
RC23443 (W0411-176) November 19, 2004
Computer Science

IBM Research Report

A Novel Theoretical Model Produces Matrix Multiplication
Algorithms That Predict Current Practice

John A. Gunnels, Fred G. Gustavson
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Greg M. Henry
Intel Corporation

Bldg. EY2-05
5450 NE Elam Young Parkway

Hillsboro, OR 97124-6461

Robert A. van de Geijn
Department of Computer Sciences

University of Texas at Austin
Austin, TX 78712

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

A Novel Theoretical Model Produces Matrix

Multiplication Algorithms That Predict Current

Practice

JOHN A. GUNNELS

IBM T.J. Watson Research Center

and

FRED G. GUSTAVSON

IBM T.J. Watson Research Center

and

GREG M. HENRY

Intel Corporation

and

ROBERT A. VAN DE GEIJN

The University of Texas at Austin

We develop a simple model of hierarchical memories and we use it to determine an optimal
strategy for blocking matrices. This model predicts the form of current, state-of-the-art L1 kernels.
Additionally, it shows that current L1 kernels can continue to produce their high performance on
operand matrices that are as large as the L2 cache. For a hierarchical memory with L memory
levels (main memory and L-1 caches), our model reduces the number of potential matrix multiply
algorithms from 6L to four. We use the shape of the matrix input operands to select one of our
four algorithms. Because of space limitations, we do not include perforamnce results.

Categories and Subject Descriptors: []: —

General Terms:

Additional Key Words and Phrases:

1. INTRODUCTION

In this paper, we discuss an approach to implementing matrix multiplication, C =
AB +C, that is based on a simple model of moving data between adjacent memory

Authors’ addresses: John A. Gunnels, IBM T.J. Watson Research Center P.O. Box 218 York-
town Heights, N.Y. 10598 gunnels@us.ibm.com. Fred G. Gustavson, IBM T.J. Watson Research

Center P.O. Box 218 Yorktown Heights, N.Y. 10598 gustav@watson.ibm.com. Robert A. van de
Geijn, Department of Computer Sciences, The University of Texas at Austin, Austin, TX 78712,
rvdg@cs.utexas.edu. Greg M. Henry, Intel Corp., Bldg EY2-05, 5350 NE Elam Young Pkwy,
Hillsboro, OR 97124-6461, greg.henry@intel.com.

2 · John A. Gunnels et al.

layers. This model allows us to make the following theoretical contributions: (1)
At each level of the memory hierarchy most of that layer should be filled with a
submatrix of one of the three operands while smaller submatrices of the other two
operands are “streamed in” from the previous (slower) memory layer; (2) If a given
layer is mostly filled with a submatrix of an operand, the next (faster) layer should
be filled mostly with a submatrix of one of the other two operands. (3) At the L1
level, where all computations must take place, the model accurately predicts the
form of two kernel routines. Embodied in points (1-3) is the general idea of using
cache blocking at every memory level. The amount of work (FLOPS) done at
every level is 2MNK on operands of size MN +MK +KN . We are assuming that
any computer architecture, at every memory level, can feed (stream) the operands
through the memory hierarchy in time less than or equal to the time for doing
2MNK FLOPS at maximum floating point rate (peak MFLOPs). This paper
is a condensation of an amplification of [Gunnels et al. 2001] that was written in
Februrary 2002.

Over the last two decades, numerical linear algebra libraries have been re-designed
to accommodate multi-level memory hierarchies, thereby replacing earlier libraries
such as LINPACK and EISPACK. It was demonstrated, e.g. [Gallivan et al. 1987;
Corporation 1986], that on cache-based (multi-level memory) machines, block-
partitioned matrix algorithms could evince dramatic performance increases, when
contrasted with their non-blocked counterparts. The key insight of block partition-
ing research was that it allowed the cost of O(n2) data movement between memory
layers to be amortized over O(n3) computations, which had to be performed by
kernel routines in the L1 (lowest level) cache. At the base of our algorithms are
kernel routines used in concert with submatrix partitioning (referred to as cache

blocking). Our new memory model provides a mathematical “prediction” for the
necessity of both. Prior work [Bilmes et al. 1997; 1998; Whaley and Dongarra
1998; Agarwal et al. 1994], produced kernel routines, first by hand and, later, via a
code generator, which employed parameter variations and careful timing in order to
complete the generate-and-test cycle. The principles used in these automatic code
generating versions were, for the most part, the same as those used by the ESSL
library. The PHiPAC [Bilmes et al. 1997; 1998] and ATLAS [Whaley and Dongarra
1998] projects each employ a code generator approach. This methodology uses a
program that writes a series of programs, each differing by a set of parameters
varied by the “parent” (code writing) program. Each of these produced programs
is automatically compiled and carefully timed. Using the timing characteristics of
these programs, the most time-efficient code is selected. The work presented here
generalizes the ATLAS model. In Section 4.1 a fuller comparison of ATLAS and our
model is given. It is also related to [Goto and vandeGeijn 2002] which is discussed
in Section 4.2

Our model partitions matrices A, B, and C into submatrices Aip, Bpj , and
Cij and performs submatrix multiplication and this is illustrated in Section 2. In
Section 3, we state a result on the minimal amount of times any matrix algorithm
must bring matrix elements into and out of a given cache level. Our model achieves
this lower bound complexity to within a constant factor. The important point
here is that A, B, and C must come through the caches multiple times. With

A Novel Theoretical Model Produces Matrix Multiplication Algorithms That Predict Current Practice · 3

this result in mind, Section 3 takes the L algorithmic pieces developed in Section
2 and combines them into 2L different, composite algorithms. Furthermore, a new
concept called conservation of matrix operand sizes is used to reduce the number
of algorithms to just four.

Now, since the submatrices of A, B, and C must be brought through the memory
hierarchy multiple times, it pays to reformat them once so that data re-arrangement
is not done multiple times. This also aids the effort for achieving optimal L1 kernel
performance. In Sections 4, 4.1 and 4.2 we briefly describe how this is done in
greater detail. Our main point is that our model features loading and storing
submatrices at each cache level. Clearly, loading and storing is overhead and only
serves to reduce the MFLOPS value predicted by our model. By using the new
data structures, NDS, [Gustavson 2001], we can dramatically reduce the loading
and storing overhead cost, thereby increasing our MFLOP rate. Because of space
limitations using NDS in the context of our model as well as our two kernel routines
that feature streaming will not be covered.

We mention that our model does not involve automatic blocking via recursion.
Recently, this area has received a great deal of attention from many important
computations such as matrix factorizations, FFT, as well as matrix multiplication.
See [Elmroth et al. 2004]. Some researchers have referred to such methods as cache
oblivious [Frigo et al. 1999]. Others have focused on “recursion” to produce new
data formats for matrices, instead of the traditional Fortran and C data structures.
Our view is that recursion is very powerful and excellent results are obtainable,
but only if one combines this approach with blocking. Nonetheless, whenever one
neglects the specific features of a computer architecture, one can expect perfor-
mance to suffer. We hope that readers will see our model as sufficiently simple
and yet comprehensive enough to capture the salient features of matrix multiplica-
tion, and, thereby stimulate further interest in high-performance implementations
of matrix-matrix multiplication.

2. OVERVIEW OF OUR MODEL

The general form of a matrix-matrix multiply is C ← αAB +βC where C is m×n,
A is m × k, and B is k × n. We will use the following terminology when referring
to a matrix-matrix multiply when two dimensions are large and one is small; see
Table 1.

2.1 A Cost Model for Hierarchical Memories

We will briefly model the memory hierarchy as follows:

(1) The memory hierarchy consists of L + 1 levels, indexed 0, . . . , L. Level 0 cor-
responds to the registers, level L as main memory and the reamining levels as
caches. We will often denote the hth level by Lh.

(2) If mh × nh matrix C(h), mh × kh matrix A(h), and kh × nh matrix B(h) are all
stored in level h of the memory hierarchy then forming C(h) ← A(h)B(h) +C(h)

costs time 2mhnhkhγh. γh is defined to be effective unit cost of a floating point
operation over all mhnhkh multiply-adds at level Lh.

In an expanded version of the paper our model is fully described.

4 · John A. Gunnels et al.

Condition Shape

Matrix-panel multiply n is small
C = A B + C

Panel-matrix multiply m is small C
=

A
B +

C

Panel-panel multiply k is small
C = A

B
+ C

Table I. Three basic ways to perform matrix multiply

for i = 1, . . . , Mh, mh

for j = 1, . . . , Nh, nh

for p = 1, . . . , Kh, kh

C
(h)
ij
← A

(h)
ip

B
(h)
pj

+ C
(h)
ij

endfor
endfor

endfor

Fig. 1. Generic loop structure for blocked matrix-matrix multiplication.

2.2 Building-blocks for matrix multiplication

Consider the matrix multiplication C(h+1) ← A(h+1)B(h+1)+C(h+1) where mh+1×
nh+1 matrix C(h+1), mh+1×kh+1 matrix A(h+1), and kh+1×nh+1 matrix B(h+1) are
all resident in Lh+1. Let us assume that somehow an efficient matrix multiplication
procedure exists for matrices resident in Lh. According to Table 1, we develop
three distinct approaches for matrix multiplication procedures for matrices resident
in Lh+1.

Partition

C(h+1) =

C
(h)
11 · · · C

(h)
1Nh

...
...

C
(h)
Mh1 · · · C

(h)
MhNh

, A(h+1) =

A
(h)
11 · · · A

(h)
1Kh

..

.
..
.

A
(h)

M(h)1
· · · A

(h)

M(h)K(h)

, and (1)

B(h+1) =

B
(h)
11 · · · B

(h)
1Nh

...
...

B
(h)
Kh1 · · · B

(h)
KhNh

(2)

where C
(h)
ij is mh × nh, A

(h)
ip is mh × kh, and B

(h)
pj is kh × nh. A blocked matrix-

matrix multiplication algorithm is given in Figure 1 where the order of the loops is
arbitrary. Here, Mh, Nh, and Kh are the ratios mh+1/mh, nh+1/nh, and kh+1/kh,
respectively, which for clarity we assume to be integers. Further, the notation,
i = 1, . . . , Mh, mh, means that the index, i iterates from 1 to Mh in steps of 1,
where each block has size mh. The unit cost γh+1 will depend on the unit cost γh,

A Novel Theoretical Model Produces Matrix Multiplication Algorithms That Predict Current Practice · 5

the cost of moving data between the two memory layers, the order of the loops, the
blocking sizes mh, nh, and kh, and finally the the matrix dimensions mh+1, nh+1,
and kh+1. The purpose of our analysis will be to determine optimal mh+1, nh+1,
and kh+1 by taking into account the cost of all the above mentioned factors.

We can assume that mh, nh, and kh are known when h = 0. Floating-point
operations can only occur with data being transferred between the L1 cache (level
1) and the registers (level 0). This is, obviously, where all of the arithmetic of
matrix-matrix multiply is done and it is a separate problem which is probably the
most important part of any matrix-matrix multiply algorithm to get “right” (to
optimize). Hence, via an induction-like argument we can, using our model, find
optimal m1, n1, and k1. Similar inductive reasoning leads to optimal blockings for
the slower and larger memory layers h = 2, . . . , L.

In an expanded version of this paper we analyze Figure 1 for all of its six vari-
ants, formed by permuting i, j, and p. For all six variants the central computation

is: C
(h)
ij ← A

(h)
ip B

(h)
pj + C

(h)
ij . We make the observation that each element of C

(h)
ij ,

A
(h)
ip , and B

(h)
pj , are used kh, nh, and mh times, respectively, during this matrix

computation. Thus, we identify kh, nh, and mh as the re-use factors of C
(h)
ij , A

(h)
ip ,

and B
(h)
pj , respectively. And, when we speak of amortizing the computation, we

mean that elements of elements of C
(h)
ij , A

(h)
ip , and B

(h)
pj , have re-use factors, kh, nh,

and mh and it is advantageous to make these factors as high as possible.
Also, we show in the expanded version that the inner loop repetition factors

Kh, Nh or Mh will each take the value one because of the aforementioned stream-
ing resulting in “ loop fusion ”. See Section 3.1 ahead. This means that the cache
resident operand has an extra large re-use factor and thereby benefits from stream-
ing.

2.3 A Corresponding Notation

By examining Figure and Table 1 the following correspondence becomes evident:
(i, j, p) ↔ (RPM, RMP, RPP). Here P stands for panel, M for matrix, and R for
repeated. Think of repeated as a synomyn for streaming. For example, algorithm
RMP-RPP is uniquely designated by its outer and inner loop indices, j and p. Simi-
larly, algorithm RPM-RPP is uniquely designated by its outer and inner loop indices,
i and p. For the remaining four combinations: algorithms RPM-RMP , RPP-RMP and
RMP-RPM , RPP-RPM correspond to outer-inner loop pairings i, j , p, j and j, i , p, j
respectively.

Floating point arithmetic must be performed in the L1 cache. Let h = 1. It is
clear that p should be the inner loop variable as then a DDOT (as opposed to a DAXPY

) kernel can be chosen. Choosing DDOT saves loading and storing C values for each
floating point operation. In practice, at the L1 level, almost all implementations
that we are aware of are limited to these RMP-RPP and RPM-RPP algorithms. Hence
we limit ourselves to only these two algorithms at the L1 level. The “RPP” is
redundant and will be dropped.

So, we have two L1 kernels, called RMP and RPM. When h > 1, we refer to the
six algorithms illustrated in Table and Figure 1 as algorithmic pieces. In the next
s e c tio n we w ill s e e tha t, fo r a n L le ve l me mo r y hie r a r chy, L −←1 a lg o r ithmic pie c e s ,

6 · John A. Gunnels et al.

Case Dimensions Matrix Sizes L2-Resident L1-Resident “Streaming” Matrix
1 M > N > K |C| > |A| > |B| A B C
2 M > K > N |A| > |C| > |B| C B A
3 N > M > K |C| > |B| > |A| B A C
4 N > K > M |B| > |C| > |A| C A B
5 K > M > N |A| > |B| > |C| B C A
6 K > N > M |B| > |A| > |C| A C B

Table II. The six possible matrix size orderings delineated.

h = 1, . . . , L − 1 can be merged into a single algorithm. Because of the above-
mentioned correspondence, we can label the distinct algorithms that emerge either
by a string of loop indices (i, j, p) or by the analogous (RPM, RMP, RPP) designa-
tions. Each such string will contain L− 1 loop indices or L− 1 hyphenated symbol
pairs from the (RPM, RMP, RPP) alphabet.

2.4 Matrix Operand Sizes Dictate the Streaming Values

Consider again Figure 1 for a particular value of h so that problem size is mh+1 ×
nh+1 × kh+1. The outer loop index can be i, j or p. Thus we have three cases
and for each there are two algorithms corresponding to the order of the middle
and inner loops indices. Also, there are six possible size orderings for the problem
dimensions, (e.g. M > N > K, etc.). It is self-evident that any ordering of the
three sizes imposes an unambiguous ordering on the size of the three operands A,
B, and C, involved in matrix multiplication. For example, M > N > K implies
that C(M ×N) is larger than A(M ×K), which is, in turn, larger than B(K ×N).
Consider the case where K is the largest dimension and h = L− 1, as follows:

(1) K > M > N which becomes kh+1 > mh+1 > nh+1 or |A| > |B| > |C|.
(2) K > N > M which becomes kh+1 > nh+1 > mh+1 or |B| > |A| > |C|.

In both cases, the algorithms used should have p as the inner loop index. Streaming
provides us with the reason for this assertion. To be more specific, operand C
benefits from the large streaming value of kh+1. Since C is the smallest matrix in
these cases, C will tend to be composed of fewer submatices making up all of C.
In other words, Mh and Nh, the repetition values, will tend to be the two smallest
integers, as the mh+1 × nh+1 matrix, C, is the smallest operand. Refer to case (1)
above which depicts Figure 1 with loop order j, i, p. The cache resident matrix in
this case is the A operand and hence N is the streaming value. In case (2) above
the loop order is i, j, p and B is the cache resident matrix and M is the streaming
value. Finally, in the remaining four cases we have nh+1 as the largest value for
two cases corresponding to inner loop index j and mh+1 as the largest value for
two cases corresponding to inner loop index i.

In Table II we list the six possible size-orderings for problem dimensions, M , N ,
and K. In cases where two or more dimensions are equal, > can be viewed as ≥.

Row entries 5 and 6 of Table II suggest that the C operand should be L1 cache-
resident. However, for reasons given in Section 2.3, this situation leads to an inef-
ficient inner kernel. Our solution to this dilemma is to reverse the L2/L1 residence
roles of the smaller two operands.

A Novel Theoretical Model Produces Matrix Multiplication Algorithms That Predict Current Practice · 7

The case L = 2 suggests a strategy for algorithmic choices when L > 2. Choose
the smaller two operands to be cache-resident with the large operand supplying
the streaming values. This choice is based on maximizing the streaming feature
exhibited by L1 cache algorithms on current architectures and machine designs.
The smaller two operands will alternate in the role of cache-resident matrix.

3. THEORETICAL RESULTS ON BLOCKING FOR MATRIX MULTIPLICATION

Our model features block-based (submatrix) matrix multiplication. One might ob-
ject to our research on the grounds that there exists some other, as yet unknown,
superior method for performing the standard matrix multiply. We now state that
this cannot happen as our model is optimal in the following sense:

Theorem 3.1. Any algorithm that computes aikbkj for all 1 ≤ i, j, k ≤ n must

transfer between memory and D word cache O(n3/
√

D) words if D < n2/5.

This theorem, was first demonstrated by Hong and Kung [Hong and Kung 1981]
in 1981. Toledo [Toledo 1999] gives another, simplified, proof of their result. Our
model of block-based matrix multiplication transfers O(n3/

√
D) words for an L1

cache of size D words. Furthermore, we can apply this theorem to every cache
level residing “below” L1 in the memory pyramid: L2, L3, . . ., in the same way.
Our model evinces the Ω(n3/

√
Dh) word movement, where Dh is the size of Lh,

h = 1, 2, To illustrate this, let us review Figure 1 and Table I. In Figure 1 with
inner loop index p, matrix C is brought into Lh once while matrices A and B are
brought through Lh, Nh and Mh times, respectively. Similarly, in Figure 1 with
inner loop index j, matrix A is brought into Lh once while matrices B and C are
brought through Lh, Mh and Kh times, respectively. Finally, in Figure 1 with inner
loop index i, matrix B is brought into Lh once while matrices A and C are brought
through Lh, Nh and Kh times, respectively. Thus, we can see that the streaming
matrices employed in our algorithms have the repetitive factors, Nh, Mh, and Kh.

3.1 Bridging the Memory Layers

Overall, the number of single choices is bounded by 6L+1 as each instance of Figure
1 has six choices and h takes on L+1 values. In Section 2.3, with h = 1 we restricted
our choice to two L1 kernels; i.e. we set the inner loop index to be p. For h > 1 we
shall “fuse” the inner loop index at level h + 1 to be equal to the outer loop index
at level h. This amounts to using streaming at every memory level. This means the
number of algorithmic choices reduces to 2L. Thus, Figure 1 will have only 2 loops
(instead of 3) when they are combined into a composite algorithm for a processor
with L caches, where cache L is memory. When L is one, we have a flat (uniform)
memory and a call to either of our kernel routines, RMP (j0, i0, p0) or RPM (i0, j0,
p0), will conform to our model. For arbitrary L, we get a nested looping structure
consisting of 2(L−1) loop variables, 2 each from levels 2 to L. When one considers
the L1 kernel as well, there are 2L + 1 variables (as we must add i0, j0, and p0).

Furthermore, for streaming to fully work one must have matrix operands to
stream from. We call this conservation of matrix operands. M, N , and K are inputs
to DGEMM. In Table 2 and Section 2.3 we saw that were four algorithms as cases 5 and
6 were mapped to cases 2 and 4 respectively. Thus, the 2L choices map to just four

8 · John A. Gunnels et al.

algorithms as the choice of the outer and inner indices becomes fixed for each value
of h. The reason to do this is based on the conservation of matrix operand sizes
for the given DGEMM problem. The two largest of the three input dimensions M, N ,
and K determine the streaming matrix as the A, B, or C operand of largest size.
The four patterns that emerge for cache residency are A, B, A, . . ., B, A, B, . . .,
A, C, A, . . ., and B, C, B, . . ., for h = 1, 2, 3, . . . The associated streaming values
come from the two dimensions of the matrix operands C, C, B, and A respectively.

4. PRACTICAL CONSIDERATIONS

In the previous section we developed a model for the implementation of matrix-
matrix multiplication that amortizes movement of data between memory hierarchies
from a local point of view. However, there are many issues associated with actual
implementation that are ignored by the analysis and the heuristic. In this section
we briefly discuss some implementation details that do take some of those issues into
account. We do so by noting certain machine characteristics that to our knowledge
hold for a wide variety of architectures. While in the previous sections we argued
from the bottom of the pyramid to the top (Lh+1 in terms of Lh), we now start our
argument at the top of the pyramid after providing some general guidelines and
background.

4.1 Background and Related Work

In the Introduction, we mentioned both the PHiPAC and the ATLAS research
efforts. We now describe ATLAS in more detail as it more closely relates to our
contributions. In ATLAS, the code generation technique is only applied to the
generation of a single L1 kernel. The ATLAS L1 kernel has the same form as
the ESSL DGEMM kernel outlined in [Agarwal et al. 1994] and their code generator
uses many of the architectural and coding principles described in that paper. Our
model predicts two types of L1 kernel and, for IBM platforms, we have an efficient
implementation of each. ATLAS literature does mention this second kernel, stating
that either kernel could be used and it was an arbitrary choice on their part to
generate the one so selected. However, they did not pursue including this second
kernel, nor did they justify their conclusion, that both kernel routines were basically
the same.

Most practical matrix-matrix multiply L1 kernel routines have the form that our
model predicts. For example, ESSL’s kernel for the RISC-based RS/6000 proces-
sors, since their inception in 1990, have used routines that conform to this model.
The same is true of the kernel for Intel’s CISC Pentium III processor, which is de-
scribed in an expanded version of this paper. Since ATLAS’s code generator for its
L1 kernel also fits our model and has shown cross-platform success, we can expect
that our model will work on other platforms as well.

For the L1 level of memory, our model predicts that one should load most of
the L1 cache with either the A or the B matrix operand. The other operands, C,
and B or A, respectively, are streamed into and out of (through) the remainder of
the L1 cache while the large A or B operand remains consistently cache-resident.
Another theory predicts that each operand should be square and occupy one-third
of the L1 cache. In this regard, we mention that ATLAS only uses its L1 kernel
on square matrix operands. Hence the maximum operation count (multiply-add)

A Novel Theoretical Model Produces Matrix Multiplication Algorithms That Predict Current Practice · 9

that an invocation of the ATLAS kernel can achieve is NB3. Our (first) model
places the A operand, of size MB×KB, into the L1 cache, filling most of available
memory at that level. However, we can stream N , nb-sized blocks of the remaining
operands through the L1 cache. By selecting nb based on the register sizes, we
can allow N to be, essentially, infinite. Thus, the streamed form of our L1 kernel
can potentially support 2×MB ×KB ×N flops per invocation. We observe two
practical benefits from our form of kernel construction and usage:

(1) A rectangular blocking where MB < KB leads to a higher FLOP rate, due to
the inherent asymmetry that results from having to load and store C.

(2) The streaming feature allows a factor of N/NB fewer invocations of the kernel
routine.

Now we turn to partitioning the matrices, A, B, and C, into comforming submatrix
blocks. ATLAS’s model advises only two such partitioning strategies: (1) J, I, L
and (2) I, J, L, where the outer loop increments are the smallest and the inner
loop, the largest. Further, for both partitionings, the ATLAS model only allows a
single square blocking factor of size NB. By having only two such partitionings
ATLAS documentation states that it can only block for one other memory level, for
example, L2, and that their method for doing so is only approximate. Our model
differs from the one employed by ATLAS in that our model has three potential
blocking factors, MB, NB, and KB, at every cache level of the memory hierarchy.

Strangely, our model does not predict the two partitionings selected by ATLAS.
The reason for this is that ATLAS’s partitionings use K as the “streaming” param-
eter. In our model, the blocking parameter, KB, would be tiny. This would lead to
a DAXPY-like kernel which is known to be inferior to a DDOT-like kernel because the
former continually loads and stores the C operand, whereas the latter keeps the C
operand in registers.

4.2 Goto BLAS

Presently the DGEMM provided by [Goto] gives very high performance on a variety
of platforms. We think our model encompasses all the principles espoused in [Goto
and vandeGeijn 2002]. TLB blocking is automatically handled when one performs
data copy via the use of NDS. Our RPM B kernel is used in [Goto and vandeGeijn
2002]. And our RMP A kernel is probably not used in [Goto and vandeGeijn 2002]
because then data copy of C is required to avoid TLB misses. The third and second
last paragraphs of the Conclusion of [Goto and vandeGeijn 2002] corroborates the
statements made above.

5. SUMMARY AND CONCLUSION

This paper extends the results of [Gunnels et al. 2001] by introducing the concept
of conservation of matrix operand sizes. By doing so, we show that the number
of algorithms reduces from 2L to four. It emphasizes the importance of streaming
and generalizes it from L2 to L1 caches to caches h + 1 to h for all h > 1. Because
of space limitations the role of NDS via data copy is not covered as well as our two
kernel routines that feature streaming. Finally, our model is claimed to encompass
the principles of Goto BLAS as described in [Goto and vandeGeijn 2002].

10 · John A. Gunnels et al.

REFERENCES

Agarwal, R. C., Gustavson, F., and Zubair, M. 1994. Exploiting functional parallelism on
Power2 to design high-performance numerical algorithms. IBM Journal of Research and De-

velopment 38, 5, 563–576.

Bilmes, J., Asanović, K., whye Chin, C., and Demmel, J. 1997. Optimizing matrix multiply
using PHiPAC: a Portable, High-Performance, ANSI C coding methodology. In Proceedings of

International Conference on Supercomputing. Vienna, Austria.

Bilmes, J., Asanović, K., whye Chin, C., and Demmel, J. 1998. The PHiPACv1.0 matrix-
multiply distribution. Tech. Rep. 98-35, Int’l Computer Science Institute. October.

Corporation, I. 1986. Essl guide and reference for ibm es/3090 vector multiprocessors. order
no. sa22-7220, feb. 1986.

Elmroth, E., Gustavson, F., Jonsson, I., and Kagstrom, B. 2004. Recursive blocked algo-
rithms and hybrid data structures for dense matrix library software. SIAM Review 46, 1,
3–45.

Frigo, M., Leiserson, C. E., Prokop, H., and Ramachandran, S. 1999. Cache-oblivious algo-
rithms. In Proceedings of the 40th Annual Symposium on Foundations of Computer Science.
IEEE Computer Society, 285.

Gallivan, K., Jalby, W., Meier, U., and Sameh, A. 1987. The impact of hierarchical memory
systems on linear algebra algorithm design. CSRD Report 625, Center for Supercomputing
Research and Development, University of Illinois. Sept.

Goto, K. Goto blas.

Goto, K. and vandeGeijn, R. 2002. On reducing tlb misses in matrix multiplication. Flame
working note # 9, Univ. of Texas. November.

Gunnels, J. A., Henry, G. M., and van de Geijn, R. A. 2001. A family of high-performance
matrix multiplication algorithms. In Computational Science - ICCS 2001, Part I, V. N. Alexan-
drov, J. J. Dongarra, B. A. Juliano, R. S. Renner, and C. K. Tan, Eds. Lecture Notes in
Computer Science 2073. Springer-Verlag, 51–60.

Gustavson, F. G. 2001. New generalized matrix data structures lead to a variety of high-
performance algorithms. In The Architecture of Scientific Software, R. F. Boisvert and P. T. P.
Tang, Eds. Kluwer Academic Press.

Hong, J. and Kung, H. 1981. complexity: the red-blue pebble game.

Toledo, S. 1999. A survey of out-of-core algorithms in numerical linear algebra. In External

Memory Algorithms and Visualization, J. Abello and J. S. Vitter, Eds. DIMACS Series in Dis-
crete Mathematics and Theoretical Computer Science. American Mathematical Society Press,
Providence, RI, 161–180.

Whaley, R. C. and Dongarra, J. J. 1998. Automatically tuned linear algebra software. In
Proceedings of SC’98.

Received Month Year; revised Month Year; accepted Month Year

