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Abstract

In this paper we investigate planning approaches to the
practical problem of composing stream processing ap-
plications from a set of processing components. The
problems of assembling components into an application
that achieves a specified goal has become an impor-
tant research topic. Recently AI planning approaches
have been successfully applied in similar applications
such as web services, business processes, component-
based software composition, automated installation. An
important property of stream processing, which not
handled by existing models, is the functional depen-
dence between the attributes of incoming and outgoing
streams. We propose new planning models taking this
property into account, analyze decidability and com-
plexity of the problem, and propose planning methods.

Classification:I.2.8, Plan execution, formation, and genera-
tion; G.2.2 Graph Algorithm

Key words and phrases:planning, graphplan, planning
heuristic, planning graph, unstructured information, stream
processing

Overview
As powerful computers and high-bandwidth communica-
tion become increasingly affordable, stimulating the growth
in the use of high-performance distributed computing and
as modern software development tools and open communi-
cation protocols enable large-scale component-based soft-
ware architectures, the practical problem of making a choice
between possible components or services and establishing
the interconnections between the components such that the
functionality required of the application is achieved and the
resource usage is optimized has come to the attention of re-
searchers in several related fields. These composition prob-
lems are naturally related to planning, since a sequence of
decisions must be made in order to choose and interconnect
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components into a processing system that satisfies a prede-
fined goal.

In recent work planning methods have been successfully
applied to web service composition, automated software
installation, and deployment of component-based software
(for example see (Doshi & Verma 2004), (Kichkaylo &
Karamcheti 2003)). In this work the matching between the
entry points of the components is typically implemented by
assigning a type identifier to the entry point, and requiring
that each connection can only establish a link between entry
points having exactly the same type identifiers.

The problem described in this paper arises in stream pro-
cessing applications. These are the applications, such as
video processing, streaming databases or sensor networks,
in which the volume of the data being processed is too large
to be stored, and therefore the information must be pro-
cessed on the fly. Processing components in these applica-
tions expose one or more input port, and one or more output
port. Once each input port of a component is connected to
a stream, the component produces an output stream for each
of the output ports, by filtering, annotating, or otherwise an-
alyzing and transforming the information it receives. Once
a stream is created any number of components can receive
data from it by connecting an input port to the stream. How-
ever, no more than one stream can be connected to one input
port.

The streams that come into the system from the outside
world are referred to as primal streams. The components
do not make any distinction between the primal and derived
streams, and can work with either kind, given that the pre-
condition for the input port is satisfied. The goal of this
processing can be formulated as a requirement on the output
stream.

In the stream processing scenario, the streams cannot be
described by a single type identifier. Instead, a stream carries
a set of properties (tags). The goal requirements for output
streams and the input requirements of processing compo-
nents can be described as the subset of tags that are required
to be present in the stream description. The tags that are as-
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Figure 1: Example of a stream processing application graph.

signed to the input streams of a processing component are
transformed into the tags of output streams according to a
mapping function defined for the component.

During our attempts to map this problem into ’standard’
(STRIPS or PDDL) formulation we encountered two diffi-
culties.

• Tag set corresponding to each stream does not map
’nicely’ to the ’standard’ formulation - one needs signifi-
cantly larger number of variables (or predicates) to cover
the notion of grouping tags by stream.

• Output streams are independent from each other, and are
dependent on (possibly) each input. This is different from
say PDDL that expects output propositions to be con-
nected with AND relation.

In this paper we introduce a general formulation for the
stream processing planning problem. We also consider a
restricted formulation, which can be seen as an extension
of STRIPS model. This formulation scales better that the
general one, and still captures the most important properties
of the model. These models are applicable in any environ-
ment where components interact by producing and consum-
ing data, and can be used to model the composition of web
services or software components. Finally, we propose an
algorithm for finding optimal plans, and discuss future re-
search directions.

Related Work
One of the first strict formulation of automated planning was
done by (Green 1969). STRIPS schema was introduced
in the (Fikes & Nilsson 1971). Strict formulation of the
STRIPS may be found in (Nilsson 1980). UCPOP planner
(Penberthy & Weld 1992) worked with some modification
of STRIPS.

Semantics of STRIPS planning was investigated by (Lifs-
chitz 1986). Framework for studying of actions presentation
is done in (Sandewall 1995).

ADL introduced in (Pednault 1986) shows nice bal-
ance between expressiveness of language and computational
complexity of the reasoning. Usage of state variables di-
rectly was introduced in (B̈ackstr̈om 1991) (planner SAS).

Equivalency of expressivityof different planning for-
malisms was considered in (Nebel 2000). Two presentations

are called equivalent if there is a polynomial transform map-
ping one presentation into another such that plan size are
preserve precisely.

Complexityof the propositional planning considered in
(Bylander 1992) and (Erol & Subramanian 1995). Com-
plexity of the state space planning considered in (Bäckstr̈om
1991) etc.

PDDL as a computer parsable language representing
STRIPS, ADL etc., was introduced in (Ghallab & McDer-
mott 1998).

Resource base restrictions considered in the (Koehler
1998).

General branch-and-bound algorithm was described in
(Nau & Kanal 1984)(see also (Pearl 1985)). Distance-based
heuristics considered in (Ghallab & Laruelle 1994). System-
atic analysis of distance based heuristics provided in (Bonet
& Geffner 1999). Fast-Forward (Hoffman 2001) planner re-
fined heuristic estimates used in HSP.

Model checking technique was first considered in (Ka-
banza & St-Denis 1997). Further the idea used in the
(Jensen & Bryant 2003), where model checking was rein-
forced by usage of BDD based local search. Further, BDD
was used for the reduction of the state space size using elab-
orate technique for translating PDDL into BDD format, see
(Edelkamp & Helmert 1999).

More detailed information about automated planning may
be found in the monographs (Ghallab & Traverso 2004) and
(Russel & Norvig 2002).

For Workflow planning of the webservices see workshop
part of ICAPS04(03): (Pla 2003) or (Pla 2004)

General Model
We start with a strict description of generic Stream Process-
ing Planning. We show that it is more expressible than an as-
sociated STRIPS model (see (Nebel 2000)). Then we show
that complexity of the planning for such model changes be-
tween PSPACE and EXPSPACE. For the state variable for-
malism see (Jonsson & Bäckstr̈om 1998).

Types and Constants Types represent a finite tree based
on the inheritance relation. Only single (not multiple) inher-
itance is allowed. Typeobject is a root type for all types.

(:types person city address - object,
s - stream)

Constants may be of certain types. There are only finitely
many constants of a specific type.

(:constants ernie scott dan - person)

Streams and Variables A Stream is special type of object.
It corresponds to the set of the constants of types. To mark
that streams contains constanto we use predicate

has_object ( s, o) or (s and (o))



In the state variables presentation of the world, streams cor-
respond to an additional grouping of the state variables. We
consider that all the variables are streams. For convenience
we think of streams as partially grounded complete lists with
enumeration corresponding to types (or we can add a new
constantε that would mean that a value is not specified or not
important, see for example (Jonsson & Bäckstr̈om 1998).
Let s1 be a stream consisting from constantso1, o2, ..., ol.
Streams2 extends streams1 if the streams2 contains at least
l constantso1, o2, ..., ol on proper type positions. Streamsg

is grounded extension ofs1 if all possible types-placeholders
in sg are set to certain values andsg extendss1.

Relations and Actions Relations are the fixed relations on
the streams that do not depend on the change of the streams.
Actions have preconditions and effects (for actionA we de-
note them by precond(A) and effects(A)) . Both precondi-
tions and effects are expressed in terms of streams. Each
precondition is a set of expressions on a stream and rela-
tions. We consider that preconditions are independent from
each other (express precondition on different streams). Each
effect is a set of assignments of values to the stream de-
pending on preconditions. Assignments may depend in prin-
cipal on certain boolean expression. We separate the fol-
lowing cases: simple assignment, conditional assignment
(when E then S), and boolean expression assignment con-
taining more complicated boolean expression. Effects are
independent from each other (connected with OR expres-
sion).

Sample assignment action
(:action AA

:parameters (?in1 ?in2 ?in3 ?out1 ?out2)
:precondition (in1 and (P1)(P2))
:precondition (in2 and (P3)(P2))
:precondition (in3 and (P5)(P6)(P7))
:effect (out1 and (P4)(P6))
:effect (out2 and (P3)(not (P2)))
)

Sample conditional action
(:action CA

:parameters (?in1 ?in2 ?in3 ?out1 ?out2)
:precondition (in1 and (P1)(P2))
:precondition (in2 and (P3)(P2))
:precondition (in3 and (P5)(P6)(P7))
:effect (out1 when in1.P4 then (P6))
:effect (out2 when in3.P2

then ( and (P3) (P5) )
)

Note that the difference with state-variable presentation is
that streams contain a complete set of types, and that actions
have multiple independent ( different streams ) precondi-
tions and multiple independent effects (ORed) (see (Jonsson
& Bäckstr̈om 1998)). Since effects are independent from

each other, actions may be decomposed on set of actions
with one stream output. However dependency of each effect
on set of inputs is a strong differentiator.
Planning language L in the stream representation is a set
of the stream variablesS, a finite set of fixed relationsR
and sets of constants that define their streams. Define set
X of all partially grounded streams such that there exists
grounded extensionxg of x ∈ X satisfying fixed relations
R.
Planning domain in languageL is a state transition sys-
temΣ(S,A, γ) satisfying

• S ⊂ Πx∈XDx, whereDx is a range of the partially
grounded stream variablex. In this case states defined
ass = {(x = c | x ∈ X} for c ∈ Dx.

• A = { all partially grounded instances of actions that
meet relations inR}. We say that actionA is applicable to
the stream set{s1, ..., sk} if actionA hask preconditions
{in1, ..., ink} and streamsi extends preconditionini for
i = 1, ..., k.

• γ(s, A) = {(x = c) | x ∈ X} wherec is specified by
assignmentc 7→ x in effects (A).

• S is closed underγ, meaning fors ∈ S and every action
A applicable tos one hasγ(s, A) ∈ S.

Planning goal is a tripleP = (Σ, s0, g) wheres0 is a set
of grounded streams representing initial state inS and the
goal is a set of expressions on the stream variables.
Planning problem is a 4-tupleP = (A,R, s0, g) where
A is a set of actions,R is a set of fixed relations,s0 is the
initial state, andg is a goal.
Decidability of the planning problem (see (Erol & Subra-
manian 1995)). LetP = (A,R, s0, g) be a stream process-
ing planning problem. Suppose that solution for the plan-
ning problem exists and has lengthl. First, we ground all
possible actions in such a way that they still satisfy relations
R. Next, we can enumerate all admissible paths of lengthl:
first enumerate all admissible paths of length 1, then, given
enumeration of lengthm−1, we can enumerate all admissi-
ble paths of lengthm, by adding to each path every admissi-
ble grounded action. Suggestion of existing of the planning
solution implies that solution maybe found. This means that
stream planning problem is at most semidecidable. It also
implies that finding length of the plan is decidable problem.
Semidecidability follows from the fact that this model cov-
ers classical planning, and the fact that classical planing is
semidecidable (see Corollary 3.1 and Theorem 3.3 in the ref-
erence above).



Complexity of the planning problem. Set of total admissi-
ble grounded streams is not more than exponential in terms
of input sequence. From initial state we choose non de-
terministically next action and apply it. We repeat proce-
dure until we reach the goal. This solves problem in NEX-
PSPACE. Since NEXPSPACE and EXPSPACE are equal, it
implies that planning problem is at most EXPSPACE. Since
model covers classical planning, this fact and Theorem 5.7
of (Erol & Subramanian 1995) implies that stream process-
ing planning problem is EXPSPACE hard.

Simplified Model

Our current implementation of stream processing plan-
ner supports a simplified planning domain description for
stream processing, which can be seen as a direct derivative
of STRIPS, with the addition of stream processing logic.
The simplified model is more tractable than the general one,
since the conditional effects allowed by this model have well
defined structure. Yet, even with this simplification, the
model can capture the most important practical applications.

In this section we briefly describe a standard model for
describing planning domains, STRIPS, show how it can be
extended for stream processing planning and explain why
the extension is necessary, describe our approach to mod-
eling resource constraints, provide a mathematical formula-
tion for the problem, and describe an algorithm that we have
implemented for finding admissible plans with minimum re-
source utilization.

Propositional STRIPS Formulation

In the propositional STRIPS planning problem (Fikes &
Nilsson 1971), the state of the world is described by a fixed
number of predicates (boolean variables). The initial set of
values for these variables is given. A number of possible
actions is defined, and for each action the precondition and
the effect are specified. Action precondition is described by
a list of predicates, which must be present in the state of the
world (or, equivalently, must evaluate to true). The precon-
dition in STRIPS corresponds to the logical AND operation
on the values of the chosen predicates. An action is said to
be legal in particular state of the world if the precondition of
the action is satisfied. Effect of an action is described by the
two lists of predicates: add list and remove list.

When a legal action is executed, the state of the world is
updated: the predicates specified in the add list are set to
true, and those present in the remove list to false. The plan-
ner must construct a legal sequence of actions, which start-
ing from the inital values of predicates, modifies the state
such that after applying these actions in a sequence, all of
the predicates specified in the goal list become true.

To illustrate this simple model, below we include a PDDL

description of an action named A that has predicates P1 and
P2 in its precondition, and sets predicate P3 and removes P2
as an effect. PDDL is a standard language for describing
planning domains.

(:action A
:precondition (and (P1)(P2))
:effect (and (P3)(not (P2))) )

Predicate STRIPS Formulation

In the predicate STRIPS class of formulations, parameteric
actions can be described: the predicates used in precondi-
tions and effects can have parameters. These parameters are
variables of an enumeration type, and can take one of a fi-
nite set of values, and the action is assumed to be defined for
each of the possible instantiations of parameters. Goal and
inital state lists in this formulation can only contain ground
predicates.

Below is an example of action definition in a predicate
STRIPS domain.

(:action A
:parameters (?x ?y)
:precondition (and (P1 ?x)(P2 ?y))
:effect (and (P3 ?x ?y)(not (P2 ?x))))

Multiple Streams

We noticed that the traditional STRIPS assumes that an ac-
tion is applied to the global state of the world, described
by a multidimensional vector. In contrast with this assump-
tion, in the scenario of distributed stream processing, each
of the processing components works only with the data it
receives on incoming streams. Furthermore, descriptions of
all streams have the same structure: stream descriptor for
each stream can be seen as an instance of a common stream
properties class.

We needed a structure for describing properties of
streams, and also a language for describing input require-
ments, as well as modifications to these properties per-
formed by stream processing components. We have cho-
sen STRIPS-like language of predicates, preconditions and
add/remove effect lists. Although STRIPS has its limita-
tions, in particular the lack of expressivity in describing pre-
conditions and effects, it has become a de-facto standard do-
main formulation for deterministic planners. Our decision
was motivated mainly by the popularity of the language,
and by additional search difficulties associated with more
expressive planning domain classes.

Since each processing component can receive more than
one input stream, and produce more than one output stream,
for each of these streams preconditions and effects must be
specified. We will say that the action has multiple input and
output ports, to which the streams can be connected. Cor-



respondingly, action description must be extended as in the
following example:

(:action A
:precondition (and (P1)(P2))
:precondition (and (P3)(P2))
:precondition (and (P5)(P6)(P7))
:effect (and (P4)(P6))
:effect (and (P3)(not (P2))) )

Application of each action creates new streams. The num-
ber of streams created is equal to the number of effects spec-
ified in the action description. Properties of output streams
depend both on the effects of the action and on the properties
of incoming streams. The stream created when an action is
applied is never modified or removed from the world state.
Each stream can be used as input in multiple actions, and
each application of an action creates new streams with new
properties, and does not change properties of any streams
that existed before the action was applied.

Relationship to STRIPS

In the simplest case, when the properties of output streams
are specified explicitly in action description, and are inde-
pendent of properties of input streams, the following proce-
dure can be used to convert the stream processing planning
problem to STRIPS:

1. Declare typestream ; each object of this type will cor-
respond to a name of an unique stream. The number of
streams, and therefore of objects of typestream that
are needed, in the worst case is exponential in the num-
ber of predicates used in the original problem formula-
tion. However, this number is also limited by the number
of streams used in the solution, and therefore an estimated
upper bound (based on available resources and minimum
resource cost of action, for example) can be used.

2. Declare predicateunused(?s - stream) . We will
use this predicate to indicate that a stream with the name
?s has not yet been created.

3. Predicate
hasproperty(?s - stream ?p - property)
will indicate that property?p is present in stream?s .
property is a type that contains names of all possible
predicates of the original problem.

4. For each object of classstream in initial state, except
to the objects corresponding to initial (primal) streams,
defineunused(?s) in the initial state. For the initial
streams, definehasproperty(?s ?p) accordingly.

5. Goal stream specification translates to a set of
hasproperty(?s ?p) goals, where?s has value
corresponding to a chosen goal stream name, and?p is
property predicate required in the goal.

The description of the action given in previous example
translated to STRIPS will be the following:

(:action A
:parameters (?in1 ?in2 ?in3 ?out1 ?out2)
:precondition (and

(unused ?out1)
(unused ?out2)
(hasproperty ?in1 P1)
(hasproperty ?in1 P2)
(hasproperty ?in2 P3)
(hasproperty ?in2 P2)
(hasproperty ?in3 P5)
(hasproperty ?in3 P6)
(hasproperty ?in3 P7) )

:effect (and
(not (unused ?out1))
(not (unused ?out2))
(hasproperty ?out1 P4)
(hasproperty ?out1 P6)
(hasproperty ?out2 P3) )

This compilation schema can be easily extended for
actions with parameters by listing the parameters in
hasproperty predicate after property name.

One may notice that this translation does not take into ac-
count(not (P2)) effect of the stream action. This is be-
cause it assumes that none of input properties are propagated
to the output streams, and therefore negating a predicate
does not have any effect: the property will not be present
in the output even without this applying negation, unless it
is specified in the add list.

This restriction does not allow STRIPS model to sat-
isfy our requirements: we need to extend effect opera-
tions and allow output values of predicates corresponding to
new streams to be functions of input predicates on different
streams. In general this is equivalent to allowing conditional
effects, which is a harder problem than traditional STRIPS,
as shown in (Nebel 2000).

Predicate Merging: AND, OR, FALSE.

Extending the STRIPS model to single input, multiple out-
put case is straightforward: it is sufficient to specify the add
and remove lists for each of the outgoing streams. However,
the formulas that compute the properties of the outgoing
links based on the properties of more than one input stream
require a language that is more expressive than STRIPS.

To alleviate the search complexity associated with allow-
ing general Boolean formulas for computing action effects,
and based on evaluation of stream planning problems that
arise in practice, we have made the following simplifying
assumptions:

1. The value of a predicatex in the output stream depends
only on the values of the same predicate in the input



streams, and on the effects (add/remove lists) associated
with the output port of an action.

2. The operation used to combine the values of the predicate
x associated with each of the input streams to compute
the value to which effects are applied, depends only on
the predicate and not on the operator, and can be one of
the following choices: logical AND ofx values in all in-
puts, logical OR ofx values in all inputs, and the constant
FALSE, used for computing output value independent of
input values.

The predicates are divided into three groups, according
to the default stream merging operation to be used on the
predicates. The AND-logic group contains predicates that
can be required by a constraint (such as precondition or goal
expression) to be present on all streams that lead to satis-
fying the constraint. Predicates in the OR-logic group are
used for describing stream properties that can satisfy the
constraint as long as they are present on one of the input
streams. Predicates in FALSE group can be used to imple-
ment simple input-to-output matching in cases when the out-
put of the action can be specified independently of the input.
It is important to note that this independence of output from
input values during effect computation of course does not
remove the requirement that the input values must satisfy all
preconditions of corresponding input ports for the action to
be legal.

Resource Constraint Model

Many researchers have considered planning domains where
a resource metric is used as a minimization objective during
construction of the plan. For example, the planning algo-
rithm described in (Kichkaylo & Karamcheti 2003) consid-
ers the characteristics of the underlying hardware network,
on which the software stream processing components are de-
ployed and make deployment decisions based on resource
availability in the network. Due to the anticipated large num-
ber of processing components and the need for more expres-
sivity in specifying action effects in our model we decided
to separate the planning and resource allocation problems,
and solve them separately.

In the planning problem, which is the subject of this pa-
per, we assign a constant costci ≥ 0 to each actioni, and
the minimization objective is the sum of cost of all actions
used in the plan. This resource model roughly corresponds
to scheduling all processing components on the same pro-
cessor and minimizing utilization of the limited processor
resource. Alternatively, it can be seen as minimization of
the cost associated with implementing the plan, given the
cost of performing each action.

Mathematical Formulation

In this subsection we introduce the notation used for describ-
ing the planning problem, and formally define actions, ef-
fects and preconditions for the propositional modification of
the problem. The planning problem is defined by the follow-
ing parameters:

• World stateS is a set of streams. Each stream inS is rep-
resented by a Boolean vector of predicates (stream prop-
erties) of dimensionn: x ∈ {0, 1}n.

• Each property vectorx ∈ {0, 1}n can be represented as a
combination of sub-vectors corresponding to three predi-
cate groups: AND, OR, and FALSE;x = (x∧,x∨,xF ) ∈
{0, 1}n∨×{0, 1}n∧×{0, 1}nF , wheren∨+n∧+nF = n.

• Initial world stateS0 = {xi}I
i=1 is a set of primal streams

(streams available before any actions take place).

• A = {Ai}m
i=1 is the set of all actions. Each actionAi has

Ji input ports andKi output ports,i = 1..m. Let K =
max{Ki}m

i=1 andJ = max{Ji}m
i=1.

• ci ∈ IR+ is the cost of actionAi; i=1..m.

• pij ∈ {0, 1}n is the precondition corresponding to the
input portj of actionAi; i=1..m, j =1..Ji.

• sik ∈ {0, 1}n is the add list vector corresponding to the
output portk of actionAi; i=1..m, k=1..Ki.

• rik ∈ {0, 1}n is the remove list vector corresponding to
the output portk of actionAi; i = 1..m, k = 1..Ki. We

assume thatrik∧sik = 0 for all i andk.

• G = {gi}G
i=1, gi ∈ {0, 1}n – the set of goal vectors.

Action Ai, i = 1..m is legal in stateS if for each input

preconditionpij , j = 1..Pi, there existsx ∈ S such that

x ≥ pij . We will say thatx is a matching stream forpij .

Let Ai be a legal action in stateS, let {xij}Ji
j=1 be the

streams fromS that match the preconditions1 {pij}Ji
j=1. Ac-

tion Ai changes the state of the world fromS to Ŝ, where

Ŝ = S ∪ {x̂ik}Ki

k=1. In this new state vectors{x̂ik}Ki

k=1

are the property vectors of the newly created output streams,
which are computed as following:

x̂ik =




∧Ji

j=1 xij
∧

∨Ji

j=1 xij
∨

0



∧ ¬r ∨ s

1Streamsxij are not necessarily unique: it can happen that the
same stream matches more than one input precondition ofAi.



The problem is to construct an optimal plan - - a sequence

of legal actions that, when applied to the initial stateS0 gen-

erates a stateS∗, in which for everygi ∈ G there exists

x∗ ∈ S∗ such thatx∗ ≥ gi, and such that the cost of this
plan, defined as the total cost of all actions in the plan, is the
minimum among all feasible (legal) plans.

Problem Complexity

We list the following simple complexity results for stream
planning problem without proof. IfK = J = 1, andnF =
0, the problem of finding a legal plan becomes equivalent to
finding a legal plan in STRIPS domain, which is known to
be PSPACE (Bylander 1992), and therefore the problems of
finding the optimal or feasible plan are at least as hard.

If, in addition toK = J = 1, it holds thatn = nF or
rij ≡ 1, both problems of fining a feasible and an optimal
plan are polynomially solvable.

If K ≥ 1, J ≥ 1 andn = nF or rij ≡ 1, the problem
of finding a feasible plan is polynomially solvable, however
the optimal plan problem is NP-hard (for the proof see Ap-
pendix).

The expressivity of our model, as defined in (Nebel 2000),
is at least that of STRIPS and less than that of planning mod-
els with general conditional effects, since for any STRIPS
problem a corresponding formulation for stream planning
can be constructed, and since the values of the output predi-
cates are computed using restricted merging formulas.

The advantage of using stream planning formulation di-
rectly, instead of constructing a STRIPS formulation first,
solving it, and later converting the solution back to streams
and stream processing components, lies in the added effi-
ciency that the search algorithm can gain from the additional
structure present and explicitly specified in the stream plan-
ning formulation. There are two options for conversion: to
use variables as stream names or to identify streams by their
content.

The approach of using variables to identify streams will
cause the solver that optimizes resources to generate at least
O(N !) solutions for each single solution of lengthN that the
stream planning solver will consider, due to the fact that the
names can be assigned differently, and the general STRIPS
solver will not detect that the solutions generated are the
same.

The approach of creating a variable for each stream re-
quires the state space to define2n variables for streams, and
O(2nm) actions, since effects of the action can vary depend-
ing on the set of input streams, andO(2n) streams can po-
tentially satisfy a precondition. Therefore, in the worst case
the STRIPS solver will considerO(2nm) alternatives for
making a transition to next state, in cases where the stream
planning solver will only need to investigateO(m) alterna-

tives.

Search Algorithm
We have implemented a general branch-and-bound proce-
dure for solving the problem, that allows us to experiment
with different search methods. Branch and bound is a stan-
dard approach to solving combinatorial problems, and it
have been shown to be a successful solution method for
planning problems (cite Hoffman Geffner 2003).

Currently, the backward search (from the goal) is imple-
mented: at each branching node a goal is chosen from the set
of available nodes, and is connected to an existing primal or
derived stream or to a newly placed action. If an action is
placed, the input ports of the action are registered as new
goals to be satisfied at the next step. The preconditions of
the action in combination with the constraints on the out-
put of the action are used to specify the new goal constraint
for each of the inputs. The search tree is pruned if the best
achieved total cost is exceeded.

The algorithm allows predicates and actions with param-
eters in the input. The parameters are substituted before the
search.

The algorithm gains additional efficiency from precom-
puting pairs of commuting actions and considering only one
of the two possible orderings in the pair, therefore achieving
the same effect as GraphPlan (Blum & Furst 1995) does in
allowing the commuting actions to be executing in parallel,
extending this approach to the more general stream planning
scenario. Potential conflicts (mutexes) are precomputed at
the same time, and for each input port of each action a list
of output ports that can be connected to it are constructed.
These lists are reduced during branching according to the
revised goals.

Detecting Commutative Actions
For two actionsAu, Av ∈ A we denote a composition of
actions asAu .(kj) Av. The composition is defined with

respect to the output portk of actionAu, 1 ≤ k ≤ Ku, and
the input portj of actionAv, 1 ≤ j ≤ Jv, and corresponds
to the aggregate action obtained by connecting the stream
produced by the output port of actionAu to the input port

of actionAv. The composition is legal ifruk∧pvj = 0 and

suk
F ≥ pvj

F , i.e. if the none of the predicates listed in the
precondition of the input port are explicitly removed by the
remove list associated with the connected ouput port, and all
of the preconditions in the FALSE group are satisfied by the
corresponding add list.

In general, the composition cannot be represented in the
same format as action, i.e. by a set of input ports with
preconditions and a set of output ports with add/remove
lists. The planning algorithm can precompute for each ac-
tion Au with selected input portju and output portku



and each actionAv with selected input portjv and output
port kv whether the two compositionsAu .(kujv) Av and

Av .(kvju) Au define equivalent aggregates, and only con-

sider search subtrees in whichAu is connected toAv, but
not Av to Au, where the connections are made via the cor-
responding ports.

Conclusion and Future directions
In this paper we described a real-world planning problem re-
quiring that we define a sequence of processors over multi-
ple data streams. We built the model describing the problem
and provided initial analysis of the decidability and com-
plexity of the model. Next, we simplified and analyzed the
model, showing that the simplified model is more practical
to solve. We outlined our planning algorithm and some tech-
nical specifics we used to solve the problem.

As the next steps we are going to extend our simplified
model to handle more advanced resource constraints, de-
scribed by monotonic function on the action composition.

We also plan to add model checking-based planning to the
possible solvers, since our problem is close to the models
that are handled by model checking well.
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Appendix. Resource Minimization Complexity

Consider the stream processing planning problem in the case

whenn = nF or rij ≡ 1 for all output portsj of all ac-
tions i. If either of these condition holds, the set of output
predicates of an action does not depend on the input predi-
cates, once the precondition for applying the action is satis-
fied.

It is easy to solve the problem of finding a legal plan un-
der these conditions. In every feasible plan each action will
be used no more than once, since output streams produced
by the action are independent of input streams, and therefore
are always exactly the same every time the action is applied.
Therefore a simple algorithm that proceeds in iterations and
at each iteration applies a legal action that has not been ap-
plied yet, terminates after at mostm iterations when it can
no longer find an action to apply. This algorithm either con-
structs a legal plan or proves that one does not exist.

In what follows we formally prove that under these re-
strictions the problem of finding an optimal plan (a plan that
has minimum resource usage among all legal plans) is NP-
hard. To prove this, we formulate an equivalent problem in
which exact matching between the types produced by output
ports and the requirements on input ports is required.

Color Planning Problem

Suppose we are given a set of operatorsO, and a set of colors

C. OperatorO = 〈Oin, Oout〉 can be applied only if all

colors in the setOin are defined. If operatorO is applied, it
adds all colors in the setOout to the set of available colors.
We assume that for any operatorO, |Oout| ≥ 1 and|Oin| ≥
1. In the multi-in and multi-out variant of the problem, there

exist two operatorsO1, O2 ∈ O such that|Oin
1 | ≥ 2 and

|Oout
2 | ≥ 2 (it is possible thatO1 = O2).
It is easy to see that this problem is equivalent to the

stream processing planning problem, if we map each action

to an operator, eachpij to a distinct color that is required
by the operator, and define the set of colors produced by the
action as the set of preconditions that can be satisfied by the
add list vectors corresponding to all output ports of this ac-
tion.

Without loss of generality we can assume that for any op-

eratorO it holds thatOout \ Oin 6= ∅. In other words, each
operator adds at least one color to the input set – otherwise
that operator has no effect.

The color planning problem then is: given a set of input
colorsDin, and set of output colorsDout find a composition
of operators that, after being applied to colors inDin, pro-
duces all colors inDout. It is easy to show that this problem

can be solved in at mostO(|O|2) steps, by simply search-
ing for an applicable operator, applying it, and repeating the
search in the reduced set of operators. This algorithm either
finds a solution, or provides a proof that no solutions exist.

In the optimal color planning problem each operatorO

has weightw(O) ≥ 0. The problem is to find a composition
of operators that solves the color planning problem and has
minimum weight among all solutions.

Satisfiability Problem

We will show that given an instance of NP-complete SAT-
ISFIABILITY problem (SAT, see (Cook & Mitchell 1997)
for details) we can construct an instance of optimal color
planning that will satisfy multi-in single-out condition, and
the optimal solution to which can be used to construct a
solution for SAT. All transformations involve polynomially
many steps and size of the planning problem is polynomial
in the size of SAT instance.

Given a set of Boolean variables{x1, x2, ..., xn}, satisfia-
bility problem is to find values for these variables that makes
“true” a given Boolean formula

F (x) =
q∧

i=1







mi∨

j=1

xI(i,j)


 ∨




pi∨

j=1

x̄J(i,j)





 (1)

(written in conjunctive normal form).



Reduction
Suppose we are given an instance of SAT: variables
{x1, x2, ..., xn} and formula (1). First, we will define
Din = {CS}, Dout = {CE} for some unique colorsCS

andCE .
Next, for each variablexk, k = 1..n define three colors,

CT
k , CF

k andUk, and four operators:

OT
k : {CS} → {CT

k }, w(OT
k ) = 1

OF
k : {CS} → {CF

k }, w(OF
k ) = 1

OUT
k : {CT

k } → {Uk}, w(OUT
k ) = 0

OUF
k : {CF

k } → {Uk}, w(OUF
k ) = 0

For each multiplicative termi of F , i = 1..q, define color
Ti.

For each additive variable appearance inF without nega-
tion xI(i,j), i = 1..q and j = 1..mi, define operator

OV T
ij : {CT

I(i,j)} → {Ti}. For each additive variable ap-

pearance inF with negationx̄J(i,j), i = 1..q andj = 1..pi,

define operatorOV F
ij : {CF

J(i,j)} → {Ti}. Set weights of

these operators equal to0.

Finally, define operatorOE with weight0 :

OE :

(
q⋃

i=1

{Ti} ∪
n⋃

k=1

{Uk}
)
→ {CE}.

In total, we have defined4n+L∨+1 operators andL∧+
3n colors, whereL∨ is the number of additive terms inF ,
andL∧ is the number of multiplicative terms inF .

It is easy to show that if SAT has a solution, the optimal
solution to the color planning problem will have valuen: for

each variable we will either applyOT
k or OF

k , but not both,
which corresponds to setting variablexk to either “true” or
“false”. The artificial colorsUk that must be defined in any

solution to planning problem ensure that eitherOT
k or OF

k

is applied for each variable, so planning problem solution
value will never be less thann. On the other hand, if we are
given a solution to SAT, we can construct a solution for the

planning problem, applyingOT
k for all “true” variables and

OF
k for all “false” variablesk.


