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Abstract

Most formal work on semantic networks has concentrated on inheritance hierarchies, which

focus on representing taxonomic information. Although semantic networks can be used to rep-

resent general binary relations, their use has been limited because they do not offer a method for

determining when a path through the network corresponds to valid reasoning. We introduce a

new type of semantic network, called the Enhanced Semantic Network (ESN), that uses regular

expressions to formally characterize valid reasoning within a network. We show how one can

translate ESNs to theories of first-order logic.

The work described in this paper was motivated by a commercial application: designing an

automated recommendation system for banking and insurance sales. We discuss how enhanced

semantic networks are used in this application.

1 Introduction

The impetus for this work comes from a problem in the commercial world: recommending products

and services to consumers in the domains of banking and insurance. The recommendation task

entails various types of reasoning, including determining from a customer’s situation what his needs

are and what set of actions (usually purchases) might best fit his needs; and reasoning about the

hypothetical consequences that his actions would result in.

This paper describes new knowledge structures that were created in order to facilitate this sort

of reasoning. In the next section, we describe the business task in more detail. We discuss why

semantic networks, though a seemingly reasonable choice for reasoning and representation, are not

suitable for this task. We then introduce theEnhanced Semantic Network(ESN), which supports
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valid reasoning. We provide a translation from ESNs to first-order logic. Finally, we discuss how

ESNs are used in the automated recommendation system.

2 The Business Problem

Many banks have transferred much of their operating business from branch offices to online banking

web sites. This transformation is straightforward for tasks such as writing checks, but not nearly so

simple for buying bank products.

Our goal was to create a system that could simulate the behavior of a human salesperson. Such

behavior includes engaging the customer in dialogue to find out what his situation and needs are;

making recommendations to the customer for his current needs; discussing hypothetical plans with

the customer; and explaining recommendations. The system currently performs all tasks. We focus

on the second and third tasks in this paper; we discuss the first and fourth tasks in a forthcoming

paper.

For example, a salesperson (SP) might find out that a customer is expecting his first child. This

means that he will need to support his child in case he dies, and fund his child’s education. The SP

could reason about products that serve these needs, such as term life insurance and college savings

plans. He would also need to reason about the suitability of products for the customer’s situation.

For example, if someone earns above $80,000, he cannot contribute to a Roth IRA. The SP may

need to reason about future scenarios. If the customer buys an overfunded whole life insurance

policy, and makes all payments, he will have a large sum of cash in twenty years’ time, and there

may be tax consequences. This may trigger new needs.

3 Considering Semantic Networks

A preliminary analysis of the application domain showed that a good part of the knowledge used for

the recommendation task could be represented by a limited set of binary relations. These relations on

concepts such as situations, needs, and products includedtriggering (a situation triggers a particular

need) andserving(a product serves a need). In addition, a sizeable chunk of the knowledge, product

hierarchies, was taxonomically organized. This suggested that some form of semantic network (SN)

might be a good candidate representation.

SNs were also appealing because their graphical structure facilitates the visualization of reason-

ing. (This is a potential advantage both for customers and domain experts updating the system.)

Intuitively, SNs would seem to be useful because paths in the SN correspond to reasoning chains:

thus, one can perform reasoning by following paths in the SN.

This intuition is unfounded, however. Arbitrary paths in a SN do not generally correspond to

valid reasoning [8]. Consider Figure 1. There are many “meaningful” paths, such as the path from
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Figure 1:In a semantic network, only some paths correspond to valid reasoning.
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Penny to mammal. However, many paths don’t seem meaningful: there is a path between Bill and

plants, but it is unclear what connection there is. In other cases, it is not clear how we draw the

correct conclusion: When traversing the path from Bill to New York, how do we know to conclude

that Bill is located is in New York? In general there is no real semantics and no clear definition of

valid reasoning associated with general SNs.

A restricted class of SNs, inheritance networks (INs), however, has proved very useful. INs(e.g.,

[2]) allow two links, a set membership link (inst) and a subset link (isa). This permits correct

taxonomic reasoning. An important extension of this work is inheritance networks with exceptions

(INEs) [4], which allow cancels links that permit nonmonotonic reasoning.

Indeed, INs, in contrast to other SNs, have been so well studied in AI that they are often what

people refer to when they use the term “semantic network” (see, e.g, [7]. They have been widely

used in a variety of applications. Nevertheless, because they permit reasoning only about subsump-

tion — that is, whether something is a member of a class, or one class is a subset of another — they

are intrinsically limited.

The basic idea of our approach is the following: We note that valid reasoning within a

SN generally corresponds to a fixed pattern. For example, taxonomic reasoning is valid (in

non-defeasible networks): this means that a path from A to B consisting of isa links (or an inst

link followed by isa links) entails that A isa B (or that A inst B). In general, it is possible to

identify many valid reasoning paths within a SN by determining whether these paths fit any

of a predetermined set of reasoning patterns. We define valid reasoning within a SN by means

of these fixed patterns, which we encode as regular expressions. This allows us to formalize

multiple types of valid general reasoning within SNs.

4 Developing a Knowledge Structure: Enhanced Semantic Networks

We give a formal definition of an Enhanced Semantic Network (ESN), a structure that allows formal

reasoning within a semantic network. We define two types of ESN: the second is augmented by

formulas.

Formal definition of ESN-I

An Enhanced Semantic Network I is a tuple (NT, LT, SN, RT, R, RGX, CLT, f), where

• NT is a set of node typesNT1 . . . NTm

• LT is a set of link typesLT1 . . . LTn

• SNis a set of nodesN1 . . . Np, each associated with a member ofNT. Letµ(NTi) be the set

of all nodes associated with node typeNTi.

• RT is a sequence of relationship types, each of which is a triple(NTi, LTj , NTk) ∈ NT ×
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LT × NT . Intuitively, a triple(NTi, LTj , NTk) is in RT if a link of typeLTj can link two

nodes of typeNTi andNTk.

• R is a sequence of relationshipsR1 . . . Rg, where theith element ofR is associated with theith

element ofRT in the following way: If theith element ofRT is the triple(NTx, LTy, NTz),
then theith element ofR⊆ µ(NTx)×µ(NTz). If (Na, Nb) ∈ Ri, andRTi = (NTx, LTy, NTz),
we say that(Na, LTy, Nb) is in the ESN and thatRi is associated withLTy. We letRR =⋃
i=1...g Ri.

• RGXis a set of regular expressionsr1 . . . rs over the alphabetNT ∪ LT . 1 Intuitively, RGX

comprises the set of reasoning types that are permitted within the ESN.

• CLT is a set of conclusion link typesCLT1 . . . CLTt. CLTneed not be disjoint fromLT. Intu-

itively, this represents the sort of conclusions one can draw when performing valid reasoning

with the ESN.

• f is a function fromRGX toCLT . f gives the mapping between the regular expressions that

define the reasoning types and the conclusions that one can draw.

We explain this definition with the help of examples drawn from Figure 2. A special feature of

Triggers

Triggers

Need to provide
for  child

Need to fund
child’s education

Coverdell 
saving products

Will preparation

Life insurance

ServedBy ServedBy

Triggers

Roth IRA

Subsumes

ServedBy

Customer
has lots of cash

Need to invest

ServedBy

Subsumes

Subsumes

Whole life

Subsumes

Causes

Tax-deferred
savings products

College
savings products

Customer
has minor  children

Figure 2: An example ESN-I E1. The dashed curved link shows the entailed conclusion. Since
the path between Customer has minor children and Whole life is legal (matches a regex), one can
conclude that the RecommendFromSituation relation holds between the first and last nodes of that
path.

ESNs is that they allows arbitrarily many different types of nodes and links. In Figure 2, there are 3
1Strictly speaking, all regexes inRGXshould begin and end with a node type and alternate node and link types. See

p.4 for further details.
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types of nodes:Situation, Need, andProduct (purchase). SN, the set of nodes, includes:Has minor

children, need to invest, andlife insurance.

Link types includeTriggers, ServedBy, Subsumes(the inverse ofisa), isa, Generates,andCauses.

RT, which characterizes the permitted relationships in the ESN, includes(Situation, Triggers, Need),

and(Need, Generates, Need).

Rspecifies the actual links in the ESN. For example,R1, which characterizes the link typeTrig-

gers, includes the ordered pair(Has minor child, Need to fund child’s education). Thus we have the

link (Has minor child, Triggers, Need to fund child’s education).

RGXconsists of the regular expressions characterizing acceptable reasoning within the ESN. For

ESNE1, RGX includes the regex(Situation Isa Situation)*Triggers Need ServedBy Product (Sub-

sumes Product)*. The set of concluding link typesCLT includes the link typeRecommendFrom-

Situation(situation, product). The functionf maps the regex above to the concluding link type

above.

We now give a formal characterization oflegal reasoningwithin an ESN. A path in an ESN is

an alternating sequence of nodes and links, beginning and ending with a node.2

Definition of Legal Paths: Let π be a path in an ESN. We say thatπ is a legal pathif π matches

some element (regular expression) ofRGX.

Entailment in an ESN-I: LetE be an ESN andπ be a legal path as defined above. Letni andnj
beπ’s initial and final nodes, respectively. For eachr in RGXthatπ matches,

E |=ESN−I (ni, f(r), nj).
This notion of entailment corresponds to being able to augment the ESN-I by adding a link of

typef(r) between nodesni andnj .

Example 1: In the ESNE1 of Figure 2, the pathHas minor children - Triggers - Need to fund chil-

dren’s education - ServedBy - Tax Deferred Savings Products - Subsumes - Whole Life (Insurance)

is a legal path. Therefore,E1 |=ESN−I (Has minor children, RecommendFromSituation, Whole

Life (Insurance)). That is, one can augment the ESN with the linkRecommendFromSituationbe-

tween the nodesHas minor childrenandWhole Life (Insurance). The intended meaning of this link

is that if a customer has children, one can recommend Whole Life (Insurance) to him.

Example 2:In that same ESN, the pathHas minor children - Triggers - Need to fund children’s

education - ServedBy - Tax Deferred Savings Products - Subsumes - Whole Life (Insurance) - Causes

- Cash richis not a legal path.

Example 3: For a standard monotonic inheritance network, in which there are two link types,inst

andisa, there is one node type and two regular expressions:r1: node (isa node)*andr2: node inst

node (isa node)*. For a legal path matching the first regex, one can add anisa link between the first
2Formally, we define a path as follows:

• If n1andn2are nodes andl is a link such that the triple (n1, l, n2) is in RR, thenn1ln2 is a path.n2 is the final node of
π.
• If π is a path, the final node ofπ is ni, and(ni, l, nj) is in RR, thenπlnj is a path.
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and final nodes of the path. For a legal path matching the second regex, one can add aninst link

between the first and final nodes of the path. In other words,f(r1) = isa andf(r2) = inst. That

is, a monotonic inheritance network is just a simple case of an ESN.

4.1 Adding Wffs to the ESN

The ESN-I is useful for reasoning about general classes of customers and recommendations, but

is of less value for reasoning about specific circumstances. It would be useful to explicitly reason

about a customer’s particular context, and to say that some reasoning chains apply only in certain

circumstances.

To enable such reasoning, we developed the ESN-II, which allows attaching well-formed for-

mulas (wffs) to nodes and links in the network in restricted ways. We used wffs for two purposes:

1. Defining nodes (definitional wffs). E.g., the nodeHas minor childrencan be defined by the wff

Has-minor-children(Customer)⇔ ∃x HasChild(Customer, x)∧ Age(x)≤ 17.

2. Restricting the set of allowable reasoning paths (conditional wffs). This can be done by placing

the wff on a link or a node. For example, in Figure 2, one could place a wff on the nodeCoverdell

savings productsspecifying that the customer’s income must be below $220,000 to qualify.

Definition of ESN-II The Enhanced Semantic Network-II is a tuple (NT, LT, SN, RT, R, RGX,

CLT, f, CX,Wd,Wc, ν, κ, λ), where

• NT, LT, SN, RT, R, RGX, CLT, andf are as above

• CX is a set of wffs, thecontext

• Wd is a set of wffs, thedefinitional wffs

• Wc is a set of wffs, theconditional wffs

• ν is a function from nodes to definitional wffs

• κ is a function from nodes to conditional wffs

• λ is a function from links to conditional wffs

Note from the use of functions that we are assuming that there is at most one definitional wff

attached to each node, and at most one conditional wff attached to each link or node. (Multiple wffs

can always be combined in a conjunction.) We discuss these elements in more detail below.

The Context: CX, the context, gives a partial description of the customer who is seeking advice.

An example context contains the wffs:∃ x HasChild(Customer, x)∧ Age(x) = 3 and Annual-

Salary(Customer) =$84,000. The context may include relevant background information that is

not customer specific (e.g., interest rates).
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The definitional wffs: Wd, the definitional wffs, have two purposes. First, they give a semantics

to the nodes in the network: A node’s meaning is specified by its definitional wff. Second, the

definitional wffs are used, together with the context, to activate reasoning within the ESN-II. We say

that a contextmatchesthe definitional wff attached to a node if the context entails, in the standard

sense, the right-hand-side of the definitional wff. A context always matches a (possibly empty)

subset of the nodes in an ESN. The matched nodes are called theactivatednodes. These nodes are

the beginning nodes of the allowed reasoning paths.

The conditional wffs: Wc, the conditional wffs, are used to constrain the set of reasoning paths.

Formally, we define the concept of a verified path:

Verified paths: A pathπ in an ESN-II is a verified path iff for any conditional wffφ attached to a

link or node ofπ, CX |= φ.

The paths of interest in an ESN-II are paths that are legal, verified, and begin with an activated node.

Entailment in an ESN-II: Let E be an ESN-II as defined above. Letπ be a path withni asπ’s

initial node andnj as the final node ofπ. If CX |= ni (π begins with an activated node),π is legal

and verified, then for eachr in RGXthatπ matches,E |=ESN−II (ni, f(r), nj). This corresponds

to being able to augment the ESN-II by adding a link of typef(RGXi) between nodesni andnj .

An example of an ESN-II is shown in Figure 3. This figure depicts a network similar to the one

Triggers

Triggers

Need to provide
for  child

Need to fund
child’s education

Coverdell 
saving products

Will preparation

Life insurance

ServedBy ServedBy

Triggers

Roth IRA

Subsumes

ServedBy

Customer
has lots of cash

Need to invest

ServedBy

Subsumes

Subsumes

Whole life

Subsumes

Causes

Tax-deferred
savings products

College
savings products

Customer
has minor  children

Income(Customer ) < 80,000
Income(Customer ) < 220,000

CashAssets(Customer) > $50,000 ∃∃∃∃x HasChild(Customer, x) &  Age(x) < 18

I f held by customer
for  > 15 yr .

Figure 3: E2, an ESN-II banking network with wffs. The context is∃ x HasChild(Customer, x)∧
Age(x) = 3 and AnnualSalary(Customer) =$84,000.

in Figure 2, with added context, definitional wffs and conditional wffs. The context is given in the

caption. This context activates the nodeHas minor childrenbut not the nodeCash rich, which is

defined as having more than $50,000 in cash. Consider two legal paths beginning with the activated

nodeHas minor children: Has minor children - Triggers - Need to fund children’s education -

Servedby - College savings products - Coverdell accountsandHas minor children - Triggers - Need
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to fund children’s education - Servedby - College savings products - Roth IRAs

Both paths are legal, since they matchr1. However, it is not the case that both paths are verified.

The first path is verified because the wff attached toCoverdell accounts(having an income less than

$220,000) is entailed by the context (having an income of $84,000). The second path is not verified

because the wff attached toRoth IRAs(having an income less than $80,000) is not entailed by the

context.

5 Semantics: Translation into First-Order Logic

The semantics for ESNs is given in terms of first-order logic. We can show that reasoning within an

ESN is equivalent to deduction in first-order logic. Below, we give a method for translating ESN-I

and ESN-IIs into first-order logic.

We assume that each regex is in disjunctive normal form. We further assume that it is inal-

ternating node-link form(ANLF), that is, it begins and ends with a nodetype, and nodetypes and

linktypes alternate.3

We define the following mapping between elements of the ESN and elements of a sorted first-

order logicL:

• To each node typeNTi in NT , we assign a variable of typexNTi .

• To each node inNi in SN , we assign a constantCNi .

• To each link typeLTi in LT , we assign a predicatePLTi .

• To each link typeCLTi in CLT , we assign a predicatePCLTi .

Translating an ESN-I into First-Order Logic

We construct a theoryT ⊂ L by placing inT wffs corresponding to the network (the actual

nodes and links in the ESN-I) and to the regular expressions.4

For each triple of the form (ni, lj , nk), wherelj is of typeLTj , we add the wffPLTj (Cni , Cnk).
We can best grasp the intuition behind translating a regexr into first-order logic as follows:

Consider, first, the simple case: a disjunct ofr that does not contain the * operator. (Thus, the only

operation is concatenation.) This disjunct can be parsed into overlapping substrings of length 3 of

the formni ·lj ·nk. Each such substring can be associated with a literal of the formPlj (xni , xnj ). We

can then add toT a wff whose left-hand side is composed of all these literals and whose right-hand

side is the predicate corresponding to the concluding link associated with the regexr.

Conceptually, the * operator corresponds to recursion. Thus, for each * operator in the regex, we

must construct a recursive predicate. In practice, we introduce two predicates for each * operator,
3Formally, letN be a letter in the alphabetNT; let L be a letter in the alphabetLT. PF (Pair Format) is defined as

follows:
•L ·N is in PF.
• For anyP1, P2 ∈ PF, P1 · P2 and(P1)∗ ∈ PF .
• Then a regexr is in ANLF if r = N · P for anyP ∈ PF .

4In everything that follows, it is assumed that all variables of wffs added toT are universally quantified.
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one which characterizes the recursive nature of the reasoning, and a second to provide a level of

indirection necessary because a *-expression may match a string 0 times. We work from the inside

out: that is, we first examine *-expressions of depth 0 (i.e., that do not contain other * operators),

then *-expressions of depth 1, and so on.

Formally, we proceed as follows. Consider a regexri with at least one occurrence of the *

operator. We can rewriteri assap∗sb wherep contains no occurrences of the * operator. (ri must

contain at least one *-expression of depth 0.) By construction,sa cannot be empty.sb may be

empty.

Case I:sb is not empty:By construction,p is of the forml2n3l4 . . . lm−2nm−1lm. Thus, we can

rewriteri assxn1l2n3l4 . . . nm−1lmnm+1sy.

I. We add toT the following wffs:

(i) Pl2(xn1 , xn3) ∧ Pl4(xn3 , xn5) ∧ . . . ∧ Plm(xnm−1 , xnm+1)⇒ Qi1(xn1 , xnm+1)
(ii) Qi1(xa, xn+1) ∧ Pl2(xn1 , xn3) ∧ Pl4(xn3 , xn5) ∧ . . . ∧ Plm(xnm−1 , xnm+1)⇒ Qi1(xa, xnm+1)
(iii) Plm(xn1 , xnm+1)⇒ Qi2(xn1 , xnm+1)
(iv) Qi1(xa, xn1) ∧Qi2(xn1 , xnm+1)⇒ Qi2(xa, xnm+1)

II. we substitute for the string above the stringsxn1lQi2nm+1sy.

Case II:sb is empty:In this case, * operator occurs at the right-hand edge of the regex disjunct. This

is easier than the first case. We have fewer wffs to add toT , and we need not add new predicates:

we can use the predicate that is associated with the regex. We add toT the following wffs:

(i) Pl2(xn1 , xn3) ∧ Pl4(xn3 , xn5) ∧ . . . ∧ Plm(xnm−1 , xnm+1)⇒ f(ri)(xn1 , xnm+1)
(ii) f(ri)(xa, xn+1)∧Pl2(xn1 , xn3)∧Pl4(xn3 , xn5)∧. . .∧Plm(xnm−1 , xnm+1)⇒ f(ri)(xa, xnm+1)

We perform this transformation for every *-expression of depth 0, then depth 1, and so on. The

substitution above ensures that at any level we need never deal with a nested * operator. After

performing these transformations, we can parse the transformed string into overlapping substrings

of length 3, and construct a wff as described above.

Example: Assume the regexSituation Triggers Need (Generates Need) * ServedBy Productis

associated with the predicateRecommend. It is translated into the following wffs: (For simplicity,

we assume the lowercase spelling of a node type to indicate its associated variable, and use the

spelling of a link type as its associated predicate.)

Generates(need1, need2)⇒ Q1(need1, need2)
Q1(need1, need2) ∧Generates(need2, need3)⇒ Q1(need1, need3)
ServedBy(need1, product1)⇒ Q2(need1, product1)
Q1(need1, need2) ∧Q2(need2, product)⇒ Q2(need2, product)
Triggers(situation, need) ∧Q2(need, product)⇒ Recommend(situation, product).
Translating an ESN-II into First-Order Logic

Because ESN-IIs have wffs attached to nodes and links, the translation is a bit more complex.

Consider a triple of the form (ni, lj , nk). Let lj be of typeLTj . Letφ be a wff attached tolj , andψ
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be a wff attached tonk. Then we add toT the wff φ∧ψ ⇒ PLTj (Cni , Cnk). For each nodeni that

has a definitional wffφ attached to it, we add toT the wff φ⇔ Cni .

The translation of regular expressions remains the same.

Soundness and completeness:

Let E be an ESN-I or an ESN-II, and letT be the first-order theory obtained by performing the

translation described above. Then

E |=ESN (ni, cltj , nk)⇐⇒ T |= PCLTj (Cni , Cnk).
We have sketched out a proof of this theorem. The core of the proof proceeds by induction on

the number of connectives in the regex. The complete proof will appear in a longer version of this

paper.

6 Implementation

Since reasoning within an ESN-II subsumes reasoning within an ESN-I, we discuss below only

reasoning within an ESN-II.

Reasoning within an ESN-II consists of determining which nodes are activated; for each acti-

vated node, finding the legal and verified paths that begin with the activated node; and for each legal

and verified path, determining the conclusions that correspond to the relevant regex.

The following algorithm performs the reasoning task within an ESN-II. We assume a determin-

istic finite automatonM = (Q,A, δ, q0, F ) defined in the usual way, whereA = NT ∪ LT . In

addition to our previously defined notation (p.3), letD ⊆ Q be the dead states ofM ,G be a function

fromSN to℘(RR) (outgoing links),T be a function fromRR toSN (destination node),nodetype

be a function fromSN toNT , linktypebe a function fromRR toLT . Then the top-level reasoning

algorithm is as follows:

Algorithm1 (Reason).

O ← ∅
for all nodein SN do

if C |= ν(node) then

O ← O ∪ Reason1(M, q0,node)
return O

Algorithm 1 invokes the following recursive reasoning algorithm, which takes as input the finite

automatonM as defined above, a stateq, and nodenode, and returns a set of output nodesO ⊆ N :

Algorithm2 (Reason1).

q ← δ(q,nodetype(node))
if q ε D then return ∅
if CX 6|= κ(node) then return ∅
O ← ∅
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if q ε F thenO ← O ∪ {node}
for all link in G(node) do

if CX |= λ(link) then

q′ ← δ(q, linktype(link))
if q′ 6 ε D then

O ← O ∪ Reason1(M, q′, T (link))
return O

The reasoning system is one component of the implemented system. Our current system engages

a customer in dialogue to obtain information, reasons with this information, presents the results of

its reasoning to the customer (e.g., its recommendations), and explains its reasoning. Below, we

briefly discuss the role of the ESN-II in the system implementation. The system begins with limited

information about the customer (harvested from CRM databases), and asks canned questions to

obtain a rudimentary profile. This suffices to activate some nodes in the network. The system then

traverses potential paths to determine what information it will need. For example, if a wff on a

node in a potential path refers to information that the system does not have (e.g., the customer’s

annual income), the system will ask the customer for this information. (Since network traversal

is needed for both obtaining information and reasoning, the implementation executes both tasks

concurrently.) The system also uses the ESN to construct an explanation of its recommendation.

Consider, for example, Figure 3. The system explains the recommendation ofCoverdell accounts

by following the legal and verified path: noting that the customer has minor children, which means

that he has a need to fund his children’s education; that this need is met by college savings plans; that

a type of college savings plan is the Coverdell savings account, which is suitable for the customer

because he earns less than $120,000 a year. The system also explains why certain products are not

explained by keeping track of the paths that are not verified. The system generates natural-language

(NL) recommendations using the names of the nodes and links, NL glosses of literals of the wffs,

and various transformation rules to smooth the whole into NL utterances. A complete description

of the explanation generator is given in a forthcoming paper.

We have completed a prototype system that makes recommendations and hypothetical predic-

tions for the domains of mortgages; life, income, auto, and travel insurance; and commercial finance.

7 Related Work

[6] considered using regexes while reasoning in a SN, for the application of story understanding.

He constructed an ad-hoc SN representing information in a story and identified “path shapes” cor-

responding to NL operations; these were candidates for potential inference. Techniques which did

not refer to the SN were used to determine which inferences could be made safely. There was no

notion of using regexes to characterize valid inference, and little formal development of the theory.
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[3] have explored the formal characterization within a SN of partonomic inference, reasoning

about parts and wholes. The authors also have some rudimentary analysis of simple compositions

of relations within SNs, and the inferences which these compositions permit.

[5] has augmented INEs by allowing one to attach wffs to selected nodes in the network. The

attachment has a different semantics than in the ESN-II. A limited amount of non-taxonomic rea-

soning is permitted, but is restricted locally to only the set of wffs that apply to a node. General SNs

are not considered.

Wffs are used to define nodes in description logics (DLs) [1], but differently from ESN-IIs. In

DLs, the wffs that define nodes are used to reason about subsumption. In ESN-IIs, defining wffs are

used to determine which nodes are activated in a particular context.

8 Ongoing and Future Work

Integration with probabilistic reasoning: The ESN’s reasoning is binary: it either does or does

not recommend a product. In large domains,in which there are many suitable products, it is often

more useful to the customer to order the recommendations and return only the top few.

We have implemented an integration of probabilistic reasoning into ESN-IIs that allows recom-

mendations to be ordered. We modify the ESN-II by attaching weights to a subset of nodes, links,

and wffs in the network. Weights may be assigned from the customer’s viewpoint (e.g., a product

may have greater or less utility for a customer) and/or from the business’s viewpoint (a product may

be more or less profitable for a business). Methods based on Bayesian reasoning are then used to

traverse the network and calculate the weights on recommended product nodes.

Performance issues/ Complexity:Determining the legality of paths in an ESN is computationally

efficient: equivalent to recognizing a regex. However, because the ESN-II includes wffs in first-

order logic, reasoning within an ESN-II inherits all the problems of first-order theorem proving,

including undecidability and intractability. We believe that reasoning within an ESN-II will prove

more efficient than standard first-order theorem proving for two reasons: First, only small sets of

wffs are reasoned with at any time; second, we use very restricted forms of wffs (not described

in this paper) that have excellent computational properties. These restricted forms, however, limit

expressivity. We are currently investigating the trade-offs between complexity and expressivity in

order to determine which forms are best suited for particular business domains.
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