
RC23444 (C0411-006) November 19, 2004
Computer Science

IBM Research Report

Business Process Modeling in Abstract Logic Tree

Ying Liu, Jian Wang, Jun Zhu, Haiqi Liang, Zhong Tian, Wei Sun
2IBM Research Division

China Research Laboratory
HaoHai Building, No. 7, 5th Street

ShangDi, Beijing 100085
China

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Business Process Modeling in Abstract Logic Tree
Ying Liu, Jian Wang, Jun Zhu, Haiqi Liang, Zhong Tian, Wei Sun

IBM China Research Lab
4F, Haohai Building, 5th Shangdi Street, Haidian District, Beijing China 100085

{aliceliu, wangwj, zhujun, lianghq, tianz, weisun}@cn.ibm.com

ABSTRACT
Business process models are usually defined in a graphical
modeling language. Most business process modeling
languages are the analog of flow chart and UML Activity
Diagram, which allows unstructured flow structures.
Unstructured process models make it difficult to transform it to
a structured business process model, such as BPEL4WS.
This paper proposes to represents the structure of a business
process model with a special tree structure, Abstract Logic
Tree. The concept and approach of Abstract Syntax Tree of
programming language field is suggested to be applied to
business process modeling field in this paper. Several
graph transformation rules are developed for the
transformation from an unstructured process model to an
ALT. Detecting unstructured loops is the critical point for
the transformation. DJ Graph is used to detect unstructured
loops in this paper. The equivalence between a process
model and its ALT is proven. The efforts in the paper make
the analysis and manipulation against process models can
be easily done on tree-based internal representation. ALT
can be regarded as a foundation for parsing the structure
and analyzing structure properties of business process
models.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions and
Theory –Semantics, Syntax.

General Terms
Languages, Theory.

Keywords
Business Process Model, Abstract Logic Tree, DJ Graph,
Structure Equivalence

1. INTRODUCTION

1.1 Motivation
Business process models can be used not only as the specification
of business behaviors for understanding, but also for the
automation of business operation. Business process modeling is
becoming more and more popular in both business and
technologies. Some business process modeling languages are
designed for business level requirements capturing. Most of them
are the analog of flow charts [6] and UML Activity Diagram [7].
These languages are often used by business people, so they are
often designed to be flexible with little constraints, for example,
unstructured flow structures are allowed in these languages. That
is to say, the arbitrary “Goto” control flow and unstructured loops
are allowed. Some process modeling languages are designed for
the business process management and automation at IT level, such
as BPML [1] and BPEL4WS[2]. They often follow the structured
modeling principle leveraged from the structured programming, in
which only structured blocks are allowed. While creating a
business integration solution basing on Model Driven
Architecture (MDA)[3] or transforming a business level model to
an IT level model, how to deal with an unstructured flow is a big
challenge.

In different scenarios, business process models need to be
analyzed, optimized, translated and checked on the correctness of
syntax and semantics, and so on. It is necessary to develop a
formal representation for business process models to enable the
easy manipulation, just like the Abstract Syntax Tree (AST) [4,5],
which is generally used as internal representation of a
programming language for its syntax checker, translator,
optimization processor, interpreter, or compiler. If the essential
structure of a BPM is formally represented, then the deep analysis
to it can be done based on the essential structure, which can help
to reduce the complexity of structure analysis.

In this paper, we proposed to use a special tree structure as the
internal representation for business process modeling languages.
This special tree structure is Abstract Logic Tree (ALT). The
transformation approach and their equivalence proof is given in
this paper. The value of this effort includes two aspects:

 (1) The advantage of representing BPM with ALT is that the
structure of tree is isomorphic, which makes it easy to design a
simple environment to analyze and manipulate business process
via doing it on the tree representation.

 (2) The transformation from unstructured flow to structured tree
provides a foundation and reference for transforming unstructured
business processes to structured ones.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

In order to represent the structure of BPM with ALT, a set of
transformation rules are provided. Moreover, we proved that the
structure of a BPM is equivalent to the corresponding ALT that
can be obtained by using the set of transformation rules. The loop
structure may result in a very complex BPM. How to identify all
the loops of a BPM is also an important research topic. This paper
extends the algorithm of identifying irreducible loops using DJ
graphs [8,9] to support identifying nest irreducible loops.

1.2 Business Process Model
Most business process modeling languages are the variations and
extensions of flow charts and UML Activity Diagram. Here, we
give some basic elements in business process modeling languages
in Figure 1. They are enough to model complex process logics
and to demonstrate our ideas – representing the structure of
business process models using ALT.

Figure 1. Some Elements of BPM

The Start and End element represent the beginning and end of a
business process separately. A Task is an atomic activity in a
process. A Control Flow is used to show the order that activities
will be performed in a process. An AND-Split is used to specify
that two or more activities can be performed concurrently, rather
than sequentially. The element “AND-Join” is used to combine
two or more parallel paths into one path. It is possible that
different parallel paths will arrive to the AND-Join point at
different time. However, only all the parallel paths arrive to this
point, can different paths be combined to one path. The OR-Split
represents that only one of a set of alternatives may be chosen in
runtime. The choice is based on the computation results of
conditions. The element “OR-Join” is used to combine at least
one path into one path. Different form “AND-Join”, it is not
required all the paths arrive to this point. Once one path arrives to
the point, it will continue the path of the following.

Because business process modeling language has little constraints
in syntax structure, the above elements may result in arbitrary
complex business process models. An example is given in figure
2. A business process is a set of logically related business
activities that combine to deliver something of value to a
customer [10]. It is a composition of activities and it directs the
execution of these activities. No matter what are drivers behind a
business process design, it is necessary to understand the
execution logic of its activities. The execution logic can also be
called execution order of activities. An execution order of a
process model is called a process path. From Start to End of a
process model, there are several process paths. We use a sequence
of activity labels to represent a process path. For example, p=<a;
b; d; f; g; l; n; q> is a path of the business process defined in
Figure 2.

Figure 2. Example of BPM

Although this example doesn’t look very complex, it is not easy
to identify all the paths. For example, complex loops in this model
are entangled so that it is difficult to detect what activities should
be included in each loop. Furthermore, different people may find
out different loops from their own perspectives. One person may
find out it includes two loops, (x2, j, x4, k, x5, l, T, m) and (x3, f,
S, h, g, x4, k, x5, l, T, U, o, V, p). But another person may believe
it includes three loops, (x3, f, S, h, g, x4, k, x5, l, T, U, o, V, p,
x2, j, m), (x2, j, x4, k, x5, l, T, m), and (x3, f, S, h, g, x4, k, x5, l,
T, U, o, V, p). Therefore, it is necessary to provide an algorithm
to detect all the loops of a BPM, which will be introduced in
section 4. On the other hand, the business process diagram is
unstructured and entangled. In order to clearly represent the
structure of a BPM, how to capture the essential structure of it
using ALT will be introduced in section 3.

Using ALT to represent the structure of a business process model
omits some syntax details and some concrete data information,
however, the paths of activities in the business process model
should be captured completely in the ALT. If two business
process models define the same set of paths, these two models are
called structure equivalent. The following is the definition of
structure equivalent of business process models:

DEFINITION 1: Structure Equivalent of business process
models

Two business process models F1 and F2 are said to be structure

equivalent, in short F1
S

 F2, if for every path p=<t1; ……; tn>
of F1 there is a path q=<t1’; ……; tn’> of F2 such that

 ∀1≤ i ≤ n: ti=ti’

and vice versa.

From the definition, it is easy to prove that
S

 is an equivalent
relation. If a business process model is represented with an ALT,
it is necessary to prove the business process model is structure
equivalent with the ALT.

The remainder of this paper is structured as the following. Section
2 briefly introduces abstract logic tree, including its syntax and
informal semantics. Section 3 discusses how to analyze the
structure of a business process model based on ALT, where
identifying the loops of a business process using DJ graph will be
studied in detail. In section 4, we introduce how to transform a
business process model into a structure equivalent ALT by using
transformation rules. The conclusion and future work are given in
the end.

2. ABSTRACT LOGIC TREE
Abstract logic tree has two kinds of nodes: control nodes and task
nodes. The types of control nodes of ALT are used to represent
the traverse order of its sub-nodes. There are eight types of
control nodes in ALT, including Root, Sequence, Branch, ASAJ,
ASOJ, Loop Entry, Call, and Communication. A Type attribute is
used to represent the type of each control node. In an ALT, every
control node is identified with a unique identifier. Some control
nodes have another attributes except for type and identifier.

The notations of control nodes and its informal semantics are
given in table 1.

Except for the control nodes, ALT has another kind of nodes,
Task. Task nodes appear as the leaves in an ALT. Task nodes are
represented with a round corner rectangle. As an example, we
give one part of the ALT in figure 3 which is transformed from
the business process model in figure 2. For brevity, some node
identifiers of the ALT are omitted here, and some sub-trees are
not completely given in this figure. While introducing how to
transform a business process model to an ALT in section 4, the
whole ALT of it will be given.

Element Description

Root
Root control node represents the root of an ALT. Root is the entrance of traversing an ALT, and it is
also the end point of traversing the ALT.

Sequence

Sequence control node refers to traverse its branches from left to right. Once traversing of the rightmost
branch is finished, the traverse for this sub-tree finishes.

Or-Split
& Or-Join

Besides a Type attribute, each OSOJ control node includes a condition attribute that is a conditional
expression and an exit attribute which is set of pairs. If the value of conditional expression is
represented with val, the form of the pair is (val, id), where id denotes the identifier of a node in an
ALT. According to the computation result of the condition expression and exit attribute, which
branches of the control node is traversed can be decided. Once the traversing of a branch is finished,
the traverse for the Branch sub-tree is end.

And-Split &
And-Join

ASAJ control node represents that all the branches of this node must be traversed in parallel. Only when
the traversing of all the branches is finished, the traverse for the ASAJ sub-tree finishes.

And-Split &
Or-Join

ASOJ control node represents all branches of this node must be traversed in parallel. Once the
traversing of either branch is finished, the traverse for the sub-tree finishes.

Call

Call control node is used to indicate which sub-tree should be traversed next. It is a leaf node of an
ALT, and it has a call attribute which indicates the identifier of a node.

Loop Entry

Loop Entry indicates which node of the sub-tree should be firstly be traversed. Loop Entry control node
represents the entry of a loop, and it often appears together with a Call control node in an ALT.

Communication

Commu control node denotes the communication relationships among different control nodes.
Generally it is a branch of Sequence control node. It has a commu attribute whose value is an identifier
of another commu node, and this identifier indicates which control nodes should communicate with this
one. If a Commu control node is met during traverse, the value of its commu attribute is read, and a
message is sent to the control nodes indicated by its commu attribute. Once one Commu control node
receives the message sent by the other Commu control node, traverse for the current sub-tree stops, and
the traverse returns to its parent.

Table 1. Control Nodes of ALT

Figure 3. An Example of an ALT

The root of ALT in figure 3 is N1. N1 is the entry of traversing
the ALT. It indicates the next traverse object, N2. N2 is a
Sequence control node, and it has three branches, N3, N4, and
N5. These three branches are traversed one by one from left to
right. First, N3 is traversed. N3 is a Task node, and then it is
directly traversed. Secondly, N4 is traversed. N4 is an ASOJ
control node; thereby its two branches are traversed in parallel.
Once traversing for one of these two branches are finished, the
traverse for N4 finishes. The traversing for these two branches is
not introduced in detail for simplicity. Thirdly, N5 is traversed.
N5 is a Task node, and it is directly traversed. Once traversing for
N5 is finished, the traverse for N2 finishes. The traverse returns to
the parent of N2, the Root node, the traverse finishes.

3. CAPTURE THE ESSENTIAL
STRUCTURE OF BPM
ALT provides some control nodes that can be used to represent
the execution order of activities of BPMs. For example, sequence
execution order can be represented with Sequence control node.
Therefore, we need to detect the execution order of activities.
According to the definitions of control nodes in ALT, we have
five types of the execution order of activities: sequence,
branch/or-split-or-join, and-split-and-join, and-split-or-join, and
loop. Because loop structure is very complex to be detected, it
will be the main part of this section. The other structures detecting
will be introduced in brief.

3.1 Loop structure
A BPM may include complex loop structures. Some researchers
have studied how to identify the loops for several years [8].
Although the notations of BPM are different from those of
flowchart, both of them represent execution order of activities.
We simplify the original notations of BPM as the notations of
flowgraph [9]. A flowgraph is a connected, directed graph G=(N,
E, START, END), where N is the set of nodes, E is the set of
edges, START ∈N is a distinguished start node with no incoming
edges, and END∈N is a distinguished end node with no outgoing
edges. For example, the BPM in Figure 2 can be translated into
the flowgraph of Figure 4. Every OSOJ element of BPM has an
activity to compute the condition expression.

Figure 4. The Simplified Graph of BPM in Figure 2

Since the notations of flowgraph of Figure 4 are different from
those of BPM in Figure 2, they represent the same execution
order of activities. Therefore, some analysis techniques for
flowgraph can be applied to BPM as well. One classical technique
for detecting loops is using Tarjan’s interval algorithm [11]. The
Tarjan intervals are single entry, strongly connected subgraphs
[12]. However, Tarjan’s interval finding algorithm does not
directly handle flowgraphs containing loops with more than one
entry, i.e. loops with multiple entries. Based on the number of
entries of a loop, loops are divided into two kinds: general loop
and irreducible loop. If a loop only has an entry, it is called a
general loop; otherwise it is called an irreducible loop. If a
flowgraph includes irreducible loops [13], it is called irreducible
flowgraph. If a flowgraph doesn’t include irreducible loops, it is
called reducible flowgraph.

The graph in figure 5 includes irreducible loops, for example,
loop0=(j, k, m, f, S, g, l, T, U, o, V, p). According to the definition
of loop entry, loop0 has two entries: f and j. In [9], DJ graph was
put forwarded to identify irreducible loops. Before introducing
what is DJ graph, a few concepts are introduced firstly. In a
flowgraph, node x dominates y if and only if all paths from
START to y pass through x, denoted by x dom y. Node x strictly
dominates y if and only if x dom y and x≠y, denoted by x stdom
y. A node y is said to immediately dominate node x, denoted as
y=idom(x), if y stdom x and there is no other node z that y stdom
z stdom x. The dominance relation is reflexive and transitive, and
can be represented by a tree, called the dominator tree.

The DJ graph is a flowgraph consists of the same set of nodes as
in the flowgraph, and two types of edges called D edges and J
edges. D edges are dominator tree edges. The J edges are defined
as follows:

Definition (J edges): An edge x→ y in a flowgraph is named a
join edge (or J edge) if x≠idom(y). Furthermore, y is named a
join node.

Given a DJ graph we distinguish between two types of J edges:
Back J(BJ) edges and Cross J(CJ) edges. A J edge x→y is a BJ
edge if y dom x; otherwise it is a CJ edge.

Lemma [7]: A flowgraph is irreducible if and only if there exists
a simple cycle in its DJ graph that does not contain a BJ edge
(that is, the cycle is made of only D edges and CJ edges).

Figure 5. DJ Graph of in Figure 4

In this paper, we will identify general loops and irreducible loops
using DJ graphs. The DJ graph of the flowgraph in Figure 4 is
given in Figure 5.

According to the above lemmas, loop0 can be easily detected
because it doesn’t include BJ edges. Using the algorithm for
identifying loops given by the authors of [9], both reducible and
irreducible loops in a flowgraph can be correctly identified.
Furthermore, we can decide which vertexes are the entry nodes of
irreducible loops through the following lemma [9]:

Lemma: All the entry nodes of an irreducible loop have the same
immediate dominator.

However, the algorithm in [9] doesn’t support identification of
nested irreducible loops. We extend the original algorithm to
identify nested irreducible loops with the following steps:

1)For each irreducible loop L do

/* If a loop is an irreducible, and detect all of its entry nodes X.

2) For each x∈X do

3) Delete all the income edges of x

4) /*The remain edges and vertexes compose a sub
graph G of the original graph.

5) To set up the DJ graph of G.

6) Using loop identification algorithm [9] to detect both
reducible and irreducible loops.

7) end

8) end

For the flowgraph in figure 4, all the loops of this graph can be
detected with the above algorithm. We use bold lines to highlight
loops, and use solid rectangle to point out all of detected loop
entries in Figure 6.

Figure 6. Detected loop entry of BPM in Figure 5

3.2 ASAJ and ASOJ structure
In BPM, ASAJ and ASOJ separately correspond to the following
two diagram structures:

Figure 7. ASAJ and ASOJ structure

Each AND-Split should match an OR-Join or AND-Join. If an
AND-Split matches an AND-Join, it is an ASAJ structure. If an
AND-Split matches an OR-Join, it is an ASOJ structure. If the
join activity is END, the AND-Join or OR-Join usually are
omitted in the BPM. Therefore, we need to add the join notation
through normalizing the BPM. For example, starting from x1 in
Figure 2, we detect the OR-Joints, x2, x3, x4, x5, and x6, and to
decide which one is the matched OR-Join to x1. Considering x2,
x3, x4, and x5 are in a loop, it is impossible to be the match of x1
because the exits of the loop are not unique. While detecting x6, it
is easy to find that all the paths starting from x1 are merged into a
path through x6. Therefore, x1 and x6 compose an ASOJ
structure.

The AND-Split is allowed to be nested, which makes the analysis
more complex. The following is an example of nested AND-Split:

Figure 8. Nested AND-Split

In this example, x2 is nested into x1, therefore, the detection
algorithm will support detecting nested structure. For simplicity,
detecting algorithm is not introduced in this paper.

3.3 OSOJ and Sequence structure
In BPM, OSOJ structure is like the following diagram:

Figure 9. OSOJ structure

The OR-Join is allowed to be omitted if the joint activities of
different paths of branch are END, which is a special situation.
This special situation can be normalized. The Branch structures
are allowed nested. The detecting algorithm is the same as that of
detecting ASAJ and ASOJ structure. Sequence structure is easy to
be analyzed, and then it is not introduced in detail here.

4. TRANSFORMATING BUSINESS
PROCESS TO ALT
In order to capture the structure of a BPM, we give the following
graph transformation [14] rules.

Using these rules, a BPM can be transformed into an ALT.
Furthermore, a BPM may be transformed into different ALTs
while using Rule7. To verify the correctness of the
transformation, we need to prove that the BPM is structure
equivalence with the ALT.

Rul
e 1: ⇒

Rul
e 2: ⇒

Rul
e 3:

⇒

Rul
e 4:

⇒

Rul
e 5:

⇒

Rul
e 6: ⇒

Rul
e 7:

⇒ or

 Table 2. Transformation Rules

Theorem: Using the transformation rules from BPM to ALT, a
Business Process Model can be transformed into a structure
equivalent Abstract logic Tree.

Proof: The simplest situation is that a BPM only has a Start node.
Obviously, by using Rule1, it can be transformed into a structure
equivalent ALT. Both the BPM and ALT have zero paths.

Suppose that a BPM D1 with n elements can be transformed into
a structure equivalent ALT T1. And suppose the BPM has x
paths, then the corresponding ALT has the same x paths because
of structure equivalent. D1 and T1 can be represented as
following.

Figure 10. Proof (1)

Once an element is added to the BPM, the new BPM will contain
more than n+1 elements. If we can prove that the new BPM can
be transformed into a structure equivalent ALT using the
transformation rules, the lemma can be proved through induce
approach because the graph transformation rules are bidirectional.
The added element can be considered according to the following
situations:

1) To add an atomic Task. If a Task A is added to D1, it is
necessary to add a sequence flow. The BPM can be represented
by D1’ in Figure 11. Using Rule2, the D1’ can be transformed
into T1’. D1’ and T1’ still have x paths except that every path is
added to a Task A. D1’ and T1’ are structure equivalent.

Figure 11. Proof (2)

2) To add an AND-Split element. For simplicity, we suppose any
BPM has a unique END element. Therefore, an AND-Split
element must be matched with an AND-Join or OR-Join element.
The result of added element is D1’ and D1’’ as following through
using Rule3 and Rule4, they can be transformed into structure
equivalent ALT T1’and T1’’.

Figure 12 Proof (3)

3) To add a Branch element. It will lead to two situations: one
situation is a Branch element is match with an OR-Join element,
the result is supposition D1’. This situation is simple because

Rule5 can be directly applied, and the structure equivalent CT T1’
can be derived. D1’ and T1’ are shown as following.

Figure 13. Proof (4)

The other situation is a Branch element adds loops to D1, the
result is supposition D2’’ (we only consider the situation that a
loop is added, the more complex situations can be solved
similarly).

Figure 14. Proof (5)

The entry from A1 to En is denoted by X. According to the
structure of En, we can discuss the different situation according to
the following classification:

X clearly separate En into two sub-processes, denoted by En1 and
En2. When a loop is generated by introducing an element, Rule6
can be applied. Then the ALTs of T1 and T1’ can be separately
represented as the following.

Figure 15. Proof (6)

b.) X may become the other entry of an existing loop, which leads
to an irreducible loop. In section 4.1, we have introduced how to
identify irreducible loops. Once irreducible loops are identified,
Rule6 can be used to transform the BPD to a structure equivalent
CT.

Through the above proof, we can induce that any BPM can be
transformed into a structure equivalent ALT using the
transformation rules.

Based on the above introduction, the structure of a BPM can be
represented by an ALT. The corresponding ALT for the BPM in
Figure 2 is shown in Figure 16.

Figure 16. Complete ALT of BPM in Figure 2

5. CONCLUSION
In this paper, we introduced how to capture the essential
structures of business process models with abstract logic tree. We
defined some graph transformation rules to help transform a BPM
into an ALT. We proved that the structure of the BPM and ALT
are equivalent. How to identify the loop structures of a BPM is
one of the key points for analyzing the structure of a BPM. We
extended the algorithm of identifying loops using DJ graphs,
which can not only identify the loop structures of a business
process model, but also optimize the business process.

Various approaches to business process structure analysis and
verification can be found in literatures [15]. However, all these
researches employ ad-hoc approaches to analyze the structure of

business process model. In this paper, we proposed to capture the
essential structures of business process models with abstract logic
trees.

Representing the structure of BPM with ALT has three major
advantages: firstly, the structure of BPM can be represented with
an isomorphic structure. This isomorphic structure can be
implemented with a simple environment to manipulate process
models based on tree structure. Secondly, the transformation
approach provides a foundation and reference for transforming an
unstructured business process to a structured process. Thirdly, a
human-readable form of ALT is useful for debugging or
analyzing process models. Fourthly, this idea of ALT initially
comes from the concept of AST in programming domain. Some
analysis technologies built on AST can be leveraged by ALT to
analyze business process models.

6. REFERENCES
[1] BPMI.org and Assaf Arkin. Business Process Modeling

Language. 30 Jan. 2003
<http://www.bpmi.org/bpml_prop.esp>.

[2] BPEL4WS, http://www-
106.ibm.com/developerworks/webservices/library/ws-bpel/

[3] OMG Architecture Board MDA Drafting Team, "Model-
Driven Architecture: A Technical Perspective",
ftp://ftp.omg.org/pub/docs/ab/01-02-01.pdf

[4] Alfred Aho, Ravi sethi and Jeffrey Ullman. Compiler,
Principle, Techniques and Tools. Addison-Wesley 1986.

[5] Joel Jones. Abstract Syntax Tree Implementation Idioms.
The 10th Conference on Pattern Languages of Programs,
Sep. 8th-12th, 2003.

[6] ANSI x 3.5 and ISO 5807: 1985
[7] Rumbaugh, J., Jacobson, I., Booch, G., The Unified

Modeling Language Reference Manual, Addison-Wesley,
1998.

[8] W. Sadiq and M.E. Orlowska. Applying graph reduction
techniques for identifying structural conflicts in process
model. In Proceedings of the 11th International Conference
on Advanced Information Systems Engineering. Heidelberg,
Germany, Lecture Notes in Computer Science 1626. PP.
152-209. Springer-Verlag(1999).

[9] Vugranam C. Sreedhar, Guang R. Gao, and Yong-fong Lee.
Identifying loops using DJ graphs. ACM Transactions on
Programming Languages and Systems, 18(6):649-658,
November, 1996.

[10] Jay Cousins and Tony Stewart. What is business process and
why should I care? White paper. Aug. 2002.
http://www.rivcom.com/resources/RivCom-WhatIsBPD-
WhyShouldICare.pdf.

[11] Michael Burke. An Interval-based approach to exhaustive
and incremental interprocedural data flow analysis. ACM
Transactions on programming Languages and Systems,
12(3):341-395, July 1990.

[12] R.Bloem, H.N. Gabow, and F. Somenzi. An algorithm for
strongly connected component analysis in n log n symbolic
steps. In W. A. Hunt, Jt. And S. D. Johnson, editors, Formal
Methods in Computer Aided Design, PP. 37-54, Springer-
Verlag, November 2000. Lecture Notes in Computer Science
1954.

[13] P. Havlak. Nesting if reducible and irreducible loops. ACM
Transactions on Programming Languages and Systems,
19(4):557-567, July 1997.

[14] G. Rozenberg(ed.), Handbook of Graph Grammars and
Computing by Graph Transformations, Volume 1:
Foundations. World Scientific,1997.

[15] Wasim Sadiq and Maria E. Orlowska, Analyzing process
models using graph reduction techniques. Information
Systems, Vol. 25, No. 2, PP. 117-134, 2000.

