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Abstract

We address the problem of test selection for
fault diagnosis on a Bayesian network, which
requires several entropy terms whose exact
computation is intractable. We propose an
approximate approach that utilizes the loopy
belief propagation infrastructure to simulta-
neously compute approximations of marginal
and conditional entropies on multiple sub-
sets of nodes. We apply the method to
active probing for fault diagnosis in com-
puter networks, and present promising em-
pirical results on realistic Internet-like topol-
ogy graphs.

1 Introduction

The problem of fault diagnosis appears in many places
under various guises. Examples include medical diag-
nosis, computer system troubleshooting, and decod-
ing messages sent through a noisy channel. Recently,
researchers have formulated diagnosis as an inference
problem on a Bayesian network, with the goal of as-
signing most-likely states to unobserved nodes based
on outcome of certain “test” nodes.

An important issue in diagnosis is the trade-off be-
tween the cost of performing tests and the achieved
accuracy of diagnosis. It is often too expensive or even
impossible to perform all tests. In this paper, we con-
centrate on problem of active diagnosis, in which tests
are selected sequentially to minimize the cost of test-
ing (e.g., the number of test if their costs are equal).
We use entropy as the cost function and select a set
of tests providing maximum information (i.e. minimal
conditional entropy) about the unknown variables.

However, exact computation of conditional entropies
in a general Bayesian network can be intractable.
While much existing research has addressed the prob-

lem of efficient and accurate probabilistic inference,
other probabilistic quantities, such as conditional en-
tropy and information gain, have not received nearly
as much attention. There is a vast amount of litera-
ture on value of information and most-informative test
selection [8, 3, 7, 17], but none of the previous work
appears to focus on the computational complexity of
most-informative test selection in a general Bayesian
network setting.

It can be easily shown that, while entropy is de-
composable (and thus tractable) on a Bayesian net-
work, marginal conditional entropy (and thus informa-
tion gain) is in general non-decomposable and requires
performing possibly intractable probabilistic inference.
We propose an approximation algorithm for comput-
ing marginal conditional entropy, which is based on
loopy belief propagation, a successful approximate in-
ference method. We illustrate the algorithm at work in
the setting of active probing for fault diagnosis. Our
method is general enough to apply to other applica-
tions of Bayesian networks that require the computa-
tion of information gain and conditional entropies of
subsets of nodes. In our specific case, it can efficiently
compute the information gain for all candidate tests
simultaneously.

In section 2, we give the general problem setup for
entropy approximation in a Bayesian network, fol-
lowed by our solution in section 3. Section 4 gives
an overview of the active probing application frame-
work, while section 5 presents a detailed analysis of
empirical results. We survey related work in section 6,
and conclude in section 7.

2 Problem Setup

Let X = {X1, X2, . . . , XN} denote the set of N dis-
crete random variables and x a possible realization of
X. Assume that a joint probability distribution (PDF)
over X is encoded by a Bayesian network that yields



a product-form representation

P (x) =
n∏

i=1

P (xi|pai), (1)

where pai is an assignment to the parents of Xi (nodes
pointing to in the Bayesian network).

We adopt the factor graph representation [5], which
was recently proposed as a convenient way of uni-
fying both directed-graph (Bayesian networks) and
undirected-graph (Markov networks) representations
of joint PDFs. The PDF is assumed to be written in
a factored form

P (x) =
1
Z

∏
a

fa(xa), (2)

where the index a ranges over all potential functions,
or factors fa(xa), defined on the corresponding subsets
xa of X.

Let E be a possibly empty set of evidence nodes for
which observation is available, and let a be the index
of an arbitrary factor. We concentrate on the problem
of estimating the conditional marginal entropy of Xa

given a set of observations e. It is easy to show that
the entropy H(X) is decomposable over the set of fam-
ilies and thus yields tractable computation exponential
only in the largest family size. Unfortunately, this is
not true for computing conditional marginal entropies:

H(Xa|e) =
∑
xa

P (xa|e) log P (xa|e) (3)

where P (xa|e) =
∑

x\xa

P (x|e). (4)

This computation is not decomposable and requires
calculating P (xa|e), which is an NP-complete proba-
bilistic inference problem [1]; commonly used exact in-
ference algorithms require time and space exponential
in the treewidth[16] of the graph, which corresponds to
the size of largest clique induced by inference.

2.1 Drawing from ideas of belief propagation

Although probabilistic inference can be intractable
in general case, there exists a simple linear-time
message-passing algorithm, known as belief propaga-
tion (BP) [16], which is provably correct on polytrees
(i.e. Bayesian networks with no undirected cycles),
and can be used as an approximation on general net-
works. Belief propagation passes probabilistic mes-
sages between the nodes and can be iterated until con-
vergence (guaranteed only for polytrees). Otherwise
BP is said to diverge.

The principle of belief propagation is simple and intu-
itive: each node sends messages to its neighbors about

its belief regarding its own state. The messages are
then multiplied by the local potential functions to up-
date the neighbor’s beliefs. The process is iterated
until belief fluctuations fall below a small threshold,
or until patience runs out, at which point one declares
divergence.

Let a denote a factor node and i one of its variable
nodes. N(a) represents the neighbors of a, i.e., the
set of variable nodes connected to that factor; N(i)
denotes the neighbors of i, i.e., the set of factors nodes
to which variable node i belongs. The BP messages
are defined as follows [11]:

ni→a :=
∏

c∈N(i)\a
mc→i(xi), (5)

and

ma→i(xi) :=
∑

xa\xi

fa(xa)
∏

j∈N(a)\i
nj→a(xj) (6)

Based on these messages, we can compute the beliefs
about each node and about the probability potential
for each factor, respectively:

bi(xi) ∝
∏

a∈N(i)

ma→i(xi) (7)

ba(xa) ∝ fa(xa)
∏

i∈N(a)

ni→a(xi). (8)

Observations are incorporated into the process via δ-
functions as local potential for each node in E. When
that is done, bi(xi) becomes the approximation of the
posterior probability P (xi|e).

One might imagine directly approximating the en-
tropy, modifying the messages to update entropy as
opposed to probabilities. More generally, one might
imagine such an algorithm for calculating general func-
tions of the probability. However, our initial forays
along this line are met with firm resistance from the
recursive characteristics of message passing. That is,
previous messages would be incorporated into the cur-
rent estimate of the entropy, which would be used to
formulate new messages. It is difficult to control and
normalize such recursive updates for complicated func-
tions of the probability.

We settle for a direct usage of beliefs resulting from
the original belief propagation mechanism. The ef-
ficiency of belief propagation enables us to calculate
marginal conditional entropies for multiple subsets of
the Bayesian network in one single iteration.



3 Belief Propagation for Entropy
Approximation (BPEA)

Recall our initial problem of approximating the
marginal conditional entropy in Eqn. (3). The trick
is to replace the marginal posterior P (xa|e) with its
factorized BP approximation, and make use of the BP
message passing mechanism to perform the summa-
tion over xa. We call this process Belief Propagation
for Entropy Approximation (BPEA, pronounced “bee-
pee”).

First, pick a node X0 from the family Xa to be the
designated root node. We modify the final message
passed to X0 (i.e., the message passed on the last it-
eration) as follows:

m′
a→0(x0) := −

∑

xa\x0

b̃a(xa) log b̃a(xa), (9)

where

b̃a(xa) := fa(xa)
∏

c∈N(0)\a
mc→0(x0)

∏

j∈N(a)\0
nj→a(xj).

(10)
b̃a(xa) is essentially the unnormalized belief of Xa, in
which we have included the messages gathered at the
edges of all the nodes in the family a. m′

a→0(x0) in-
cludes a partial sum of the entropy term. To get the
entire entropy, it still remains to sum over the root
node X0:

h̃(Xa|e) :=
∑
x0

m′
a→0(x0). (11)

h̃(·) is almost the approximate entropy we seek, except
for one thing. Recall that b̃a(xa) is the unnormalized
version of the belief, i.e., b̃a(xa) = σba(xa) where σ =∑

xa
b̃a(xa) is the normalization constant that makes∑

xa
ba(xa) = 1. We need to normalize h̃ in order to

obtain the correct entropy.

h(Xa|e) :=
h̃(Xa|e)

σ
+ log σ (12)

Lemma 1. BPEA is exact whenever BP is exact.

Proof. The lemma follows trivially once we show that
b̃a(xa) is the unnormalized belief ba(xa) and that Eqn.
( 12) achieves the correct normalization.

Plugging Eqn. (5) into Eqn. (8) and separating the
terms involving the root node from the rest, we obtain

ba(xa) ∝ fa(xa)
∏

i∈N(a)

∏

c∈N(i)\a
mc→i(xi) (13)

= fa(xa)
∏

c∈N(0)\a
mc→0(x0)

∏

j∈N(a)\0
nj→a(xj)

(14)
= b̃a(xa) (15)

To prove the correctness of the normalization
in Eqn. (12), note that, for any function g(x)
and any constant ω, −∑

x ωg(x) log ωg(x) =
−ω

∑
x g(x) log g(x) − ω log ω

∑
x g(x). In our case,

g(x) = ba(xa), which sums to one. Eqn. (12) thus
follows.

3.1 Computational efficiency

The normalization constant σ is already computed
during normal BP iterations. The computation of
b̃a(·), m′

a→i, and h̃(·) can all be piggy-backed onto the
same BP infrastructure, and does not impact its over-
all complexity. What’s more, due to the local and par-
allel message update procedure in BP, we can compute
the marginal posterior entropies of multiple families in
the graph in one single sweep. This will turn out to
be important in our application to the active probing
problem considered below.

4 Fault Diagnosis and Active Probing

Modern day Internet and company-wide intranets have
expanded to sizes beyond the capabilities of real-time
manual supervision. For a typical quality of service
agreement of 99.9% uptime, the computer system can
be down for no more than 10 minutes a week. This
calls for some form of automatic, computer-aided fail-
ure detection and diagnosis. In previous work, Rish
et.al. [9][13] formulate automatic fault diagnosis as
an inference problem on a QMR-DT-like[12] Bayesian
network.

Suppose we wish to monitor a system of networked
computers. Let S = {S1, S2, . . . , SN} denote a set of
binary random variables representing the state of N
network elements. Si = 0 indicates that the element
is in normal operation mode, and Si = 1 indicates
that the element is faulty. Si could represent hard-
ware, software, or network aspects of the system, or
any system’s component whose state can be measured
using a suite of tests. Each component can be in one
of two states, either 0 (ok) or 1 (faulty). In a large
system, it is often impossible to test each individual
component directly. A common solution is to test a
subset of components with a single probe. Such a test
reveals either that all components in the subset are ok
(in which case its outcome is 0) or that at least one of
the components is faulty (if the outcome is 1), but not
how many or which are faulty.

We assume there are machines designated as probe sta-
tions, that are instrumented to send out probes (test
transactions) to test the response of the network el-
ements represented by S. Let T = {T1, T2, . . . , TM}
denote the available set of probes. A probe can be as
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Figure 1: The fault diagnostic Bayes net.

simple as a ping request, which detects network avail-
ability, or a more sophisticated test such as an e-mail
message and a webpage-access request.

Figure 1 shows a factor graph representation of our
Bayesian network. In the absence of noise a probe is
a disjunctive test, i.e. it fails if any of the nodes along
its path is down. A natural generalization is to use the
well-known noisy-OR model [16]:

P (sj) := (αj)sj (1− αj)(1−sj), (16)

P (ti = 0|spa(i))) := ρi0

∏

j∈pa(i)

ρ
sj

ij , (17)

P (s, t) :=
∏

i

P (ti|spa(i))
∏

j

P (sj). (18)

Here, pa(i) denote the indices of the nodes in S nodes
covered by probe i, αj := P (sj = 1) is the prior fault
probability, ρij is the so-called inhibition probability,
and (1−ρi0) is the leak probability of an unaccounted-
for faulty element. The inhibition probability is a
measurement of the amount of noise in the network;
the higher the inhibition, the higher the chance that a
probe will not observe an actual fault.

We model the problem of fault diagnosis as that of
finding the most probable configuration of the nodes
in S, given probe outcomes. The quality of real-time
fault diagnosis not only depends on its correctness –
that is, whether or not we correctly identify the faulty
elements – but also requires the diagnosis be made as
quickly as possible, using the fewest number of po-
tentially expensive probes. The situation is similar to
that of medical diagnosis and problem determination.

To minimize the number of probes used, Rish
et.al. [10][14] formulate the active probing framework.
We sequentially select probes based on their informa-
tion gain. Given the observed outcome t′ of previously
selected probes, the next probe is taken to be

argmaxT I(S;T |t′), (19)

where I(S;T |t′) is a conditional mutual information.

For probe selection purposes, we can distill Eqn. (19)
down to only the elements involving T .

I(S; T |t′) = H(S|t′)−H(S|T, t′) (20)
= const.−H(S|T, t′), (21)

where

H(S|T, t′) = −
∑

t,spa(T )

P (spa(T ), t|t′) log P (t|spa(T ))

+
∑

t

P (t|t′) log P (t|t′) + const. (22)

Eqn. (21) shows that maximizing the information
gain is equivalent to minimizing the conditional en-
tropy H(S|T, t′). The latter boils down to only two
terms involving T . Let A(T,Spa(T )|t′) denote the first
term in Eqn. (22); this is the cross entropy between
the posterior probability of T and its parents, and the
conditional probability of T given its parents. The sec-
ond term in Eqn. (22) is simply a conditional entropy,
H(T |t′).
In previous work, a single-fault assumption was made,
which effectively reduced S to one random variable
with N + 1 possible states. In general, however, mul-
tiple faults could exist in the system simultaneously,
which requires in the representation above. Since
observations of probe outcome correlate the parent
nodes, the exact computation of the posterior prob-
abilities in both entropy terms is intractable.

We deal with the two terms separately. For H(T |t′),
we may use approximation methods such as BP or
GBP to calculate the belief b(t|t′), which can then
be used to directly compute H(T |t′). (Note that the
summation over values of T is simple since T is binary-
valued.) To calculate A(T,Spa(T )|t′), we use the en-
tropy approximation method (BPEA) as described in
Section 3. Because BP message updates are done
locally, we can compute A(T,Spa(T )|t′) for all unob-
served T nodes during a single message update itera-
tion of BP. Thus, picking the next probe requires only
one run of the BPEA approximation algorithm.

Since the probe node T is the least connected member
of its family, we designate it as the root node. Abusing
notation slightly, we use t to index the factor represent-
ing the family of probe node T and its parents. The
modified messages, in this case, reduces to:

b̃t(t, spa(t)) := P (t|spa(T ))
∏

j∈pa(T )

nj→t(sj) (23)

A(T,Spa(T )|t′) = −∑
t,spa(T )

P (spa(T ), t|t′) log P (t|spa(T ))
is a cross entropy term. Hence we do not take the log
of b̃ during BPEA, but rather take the logarithm of



the known probabilities P (t|spa(T )). This simplifies
the normalization step described in Eqn. (12) to:

A(T,Spa(T )|t′) =
Ã(T,Spa(T )|t′)

σ
,

where σ =
∑

t,spa(T ) b̃t(t, spa(T )).

5 Empirical Results

5.1 The dataset

We conduct our experiments on network topologies
built by the INET generator[19], which simulates
Internet-like topology at AS-level. Our dataset in-
cludes a set of networks of 485 nodes, where the num-
ber of probe stations varies from 1 to 50.

The parent structure of probe nodes T are generated
with two goals in mind: detection and diagnosis. A
detection probe set needs to cover all network compo-
nents, so that at least one probe has a positive prob-
ability of returning false when a component fails. A
diagnosis probe set needs to not only cover all compo-
nents, but be able to distinguish between faulty com-
ponets. It is NP-hard to design the optimal probe set
for either detection or diagnosis. For the datasets used
here, we first use a greedy approach to obtain a probe
set that covers all network components, then augment
this set with additional probes in order to guarantee
single-fault diagnosis. Detailed discussions of probe set
design for diagnosis Bayesian networks may be found
in [17, 18].

Table 1 lists the sizes of all of the networks used in
our experiments. In general, fewer probes are needed
for detection than for diagnosis. Also, adding more
probe stations increases the diversity of probes, and
therefore fewer probes are needed to cover the entire
network.

Table 1: Number of T nodes in detection and diagnosis
networks. (There are 485 S nodes in all networks.)

#Probe Sts 1 10 20 30 40 50

detection 319 270 263 242 236 227
diagnosis 428 380 371 350 339 324

5.2 Parameters and measurements

There are four parameters of interest. The type of
network (detection vs. diagnosis) and the number of
probe stations both affect the tree-width of the graph,
and are therefore interesting. We also measure the
effects of the prior fault probability α and inhibition

probability ρ.1

We measure the quality of approximation of the en-
tropy terms, as well as the diagnostic quality of the se-
lected probe set. For both measurements, we compare
against ground truth obtained from the junction tree
algorithm for exact inference. A third measurement
is computational efficiency, measured in terms of CPU
time, which we briefly summarize in subsection 5.5.
Since all measurements depend on the particular set
of probe outcomes, we repeat all our experiments on
10 different samples of the Bayes net.

We use the diagnostic quality of the probe set to deter-
mine when to stop the probe selection process: when
the reduction in entropy (Eqn. (25))) for the past
5 iterations is no more than 0.00001, the process is
deemed to converge. Otherwise the process runs until
all probes have been picked.

5.3 Approximation accuracy

We first look at approximation accuracy. Recall that
at each time step of the active probing process, we
obtain a vector of approximate entropy values, one for
each candidate probe T . We average the relative error
between the approximation values and the exact value
for unselected probes, and further average over all time
steps and samples. Let M denote the total number
of probes, n the number of selected probes, hij the
approximate value for probe j at the ith stage of probe
selection, and Hij the corresponding exact values. We
calculate

R(h,H) :=
1
n

n−1∑

i=0

1
M − i

M−i∑

j=1

|hij −Hij |
|Hij | . (24)

First, we fix the network and examine the effects of
prior fault and inhibition probabilities on R(h,H). We
use the detection network with 10 probe stations, and
augment this probe set with single-node probes in or-
der to alleviate the insufficiencies of a detection net-
work. Fig. 2(a-b) contains plot of the average, the min-
imum, and the maximum approximation errors, taken
over 10 samples of probe outcomes. Relative error val-
ues are shown separately for the two entropy terms in
Eqn. (22). A(T,Spa(T )|t′) is calculated using BPEA,
whereas H(T |t′) is obtained directly from the BP be-
liefs b(t|t′). The approximation error is lower at lower
levels of the prior fault probability. For both values of
prior fault probability, and for all levels of inhibition
probability, the error does not exceed 2% on average.
At the maximum, the approximation error does not
exceed 10% for A(T,Spa(T )|t′), and 20% for H(T |t′).

1 For the purpose of evaluating the quality of approxi-
mation and diagnosis, we assume one α and one ρ values
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Figure 2: Approximation and diagnostic quality mea-
surements on a augmented detection network, plotted
against inhibition probability (ρ), and shown at differ-
ent prior fault probabilities (α).

Fig. 3(a-b) shows approximation error plots for detec-
tion networks with different numbers of probe stations.
For this experiment, we fix α = 0.1 and ρ = 0.1. Here,
again, the average approximation error never exceeds
2% for any number of probe stations, and the over-
all maximum error does not seem to be affected by
the number of probe stations (and hence the coverage
pattern and tree-width of the graph).

It would be interesting to perform the same approxi-
mation error analysis on the set of diagnosis networks
in our dataset. However, due to increased tree-width,
the exact method fails to run on all diagnosis networks
with more than 1 probe station.

5.4 Diagnostic quality

The quality of diagnosis is taken to be the reduction in
conditional bit entropy of the state of the network ele-
ments. That is, if t′ represents the observed outcomes
of the final set of selected probes, we measure

H(S)−H(S|t′) = −
∑
s

P (s) log2 P (s)

+
∑
s

P (s|t′) log2 P (s|t′).(25)

We first examine the effect of inhibition probability
and prior fault probability on the quality of diagnosis.
Fig. 2(c) plots the diagnostic quality of approximate

for the entire network.
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Figure 3: Approximation and diagnostic quality mea-
surements for detection networks with varying num-
bers of probe stations. (α = 0.1 and ρ = 0.1)

and exact algorithms obtained on the previously men-
tioned augmented detection network. Note that, for
both levels of prior fault probability and at all levels
of inhibition, the two algorithms are practically indis-
tinguishable in terms of diagnostic quality. Fig. 2(d)
looks at the size of the final probe set (i.e., the number
of probes selected when the active probing process is
deemed to converge); here again, the two algorithms
have identical behavior.

Experiments with varying the number of probe sta-
tions return similar results in terms of diagnostic qual-
ity and final probe set size. Fig. 3(c-d) contains the
corresponding plots. α and ρ are fixed to be 0.1, and
the number of probe stations varies from 1 to 50. The
approximate and exact methods return curves that
practically coincide with each other.

Lastly, we look at quality measurements on the set
of diagnosis networks. Since the exact method is not
able to handle diagnosis networks with more than 1
probe station, we can only look at the diagnostic qual-
ity of the approximate method. Comparing Fig. 4(a)
with Fig. 3(c), we see that the diagnosis networks in-
deed seems to offer slightly better diagnostic quality
(in terms of reduction in bit entropy). But, as Fig. 4(b)
and Fig. 3(d) shows, this improvement in diagnostic
quality comes at the cost of retaining more probes in
the active probing process.

5.5 Implementation and speed

We use the junction tree inference engine in Kevin
Murphy’s Bayes Net Toolbox [15] for Matlab to ob-
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Figure 4: Diagnostic quality measurements for diagno-
sis networks with varying numbers of probe stations.
(α = 0.1 and ρ = 0.1)

tain exact singleton posterior probabilities. The ap-
proximate method is implemented on top of the belief
propagation C++/mex code developed by Yair Weiss
and Talya Meltzer. We speed up the approximation
active probing process by re-using beliefs from previ-
ous iterations of BP.

Fig. 5(a) plots the average, maximum, and minimum
number of BP iterations that we save through re-using
messages. The x-axis denotes the type of network
used. The label diag represents the diagnosis network
with 1 probe station, and the rest are detection net-
works with varying numbers of probe stations. Note
that, on average, re-using messages shortens the BP
convergence time by 40-50 iterations. This amounts
to substantial savings in computation time over the
entire active probing process.

Fig. 5(b) compares computation time of the approxi-
mate method to the exact method. On average, the
approximate method turns out to be slower. Closer ex-
amination of the results show that, for most probe se-
lection steps, BP converges under 10 iterations, which
puts the approximate method ahead of the exact
method. However, for a few of the probes, BP may
take several hundred iterations to converge. Thus the
average time requirement (per probe selection) of the
approximate method is about 2 seconds longer than
the exact method. However, keep in mind that, for
networks with larger tree-width, the exact method is
simply not feasible. Hence, in general, the approxi-
mate method is our only choice.

6 Related Work

The most-informative test selection was previously ad-
dressed in various work on diagnosis, decision analy-
sis, feature selection in machine learning, and related
areas. Given a cost function, a common decision-
theoretic approach is to compute the expected value-
of-information [8] of a candidate test, i.e. the expected
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Figure 5: Efficiency of approximate method. (a)
Average number of BP iterations saved by re-using
messages; (b) Average speed-up compared to exact
method.

cost of making a decision after observing the test out-
come; using entropy as a cost function yields most-
informative test selection. Value of information anal-
ysis (and particularly most-informative test selection)
was considered in the context of model-based diag-
nosis [3], probabilistic diagnosis [16] and applied to
many practical domains [17]. Previous research has
addressed computational complexity of selecting a set
of most-informative tests instead of a single test [7].
However, none of the previous approaches seem to ad-
dress the efficiency of computing single-test informa-
tion gain in a generic Bayesian network.

The most-informative test selection problem is quite
similar to the optimal coding problem[2]. There is,
however, an important difference. In the coding do-
main, one may separate source coding (compressing S)
from channel coding (adding redundance to improve
decoding accuracy). Fault diagnosis, on the other
hand, has to deal with a combination of the two, which
manifests itself in the nature of available tests (de-
scribed by the conditional probabilities P (Ti|Spa(i))).
We may have no control over the source coding func-
tion, but we can still select the smallest, most infor-
mative subset of tests.

In the context of probing, i.e. disjunctive testing, op-
timal test selection is very similar to the group testing
problem [4]. Given a set of Boolean variables repre-
senting objects that can be in two possible states (i.e.
sick vs. healthy patients, failed vs. OK nodes), the
objective of group testing is to find all ’failed’ objects
by using a sequence of disjunctive tests. Particularly,
sequential test selection is known as adaptive group
testing [4]. There is also a direct connection between
adaptive group testing and Golomb codes [6]. Note
that group testing assumes no constraints on the test
selection (i.e., any subset of objects can be tested to-
gether), while in Bayesian networks the tests can be
only selected from a fixed set. Even in a less restric-
tive case of probe selection we are still constrained by



the network topology. Constrained group testing (and
coding in general) appears to be more complicated,
particularly for theoretical analysis, than its uncon-
strained version.

7 Conclusions

We propose an entropy approximation method based
on loopy belief propagation, and examine its bahav-
ior on the application of active probing for fault di-
agnosis in a networked computer system. The level
of approximation error is found to vary with the level
of noise. However, even with non-zero approximation
errors, the diagnosis quality is practically identical to
that obtained from the exact method. BPEA approxi-
mation takes slightly longer than the exact method on
small networks. But it can handle much larger net-
works for which exact junction tree inference is infea-
sible. This highlights a promising direction for active
probing and fault diagnosis, and for entropy approxi-
mation on Bayesian networks in general.
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