is shared to perform different manufactur-

ing tasks, and can be adjusted according to demand by using overtime work force at a premium cost.

Meanwhile, the share of machine capacity is more restricted, only among those tasks that involve com-

ponents of a certain type, and the capacity is relatively fixed. Hence, the decision making on the build

quantities over the planning horizon is largely driven by capacity constraints and the associated costs at

the first stage of production process. A production-smoothing strategy is often adopted by planners in

practice to meet the end-of-quarter peak demand and provide optimal capacity utilization.

A simple, however ad-hoc production planning policy has been practiced in SG to determine the

monthly build plan given the quarterly volume forecasts for end products, that is to use a pre-specified

quarter-to-month spread ratio to calculate the monthly build quantities from the quarterly volume fore-

casts. The spread ratio is usually determined based on factors including capacity utilization, plant and

supplier requirements’ stability, and the ability to ramp up for end-of-quarter peak demands. Such prac-

tice simplifies the decision making by dealing with the capacity issue at an aggregated level. However,

the issue of minimizing inventory cost is not addressed directly with this heuristic approach. In the

server computer business, inventory-driven costs, which include financing, inventory write-downs and

inventory write-offs (obsolescence) have tremendous cost impact on performance. A challenging task is

to generate a build plan that minimizes the inventory cost while meeting customer demand with a given

service level in a capacity constrained environment.

Simchi-Levi describes the idea of the hybrid push/pull supply chain systems with a number of in-

teresting examples ranging from DELL in the PC manufacturing, Amazon.com in the book industry, to

Peapod in online grocery business. (note: more literature needed)

With regard to research relating to the capacitated production-inventory models with stochastic de-

mand, Federgruen and Zipkin (1986a,b) establish the optimality of the modified base-stock policy in a

discrete-time single item, single location finite capacity production system under an average cost cri-

terion and a discounted cost criterion, respectively. Aviv and Federgruen (1997) allow the values of

parameters such as demand distributions, capacity levels, and costs, to vary in a periodic pattern. They

prove that a periodic modified base-stock policy is optimal, and show that the problem may be solved

using a value-iteration method. Kapuscinski and Tayur (1996) also consider a periodic model; they com-

pute inventory levels using infinitesimal perturbation analysis, a simulation-based method of estimating

derivatives discussed by Glasserman and Tayur (1995). However, all these studies, as well as the ma-

jority of a vast body of related research, have limited themselves on single-item and/or single-echelon

systems.
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A special case of the two-stage production systems has been previously studied in the context of

postponement strategy. For example, Aviv and Federgruen (2001) provide an analysis on capacitated

multi-item inventory systems where the items are produced in two stages. They investigate the ben-

efits of various delayed product differentiation (postponement) strategies and other related issues in

a two-stage production system. The typical setting of two-stage production systems discussed in the

postponement literature usually involves a common intermediate product in the first stage and a simple

localization operation in the second stage. However, the two-stage production process in the IBM SG

manufacturing environment is far more complex. There are multiple subassemblies/products with com-

plex bills of material to be built in both stages of production. Build plans for each stage are subject to

capacity constraints that are defined based on the types of parts involved in the operation.

In fact, the two-stage production strategy practiced at IBM SG can be viewed as a Configure-To-

Order (CTO) system, a special case of the Assembly-To-Order (ATO) systems, which have been be-

coming increasingly popular in manufacturing industry and also have generated a great deal of research

interests. A detailed survey of the state-of-the-art research on ATO systems has appeared in Song and

Zipkin 2001. Several authors focus on performance evaluation and optimization techniques for the base-

stock policy, assuming that demand in each period has a multivariate normal distribution. Hausman et

al. (1998) examine the problem of maximizing the the probability filling all demand in a period within a

time window subject to a linear budget constraint, and develop heuristic methods. The model of Agrawal

and Cohen (2001) minimizes the total expected component inventory costs, subject to constraints on the

order fill rates using an allocation policy characterized by partial FCFS and fair-share allocation. Cheng

et al. (2002) study the problem of minimizing average component inventory holding cost subject to

product-family dependent fill rate constraints for a CTO system and provide an exact algorithm and as

well as a greedy heuristic for computing the optimal inventory policy. Nevertheless, the optimization

models for ATO systems generally assume unconstrained production capacity.

In our paper, we will address the production-inventory optimization problem in the above-mentioned

Push/Pull production environment. We consider a multiple-period problem with service level constraints

defined at the product level for each period. In addition, there are production capacity constraints defined

at the component level by component type for each period. The rest of the paper is organized as follows.

We formulate the optimization problem with the decision variables representing the product build quan-

tities at the machine-type model (MTM) level in the following section. Two alternative formulations

of the problem are introduced in Section 3 with build quantities defined at the component level instead

of the MTM level. Computation methods for solving the problem are described in Section 4, where a

linear approximation approach and a temporal decomposition (TD) algorithm are developed to provide

efficient numerical solutions to the nonlinear optimization problem. Numerical results are presented in
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Section 5. Several extensions of the models are presented in Section 6. The paper is concluded with a

summary and remarks for future research.

2 An MTM-Based Model

We formulate an nonlinear optimization problem to model the manufacturing planning problem under

study. Instead of using a quarter-to-month spread ratio to derive the build plan as with the heuristic ap-

proach, we define the weekly build quantities of MTM’s as the decision variables to capture potentially

greater benefits from the use of analytic approach.

2.1 Formulation

We use the superscriptK to index the MTM types, and the subscripti to index components (items

or subassemblies). LetK denote the set of all MTM types, andI = {1, ...,m} denote the set of all

components. We further partitionI into disjoint subsets,I = ∪n
j=1Aj , with eachAj representing a

collection of similar component, e.g. CPU, memory, and so forth.

Each MTM type is characterized by a subset of components, i.e.,K ⊆ I, along with the usage

counts:uK
i , i ∈ K, i.e., the number of units required from each componenti.

Let t = 1, ..., T index the time periods. For instance, when each period is a week,T = 12 represents

a quarter.

Assume the following are given data:

• CM
j,t , j = 1, ..., n, the machine capacity limit, in terms of the maximum number of components

i ∈ Aj that can be processed in periodt. Note that this capacity is shared among all components

in Aj , and only those components. We do not impose a labor capacity limit in this formulation.

However, an extension of the model with labor constraints included will be discussed in Section

6.

• hK
t , K ∈ K, inventory cost for each unit of typeK MTM left over at the end of periodt (after

supplying demand). For instance,hK
t =

∑
i∈K ciu

K
i , with ci being the cost (for raw materials,

processing and labor) associated with each unit of componenti. (Note that since the final assem-

bly is only built to order, the “MTM left over at the end of periodt” really refers to the ensemble

of its components.)

In addition, assume for each MTM typeK, we know its demand for each period,DK
t . Suppose

DK
t = µK

t + σK
t Zt,
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with Zt denoting the standard normal variate; assumeZt’s are i.i.d. over time. Denote

DK(1, t) :=
t∑

s=1

DK
s ;

and similarly denote

µK(1, t) :=
t∑

s=1

µK
s ,

and

σK(1, t) := [
t∑

s=1

(σK
s )2]1/2.

The decision variables are:xK
t , the build quantity for each MTM typeK in each periodt. Note,

again, that the MTM’s willnot be actually “built” as they are assembled to orders only. The MTM

build quantities are surrogates for component build quantities. OncexK
t ’s are decided, so will the build

quantity for each component: for componenti, this is equal to
∑

K3i u
K
i xK

t . Denote:

xK(1, t) :=
t∑

s=1

xK
s .

The objective is to minimize the total inventory cost:

min
T∑

t=1

{
∑

K∈K
hK

t E[xK(1, t)−DK(1, t)]+. (1)

The constraints are:

∑
i∈Aj

∑
K3i

uK
i xK

t ≤ CM
j , j = 1, ..., n; (2)

xK(1, t) ≥ µK(1, t) + σK(1, t) · εαK , K ∈ K, t = 1, ..., T. (3)

The last constraint above is equivalent to

P[xK(1, t) ≥ DK(1, t)] ≥ αK ,

which enforces the service levels, represented byαK , for productK, with εαK denoting the point

corresponding to theαK percentile of the standard normal distribution; e.g.,εαK = 1.64 whenαK =

95%.

Note in the objective function in (1), the inventory part assumes full backlog of demand. The

expectation term in (1) can be derived as follows:

E[xK(1, t)−DK(1, t)]+
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= E[xK(1, t)− µK(1, t)− σK(1, t) · Z]+

= σK(1, t)E
[xK(1, t)− µK(1, t)

σK(1, t)
− Z

]+

= σK(1, t)H
(xK(1, t)− µK(1, t)

σK(1, t)

)
, (4)

where

H(x) := E[x− Z]+ =
∫ x

−∞
(x− z)φ(z)dz = xΦ(x) + φ(x), (5)

with Φ andφ being the distribution and the density functions ofZ.

SinceH(x) is both increasing and convex inx, the optimization problem has an increasing and

convex objective function, and a set of linear constraints.

Proposition 1 (Feasibility condition) An optimal solution exists to the problem defined by (1)-(3) if the

following conditions are satisfied.∑
i∈Aj

∑
K3i

uK
i (µK(1, t) + σK(1, t) · εαK ) ≤ CM

j ∗ t, j = 1, ..., n, t = 1, ..., T. (6)

Discussions

1. What’s referred to as MTM here is really at the level of “boxes” or final products. That is, each

MTM has afixedconfiguration (bill of material, or BOM) in terms of components and their usage

counts.

2. Decisions (build quantities) are made at the level of MTM (as defined above), by type and by pe-

riod. Since each MTM has a fixed BOM, the decisions are readily translated into build quantities

of components and subassemblies.

3. Inventory cost is charged to theendinventory of each period.

4. The definition ofCM
j,t relates readily to more primitive data as follows. For instance in the case of

constant capacity, suppose there arem machines for testing the subset of components inAj , and

suppose each machine handles a batch ofB units at a time, and the testing time isw weeks on

average. Then,CM
j = mB/w per week.

3 A Component-based Model

The MTM-based model presented above implicitly requires the components as defined by the BOM for

an MTM be built in a “square” set, meaning that all the components required to assembly a particular
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MTM needs to be built or replenished at the same time. This is simply because the variables defined

in the MTM-based model present the MTM-level build quantities. To convert the MTM-level build

plan to a component-level build plan, one would simply apply the usage rates as defined in the BOM to

get the build quantities of the components. With decision variables defined at the component-level, the

“square” set restriction can be removed to allow additional flexibility when optimizing the build plan

with the capacity constraints.

3.1 Component-based Model Formulation

To model the planning of build quantities at the component level, we introduce a set of variables to

represent the build quantity of each component. Letwi
t be the build quantity for componenti in period

t, i ∈ I and1 ≤ t ≤ T . We also define the accumulative build quantity for componenti from period 1

to periodt as

wi(1, t) =
t∑

s=1

wi
s.

The objective is to minimize the total component inventory cost.

min
T∑

t=1

{
∑
i∈I

hi
tE[wi(1, t)−

∑
K∈K

∑
K3i

uK
i DK(1, t)]+. (7)

The constraints are:

∑
i∈Aj

wi
t ≤ CM

j , j = 1, ..., n; (8)

xK(1, t) ≥ µK(1, t) + σK(1, t) · zαK , K ∈ K, t = 1, ..., T ; (9)

wi(1, t) ≥
∑

K∈K

∑
K3i

uK
i xK(1, t), i ∈ I, t = 1, ..., T. (10)

The last constraint above ensures that the MTM-level build plan is always feasible given the tested parts

available at any given time. In fact we can combine (9) and (10) to get the service level constraints

defined at the component level as the following

wi(1, t) ≥
∑

K∈K

∑
K3i

uK
i

(
µK(1, t) + σK(1, t) · zαK

)
, t = 1, ..., T,

and eliminate thexK(1, t) variables from the formulation. Also note thathi
t is now the inventory holding

cost for componenti in periodt.

Proposition 2 The minimimal cost of the component model is no greater than the minimimal cost of the

corresponding MTM model.
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Remarks

• The benefits of the component-based model over the MTM-based model are achieved by relaxing

the requirement for building “square sets” at the component level. The difference between the

MTM-based model and the component-based model reflects the cost reduction due to this factor.

Since the capacity constraints are defined at the component level, it is clear that better capacity

utilization can be achieved through optimizing the component level build plan. Especially when

the capacity is tight for some parts in certain periods, one has the flexibility to adjust the build

schedules for the parts to avoid capacity constraints in those periods. On the other hand, the

MTM-based model would be more restrictive in this case since parts are to be built in “square

sets”, therefore, less flexible in making adjustments of the build plan.

• The another potential factor that could lead to additional cost savings is the risk-pooling effect

on the demand variability when we switch from the MTM-based model to a component-based

model. This is based on the fact that parts commonality exists among different MTM’s. Since

the demand variability is reduced through demand aggregation at the component-level, the safety

stock required to maintain the same level of service should be less than what would be required if

the safety stock was kept at the MTM level.

• However, the cost savings due to the demand variability reduction is not reflected in the current

component-based model because the demand variability reduction is not captured in the model.

To take the advantage of the risk-pooling effect, we would need to model the demand variability

reduction that could be achieved by forecasting the component-level demand directly. Further-

more, a component-based (or build block-based) planning methodology should be adopted such

that the common components are indeed shared by the MTMs that require them rather than indi-

vidually allocated to each of those MTMs.

4 Two Solution Approaches

Both the MTM-based model and the component-based model have nonlinear objective functions, more

specially convex functions, with linear constraints. Today’s high-power nonlinear solvers are probably

capable of solving this type of problems. However, there are certain structures of the problems that can

be explored and utilized to facilitate the computation involved in the optimization. We have developed

two computation approaches that demonstrated improved computation performance through numerical

results. One approach is to approximate the nonlinear objective function through linearization so that a

near-optimal solution can be obtained by using a linear program solver. The second approach is to use
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a backward-recursion algorithm to solve the problem through a temporal decomposition.

4.1 Piece-wise Linearization

First notice that the penalty part of the objective function in (1) can be replaced byπtu
K
t , with

∑
K∈K

xK
t − CL

t = vt − wt, (11)

andvt, wt ≥ 0 being additional slack variables. Furthermore, since

xK
t = xK(1, t)− xK(1, t− 1),

we can let

yK
t := xK(1, t), t = 1, ..., T ; K ∈ K

be the new variables (and denoteyK
0 := 0 for all K). This way, the optimization problem becomes:

min
T∑

t=1

{
πtvt +

∑
K∈K

hK
t σK(1, t)H

(yK
t − µK(1, t)

σK(1, t)

)}
, (12)

subject to the following constraints:

∑
i∈Aj

∑
K3i

uK
i [yK

t − yK
t−1] ≤ CM

j , j = 1, ..., n; (13)

∑
K∈K

[yK
t − yK

t−1]− CL
t = vt − wt, t = 1, ..., T ; (14)

yK
t ≥ µK(1, t) + σK(1, t) · εαK , K ∈ K, t = 1, ..., T ; (15)

yK
T ≥ yK

T−1 ≥ · · · ≥ yK
1 ≥ 0, K ∈ K (16)

vt ≥ 0, wt ≥ 0, K ∈ K, t = 1, ..., T. (17)

Clearly, the above is a separable convex programming problem.

From (5), it is readily verified that

H(x) ≈ x, for x ≥ 3,

and

H(x) ≈ 0, for x ≤ −3.

Hence, the only non-linearity of the function is within the interval[−3, 3]. (And, over this interval it is

convex).
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Hence, we should be able to approximate theH function by piecewise linear functions with a rela-

tively small number of pieces. Suppose we preselect the following points on thex-axis:

−3 := z0 < z1 < · · · < zp < zp+1 := 3. (18)

For anyx, supposex ∈ [z`, z`+1], for somè ≤ p. We can write

x = z` + λ(z`+1 − z`),

for someλ ∈ [0, 1]. We can then approximateH(x) as follows:

H(x) ≈ H(z`) + λ[H(z`+1)−H(z`)],

which is nothing more than linear interpolation. In general, we can write anyx ∈ (−3,+3) as

x =
p∑

`=0

λ`+1(z`+1 − z`),

and

H(x) ≈
p∑

`=0

λ`+1[H(z`+1)−H(z`)].

These, along withH(x) = x for x ≥ 3 andH(x) = 0 for x ≤ −3, approximate theH function by

p + 2 linear pieces.

We now apply this linearization procedure to theH function in (12). Thanks to the constraint in

(15), we can start at

z0 = min
K∈K

{εαK}, (19)

instead ofz0 = −3 as in (18). (The other preselectedz`’s are the same as in (18).)

Write

yK
t = µK(1, t) + σK(1, t)

p∑
`=0

λK,t
`+1(z`+1 − z`). (20)

Then, we have

H
(yK

t − µK(1, t)
σK(1, t)

)
= H

( p∑
`=0

λK,t
`+1(z`+1 − z`)

)
=

p∑
`=0

λK,t
`+1[H(z`+1)−H(z`)].

Consequently, the original optimization problem becomes:

min
λ

T∑
t=1

{
πtvt +

∑
K∈K

hK
t

p∑
`=0

λK,t
`+1[H(z`+1)−H(z`)]

}
; (21)
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with the following constraints:

∑
i∈Aj

∑
K3i

uK
i

p∑
`=0

(λK,t
`+1 − λK,t−1

`+1 )(z`+1 − z`) ≤ CM
j , j = 1, ..., n; (22)

p∑
`=0

λK,t
`+1(z`+1 − z`) ≥ εαK , K ∈ K, t = 1, ..., T ; (23)

∑
K∈K

p∑
`=0

(λK,t
`+1 − λK,t−1

`+1 )(z`+1 − z`)− CL
t = vt − wt, t = 1, ..., T ; (24)

p∑
`=0

λK,t
`+1(z`+1 − z`) ≥

p∑
`=0

λK,t−1
`+1 (z`+1 − z`), K ∈ K, t = 1, ..., T ; (25)

0 ≤ λK,t
` ≤ 1, ∀K, t, `. (26)

The above is a linear programming withλK,t
i as decision variables. Once the optimal solution toλK,t

i is

obtained, the optimal solution toyK
t follows from (20).

4.2 Temporal Decomposition

Rewrite the component-based model (7-10) as follows.

min
T∑

t=1

{
∑
i∈I

hi
tE[wi(1, t)− di(1, t)]+}, (27)

Subject to: ∑
i∈Aj

wi
t ≤ CM

j , j = 1, ..., n; (28)

wi(1, t) ≥ Bi(1, t), t = 1, ..., T. (29)

where

di(1, t) =
∑

K∈K

∑
K3i

uK
i DK(1, t),

and

Bi(1, t) =
∑

K∈K

∑
K3i

uK
i

(
µK(1, t) + σK(1, t) · zαK

)
, t = 1, ..., T.

Notice that the new problem is separable inj. Therefore, we can decompose the problem byj and solve

a number of smaller problems each with simple constraints. We can rewrite the constraint (29) as∑
i∈Aj

wi(1, t) ≥ C̄j(1, t),

whereC̄j(1, t) is given by

C̄j(1, t) =
∑
i∈Aj

wi(1, t + 1)− CM
j .
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In fact this new formulation is also separable int. Therefore, we can further simplify the sub-

problem for a givenj, as defined in (27-29), by decomposing it for eacht = T, ..., 1, i.e.,

min
∑
i∈Aj

hi
tE[wi(1, t)− di(1, t)]+, (30)

Subject to: ∑
i∈Aj

wi(1, t) ≥ C̄j(1, t), (31)

B̄i(1, t) ≤ wi(1, t) ≤ wi(1, t + 1), i ∈ Aj . (32)

where

B̄i(1, t) = Bi(1, t) + wi(1, t + 1)− B̄i(1, t + 1)

with B̄i(1, T + 1) := 0. Note thatwi(1, t + 1) is a constant given by the solution for periodt + 1 and

wi(1, T + 1) := 0. The structure revealed in this simplified formulation allows us to decompose the

original problem byj and byt into a sequence of smaller problems, thus reducing the complexity of the

problem and hence the total computation time required.

The objective function of the sub-problem givenj andt is given by

g(j, t|w(j, t)) =
∑
i∈Aj

hi
tE[wi(1, t)− di(1, t)]+,

wherew(j, t) denotes the vectorwi(1, t) : i ∈ Aj . The value function is then defined as

v(j, t) = min
T∑

k=t

g(j, k|w(j, k)).

The new formulation of the problem with the temporal decomposition can be presented as follows.

v(j, t) = min
w(j,t)∈Ut

(v(j, t + 1|w(j, t) + g(j, t + 1|w(j, t + 1))) ,

wheret = 1, ..., T, j = 1, ..., n andv(j, T ) = 0,∀j. Ut is defined by (31) and (32).

Given the structure of the sub-problem for givent andj, it can be observed that the optimal solution

w(j, t) has the following properties

Proposition 3 The optimal solutionw(j, t) is always at the boundaries defined by (31) and (32).

Proof. Since the objective function of the sub-problemg is convex and non-decreasing inw(j, t), the

optimal value must be attained at the boundaries.

There are three cases that an optimal solution can be attained.
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• If constraint (32) is binding from below, then the optimal solution is directly given by the lower

bounds defined by (32);

• If constraint (32) is binding from above and constraint (31) is not binding, then the optimal solu-

tion is directly given by the upper bounds defined by (32);

• If constraint (31) is binding, the optimal solution lies on the line defined by (31) and between the

two intersects of the line with the bounds defined by (32).

The resulting problem withi ∈ Aj for a givenj can be solved using a backward recursion algorithm

outlined below. Note that each stage of the recursion involves solving a nonlinear optimization problem

with a convex objective and linear constraints. The solution to this problem (30-32) can be easily

obtained by performing a greedy search.

• Step 0: Initializewi(1, t) = dBi(1, t)e, t = 1, ..., T (dxe = the least integer greater than or equal

to x), and let the step size be∆w.

• Step 1: If fort = T ,
∑

i∈Aj
wi(1, t) > CM

j (1, t), then the problem is infeasible. Exit. Otherwise

continue to Step 2.

• Step 2: Fort = T − 1, ..., 2,

If for somet < T ,
∑

i∈Aj
wi(1, t) > CM

j (1, t), find i∗ = min{hi
tΦ((wi(1, t)−µi(1, t))/σi(1, t))}.

Let wi∗(1, t) := wi∗(1, t)−∆w andwi∗(1, t− 1) := wi∗(1, t− 1) + ∆w. Repeat this step until∑
i∈Aj

wi(1, t) ≤ CM
j (1, t).

One added benefit of the backward recursion algorithm is that we can easily restrict the solutions to

be integers by letting∆w = 1. Adding the integer constraints in the original formulation would increase

the computational complexity substantially and most likely would render the problem intractable when

a standard NLP solver is used.

5 Numerical Results

We have conducted two types of numerical analyses. The first one is aimed to provide computational

performance comparisons between different computation methods/algorithms. The second type of anal-

ysis is designed to show the estimated cost reduction potentially achieved by different optimization

models described in this paper.
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5.1 Computational Performance Analysis

In this part of the numerical results, we compare the computational performance of three different al-

gorithms: the exact solution implemented using IPOPT, a nonlinear solver developed by A. Waechter,

et al., the piecewise linear approximation (PWLA) solution, and the temporal decomposition (TD) so-

lution for the component-based model. The IPOPT and PWLA solutions are implemented for both the

MTM-based model and the component-based model. The results obtained using IPOPT are used as a

benchmark to compare with those by the PWLA solution and the TD solution.

To test the performance of the three computation methods, a data set that resembles a typical real-

world problem is compiled based on real data. The data set includes 23 MTM partnumbers, 40 compo-

nent partnumbers of 4 different component types, and weekly demand data for 12 periods. The results

for the MTM-based model are shown in Table 1. Them value is the number of segments used in the

PWLA solution,obj is the objective function value computed,error is the error relative to the exact

optimal solution by IPOPT, andT is the computation time (seconds) used (on a Pentium 4 Intellista-

tion). The PWLA results are reasonably accurate compared to the IPOPT results and faster in terms of

the computation time required.

PWLA IPOPT
m 3 5 10 15 20 -

Obj 119570 119336 119366 119130 119128 119078
error 0.41% 0.22% 0.24% 0.04% 0.04% -
T 0.90 1.67 2.95 4.44 6.24 11.69

Table 1: Performance Comparison of IPOPT and PWLA solutions for the MTM model

Similar results are also obtained for the component-based model. Comparisons are shown in Table

2. Particularly, the results of the TD solution are also included here. Note that the data set used for the

component model is the same as the one used for the MTM model except that the means and variances

of the component-level demands need to be derived explicitly to compute the objective values as defined

in the component-based model. Furthermore the capacity data are the same for the results in Tables 1

and 2.

PWLA TD IPOPT
m/∆w 3 5 10 0.01 0.1 1 -

Obj 51978 51972 51970 51969 51969 51972 51969
error 0.014% 0.006% 0.0014% 0.001% 0.001% 0.006% -

Table 2: Performance Comparison of IPOPT, PWLA and TD solutions for the component model)

Note that in Table 2 the numbers reported in the row labeledm/∆w are the number of pieces for
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the PWLA results and the step size used for the greedy search in the TD solution respectively. The TD

algorithm actually performs very well in terms of the accuracy of the solution. The computation time

of the TD algorithm is less than 0.1 second when∆w=0.1, much faster than either IPOPT or PWLA.

Furthermore, a step size of one is in fact more practical for real-world applications.

5.2 MTM model vs. Component model

To demonstrate the advantage of the Component-based model over the MTM-based model, we compiled

Table 3 based on the results presented in the previous subsection. To provide a comparable cost analysis,

we compute the cost of each MTM as the sum of the costs of all components used to assembly that

MTM. Furthermore, for the MTM model, we compute the build quantities of the components using

the usage rates based on the optimal build quantities obtained for MTM’s, then use these component

build quantities to calculate the objective function as defined by the component model. In particular, to

calculate the expectation in (7), the demand variability should stay the same as in (1), namely the MTM

demand variability, NOT the component demand variability.

When comparing the results of the two models, we notice that the results obtained from the com-

ponent model may not be feasible for the MTM model for a given set of capacity constraints. This

is because the MTM model assumes that all the parts are built in “square sets”, thus requiring more

available capacity in general and becoming less flexible when making build plans for individual parts.

Table 3 provides a performance comparison between the MTM model and the component model. The

expected performance of the “As Is” scenario is also included for reference. There are six cases in the

table representing two different sets of capacity constraints (C1 and C2; on average C2 is about 60% of

C1) and three different service levels (S1=50%, S2=80% and S3=95%).

Capacity Service As Is MTM COMP
C1 S1 5.6476 2.4729 2.3604
C1 S2 6.8945 4.1571 3.6239
C1 S3 8.1478 6.3649 5.1224
C2 S1 5.6476 2.9254 2.3756
C2 S2 6.8945 5.0326 3.6553
C2 S3 8.1478 7.7770 5.1777

Table 3: Performance comparison between MTM model and component model

The column labeled as “As Is” represents the “as is” practice using a quarter-to-month spread ratio

of (30%,40%,30%) to determine the monthly build quantities. “MTM” is the optimal objective value

obtained from the MTM model, and the column labeled as “COMP I” shows the optimal objective

values obtained by the component model. As we can see, the overall inventory cost can be reduced by

about 20% or more if the solution of the MTM model is implemented. Furthermore, optimizing the
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build quantities at the component level will generate as much as 10-20% more savings comparing to the

MTM model.

To have a better understanding of how additional savings can be achieved by the component model,

let us take a close look of the results in two cases. The first one is when the capacity constraints are not

too tight (ex., C1 & S1). In this case, parts can be built as late as possible even with the “square set”

requirement which can be accommodated within the capacity limits. Therefore, the inventory costs of

both models can be minimized almost to the extent that just meets the service level constraints.

The second case is when the capacity constraints become tighter (ex., C2 & S3). Because of the

demands in the later periods exceed the capacity, parts need to be built in earlier periods when the

demands are low. Particularly for the MTM model, the “square set” requirements impose additional

restrictions that force the parts to be built even earlier, whereas in the component model production for

some of parts can be delayed as long as the capacity is available for building those parts (not the “whole

set”) in later periods.

6 Extensions

There are a number of extensions to the models described in the earlier part of the paper. Additional

considerations that reflect the real-world scenarios are incorporated in these extensions.

6.1 A Modified Formulation

In reality, some of the test capacities are not specific to a certain type of components (called commodity

type). For example, MCM parts and MEMORY parts may go through similar tests requiring the same

capacity. Here we define the capacity constraints in terms of the type of tests to be performed (called

driver type). Denote the subset ofK with components requiring the test capacity of driver typej by Vj .

Note thatVj may not be disjoint since some components are tested with more than one driver type. We

further define thatCV
j be the test capacity of driver typej, j = 1, ..., nv (nv is the number of different

driver types), andvij be the usage rate by componenti when driver typej is used. The new constraints

are:

∑
i∈Vj

vijw
i
t ≤ CV

j , j = 1, ..., nv; (33)

(34)

Furthermore, some tests may also have dependency requirements. For example, test 1 must be

completed for a component before test 2 can be done for the same component. To deal with such

dependency requirements, we introduce a new variable representing the number of the components that
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have completed the first test each time that such a dependency occurs. LetÎ be the set of components

going through two tests with a dependency requirement. For eachi ∈ Î andt = 1, ..., T , we define a

new variablewi′(1, t) and a new constraint

wi′(1, t) ≥ wi(1, t + τi),

whereτi is the lead time (rounded to weeks) of the first test. The cases where the dependency is defined

for a component in more than two tests can be treated in a similar fashion.

6.2 Labor Capacity Constraints

Let us introduce the parameters related to labor capacity.

• CL
t , the labor capacity limit, in terms of the maximum number of MTM’s, over all types, that can

be built in periodt, t ≤ T .

• πt, penalty cost for over-time labor, when the capacity limitCL
t is exceeded.

The objective is to minimize the total inventory cost and penalty cost for over-time labor:

min
T∑

t=1

{
∑

K∈K
hK

t E[xK(1, t)−DK(1, t)]+ + πt[
∑

K∈K
xK

t − CL
t ]+ }. (35)

The constraints are:

∑
i∈Aj

∑
K3i

uK
i xK

t ≤ CM
j , j = 1, ..., n; (36)

xK(1, t) ≥ µK(1, t) + σK(1, t) · εαK , K ∈ K, t = 1, ..., T. (37)

7 Concluding Remarks

In this paper, we formulated a nonlinear optimization problem with the objective to minimize the in-

ventory cost subject to both capacity constraints and service level constraints. Several different models

are formulated with decision variables defined as either the build quantities of MTMs or the build quan-

tities of components. We developed algorithms for solving the problems efficiently. The numerical

analysis based on real data are presented to demonstrate the performance improvements achieved by the

optimization models over the “as is” scenarios.
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