
RC23448 (W0411-181) November 19, 2004
Computer Science

IBM Research Report

Dynamic Adaptation in Server-Class Microprocessors:
Workload Phase and Duration Predictions with

Live Counter Measurements

Canturk Isci, Margaret Martonosi, Alper Buyuktosunoglu
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Dynamic Adaptation in Server-Class Microprocessors:
Workload Phase and Duration Predictions with Live Counter Measurements

Canturk Isci, Margaret Martonosi, Alper Buyuktosunoglu
IBM T. J. Watson Research Center

Abstract

Computer systems increasingly rely on adaptive dynamic
management of their operations in order to balance power
and performance goals. Such dynamic adjustments rely
heavily on the system’s ability to observe and predict work-
load behavior and system responses. While previous appli-
cation phase analysis has focused on phase behavior at the
granularity of small snippets of millions of instructions, our
work here looks at coarse-grained workload phases on the
order of tens to hundreds of milliseconds.

In this paper, we characterize the workload behavior
of full benchmarks running on server-class systems using
hardware performance counter measurements. Based on
these characterizations, we develop a set of value, gradient,
and duration prediction techniques that can help systems
provision resources. Our best duration prediction scheme
is able to predict the duration of program phases ranging
from 80ms to over 1 second with greater than 90% ac-
curacy across the SPEC benchmarks. All of our results
are measured on live systems in multi-user mode, and thus
demonstrate the ability of our predictors to function in the
face of real-system variations. These phase prediction tech-
niques can be applied to a range of usages including thread
scheduling, planning dynamic voltage and frequency scal-
ing (DVS), and managing system load balancing. In partic-
ular, our results demonstrate applying our prediction tech-
niques to DVS. Our simple predictors identify 92% of the
low-energy opportunities found by an oracle. Our most ag-
gressive predictors do similarly well, and reduce the num-
ber of predictions required, allowing more system autonomy
and requiring less application monitoring and interference.

1 Introduction

Repetitive and recognizable phases in software charac-
teristics have been observed by designers and exploited by
computer systems for decades [10]. In recent years, appli-
cation phase behavior has seen growing interest with two
main goals. In the first category, researchers seek to iden-
tify program phases from simulation traces [5, 21, 22] or
runtime power or performance behavior [8, 17, 24] in order
to select representative points within a run to study or sim-
ulate. In the second category, the goal is to recognize phase
shifts dynamically in running systems in order to perform
on-the-fly optimizations [1, 2, 3, 11, 15, 19]. These opti-
mizations include a wide range of possible actions such as
voltage/frequency scaling, thermal management, dynamic
cache reorganizations, and dynamic compiler optimizations
of particular code regions.

Most recent phase analysis work has focused on the first
category of uses. That is, researchers using full-length

profiling runs to analyze an application and select “repre-
sentative” snippets from its execution. Simulation studies
can then focus on behavior within these chosen intervals,
with some assurance that they can extrapolate out to whole-
program characteristics of interest.

Such phase analysis benefits from two key details. First,
a full-length profiling run gives the phase analysis a com-
prehensive and forward-looking view of application behav-
ior that is not available to reactive on-the-fly phase predic-
tors. Second, much of the existing phase analysis work
is based on simulations, rather than real-system measure-
ments. As such, they see very little time and space variabil-
ity between software runs due to multiprogramming, system
call variations, and non-repeatable effects like interrupts.

In this work, we describe a method for employing re-
active and predictive on-the-fly program phase analysis in
real-life systems. We use readings from hardware perfor-
mance counters to guide our analysis. The phase analysis
we perform consists of two key parts. The first aspect is
value prediction of some metric of interest. This could be a
simple metric, such as instructions per cycle, or it could be a
compound metric, composing together several counter val-
ues to describe execution (e.g. IPC and L2 Cache Misses).
The second aspect of our approach is duration prediction.
That is, for how long do we expect the value prediction to be
valid? This duration prediction, while not previously stud-
ied, is important because it helps the system gauge which
sorts of adaptations are feasible. For example, if the dura-
tion of a phase is predicted to be quite short, then heavy-
handed adaptations like voltage scaling or load balancing
may not make sense. We propose a step-by-step method
for composing these techniques into an application phase
recognition system, and we test it on 25 benchmarks from
SPEC2000.

The primary contributions of this work are as follows.
First, our work characterizes phase behavior of a widely-
varied set of benchmarks running on a high-end server sys-
tem. Second, based on this, we choose a measurement and
prediction technique that offers good accuracy and coverage
across widely-varying application performance. Third, we
offer the first-known duration predictor for on-the-fly metric
prediction and evaluate its success.

The remainder of this paper is structured as follows. Sec-
tion 2 describes our measurement setup and methodology,
and presents our power phase analysis approach. Section
3 describes the issues inherent in developing value predic-
tion methods, presents our techniques, and discusses their
accuracy. Section 4 then introduces duration prediction as a
new aspect of phase prediction, and gives characterizations
and results for several duration predictors we have analyzed.
In Section 5, we discuss the application of these predictors
to a particular problem, planning support for dynamic volt-
age/frequency scaling. Section 6 discusses related work,

and Section 7 offers our conclusions.

2 Phase Characterization and Prediction:
Overview

As mentioned, the basic dimensions of our phase pre-
diction method include long-term metric value prediction
and duration prediction. In addition to these key dimen-
sions, there are a number of other design issues required for
on-the-fly phase detection and adaptation; we discuss them
here.

Consider Figure 1, which depicts a timeline of how in-
structions per cycle varies over time for the SPEC bench-
mark ammp. (As will be discussed in more detail in Section
2.3, the data are collected by reading hardware performance
counters at 10ms time granularity on an IBM POWER4T M

based server running AIX.) Like most benchmarks, ammp
shows strong variations in its IPC levels over time. The
overall goal of our research is to explore on-the-fly methods
for predicting what values to expect, and how long they are
expected to last.

2.1 Trade-offs

Breaking the phase prediction problem into sub-parts al-
lows us to evaluate our progress towards each somewhat in-
dependently. Metric value prediction requires us to make
fairly local predictions about what a particular metric’s
value will be in the near future. This work follows on from
the local phase prediction work such as that presented in
[12]. Moving beyond that work, however, we also seek to
produce long-term value extrapolations based on the gradi-
ent trends we see. For example, where the prior work might
guess that upcoming IPC samples will be similar to current
ones, our gradient prediction allows us to detect upward or
downward trends in a metric, and extrapolate them to pre-
dict gradual increases or decreases for longer durations.

The second major portion of the design is duration pre-
diction. This sub-problem says, for a given value/gradient
trend: how long are we willing to bet on this trend contin-
uing? For example, if metric prediction is simply guess-
ing that IPC on the next sample point will be a particular
value, duration prediction is the problem of predicting for
how many sample points we can expect IPC to be that value.

Duration prediction is useful because it allows one to
gauge not just the current system status, but also the length
of time one can expect that status to continue. Some sys-
tem adaptations, such as dynamic voltage/frequency scal-
ing, or OS-level load balancing can have fairly sizeable per-
formance and energy overheads to overcome before they
begin to reap benefits. For such “heavyweight” adapta-
tions, one cannot apply them at each fluctuation in work-
load. One instead wishes to apply them only when the ob-
served trend is likely to last long enough to overcome any
transition costs. Thus if duration prediction can accurately
predict long-periods of low IPC behavior, then OS load re-
balancing may be warranted.

From a different perspective, duration prediction for a
stable phase also provides confidence in the persistence of

the current behavior into the future. Thus, it reduces the
need for an adaptive system to continuously perform checks
on the system status at every cycle or polling period to de-
tect any change of behavior. This confidence is very useful
in cases where the polling itself has a performance penalty,
while most of the time the current behavior persists.

With any prediction, issues of accuracy and coverage
arise. As we will show in upcoming sections, our goal with
both metric value and duration prediction is to have quite
high accuracy, with fairly good coverage. We will quantify
this as we proceed. In essence, we want the predictions to
be right most of the time when they are made, and we want
predictions to be made enough of the time to warrant the
system support they are given.

2.2 Measurement Infrastructure Support

Having sketched out the rough prediction goals of our
work, we now discuss the infrastructure support issues that
impact achieving them. These issues include the types of
hardware metrics that can be observed, and the overhead
incurred in observing them.

Prior work on monitoring has explored a range of pos-
sible infrastructures, from software instrumentation, to pe-
riodic program counter sampling, to extensive hardware
counter support [6, 13, 14, 18, 20, 26, 27]. The choice of
metrics to predict is inextricably intertwined with the mea-
surement infrastructure. High-overhead infrastructure, like
hardware performance counters, cannot be read on every
basic block, nor is it accurate to use coarse-grained sched-
uler quanta behavior to deduce cycle-level details.

While prior work on phases has focused primarily on
fine-grained low-level behavior, deduced via basic-block-
level instrumentation and sampling, our work seeks to ex-
plore coarse-grained phases. The phases we observe and
predict last for milliseconds or seconds of execution. Our
methods for collecting data are described in the next sub-
section.

2.3 Measurement Methodology

All the experiments described here were performed on
an IBM POWER4 server platform with the AIX5L for
POWER V5.1 operating system. The machine includes a
dual-core POWER4 processor. The results presented here
are per-thread behaviors running in multi-user mode on a
lightly-loaded machine.

The values collected for these results include both PC
samples as well as values read from the POWER4’s hard-
ware performance counters, with a sampling tool that works
on top of the AIX Performance Monitoring API (PMAPI)
[16]. The sampler binds counter behavior to a particu-
lar thread, including all library calls and system calls per-
formed by that thread.

In order to minimize the counter-reading overhead, we
only examine hardware counters during the context switch
interval. Thus our readings are on the 10ms granularity that
is the OS switching interval for this system. Our analyses
are thus geared to the coarser-grained intervals we see at
this granularity.

2

All the experiments are carried out with the SPECCPU
2000 suite with 25 benchmarks (all except eon) and refer-
ence datasets. All benchmarks are compiled with XLC and
XLF90 compilers with the base compiler flags.

3 Metric Value Prediction

The first sub-problem we consider is metric value predic-
tion. Our goal is to produce a simple-yet-effective approach
that tracks a given metric with good accuracy across a range
of workloads. We focus here on a single metric: committed
instructions per cycle, although past work has shown that
phase behavior across multiple metrics is also visible and
useful [12, 17].

Prior work on IPC prediction has explored a range of
prediction schemes for distilling past behavior and using
it to create a near-future prediction. These methods have
spanned from simple statistical methods such as last-value
prediction, and exponentially-weighted moving averages
(EWMA) to more elaborate history based and cross metric
prediction methods.

In our work, IPC prediction is a starting point for the
main focus of stable-phase duration prediction. As such,
our primary goal is to predict IPC during regions of rela-
tive stability. To accomplish this, we use a scheme with two
main components. It has to identify stable versus unstable
regions, and within stable regions, it has to choose the win-
dow size of points to consider.

We have done fairly extensive studies regarding how to
define stability. Due to space constraints in this paper, we
focus solely on a simple stability criterion. Namely, we re-
quire a succession of eight consecutive samples each within
a stability threshold of each other before we attempt to pre-
dict any behavior. In our case, the stability threshold re-
quires adjacent points to be within 0.1 difference in abso-
lute IPC value of each other. For some benchmarks, as we
will show, this stability requirement can reduce the predic-
tion coverage, i.e., the fraction of the application we predict
for. It typically improves, however, the prediction accuracy
which we value more.

Once within a stable region, we also choose a window
of points to consider. Our method for this starts with an
averaging window of size 1. As we encounter a sequence
of readings about current IPC, we first compare the current
counter reading to the most recent prior counter reading. If
it is within an error tolerance of the prior reading, then the
window size is increased by one element, up to a maximum
window size of 128. (We experimented with larger maxi-
mum window sizes, but found that they offered little further
information beyond the 128-entry approach.) If the window
size is already at its maximum value of 128 and the readings
continue to be stable, the window remains at the maximum
of 128 entries, and slides along the timeline with the new
entries.

The prediction we make is a simple average of the win-
dow contents, although more elaborate weighting schemes
or table-lookups are also possible. Another possible vari-
ant is to use this method, but insist that IPC predictions are
only made when stable, i.e., the last and the current reading
differ by less than the stability threshold.

Enlarging the error tolerance increases the likelihood
that more fluctuations will be present within the window,
leading to higher error rates on the predictions. Conversely,
tightening the error tolerance means that the IPC readings
in the window are more tightly clustered, and therefore the
average error in their predictions also tends to be smaller.

Depending on the setup of the approach, this general pre-
dictor encompasses several other more common statistical
predictor schemes. For example, if the error tolerance is set
to 0, then the window size is never larger than 1, and we
have a last-value predictor. If the error tolerance is set very
large and weighting coefficients are applied, the approach
becomes EWMA.

3.1 IPC Value Prediction Results

-1
0.8
0.6
0.4
0.2

0
0.2
0.4
0.6
0.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25 30 35 40 45 50Time [s]

Orig_IPC Predicted_IPC ABS_error

Figure 1. IPC value prediction with 0 tol-
erance (Last-value Prediction) for stable re-
gions. Original vs. Predicted IPC (top) and
prediction error (bottom).

-1
0.8
0.6
0.4
0.2

0
0.2
0.4
0.6
0.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25 30 35 40 45 50Time [s]

Orig_IPC Predicted_IPC ABS_error

(a) Original vs. Predicted IPC (top) and prediction error (bottom).

0

50

100

0 5 10 15 20 25 30 35 40 45 50Time [s]

Winsize

(b) Variable window size.

Figure 2. IPC prediction for 10 % error toler-
ance (variable window).

Figures 1 and 2 show two sets of IPC value prediction re-
sults for the SPEC2K ammp benchmark. Figure 1 has three
timeline graphs. In the top timeline, we plot the original
IPC as collected from the hardware counters directly. (In
all the presented traces, we show IPC values normalized to
the maximum seen over the trace.) Superimposed on this is
the IPC as predicted by our value prediction method. The
third graph plots IPC prediction error versus time. Figure 2
has these three graphs as well as a fourth which depicts the
prediction window size as a function of time. (For the zero-
tolerance case in Figure 1, the window size is by definition
always equal to 1.) The predicted IPC line is discontinuous

3

Last Value 1% 5% 10% 50% Fixed Window Last Value 1% 5% 10% 50% Fixed Window
ammp_in 0.01 0.01 0.02 0.03 0.06 0.07 1 26.57 44.03 66.74 112.25 125.40 77.87
applu_in 0.01 0.01 0.01 0.01 0.11 0.11 1 5.91 7.58 8.36 123.65 125.40 48.34
apsi_NONE 0.00 0.00 0.00 0.01 0.11 0.39 1 16.66 19.71 20.67 39.27 125.40 70.59
art_ref1 0.04 0.04 0.03 0.04 0.03 0.03 1 1.16 3.10 12.28 125.35 125.40 57.16
bzip2_graphic 0.03 0.03 0.03 0.04 0.13 0.26 1 1.64 2.82 3.50 15.15 125.40 7.04
crafty_in 0.02 0.02 0.02 0.02 0.02 0.02 1 1.63 26.09 101.37 125.40 125.40 96.04
equake_in 0.01 0.01 0.01 0.01 0.06 0.06 1 1.55 3.93 4.26 125.40 125.40 4.48
facerec_ref 0.00 0.00 0.00 0.00 0.17 0.16 1 8.20 11.45 11.68 59.52 125.40 24.15
fma3d_NONE 0.00 0.01 0.01 0.01 0.15 0.19 1 29.76 36.46 38.95 106.32 125.40 71.39
galgel_in 0.02 0.02 0.02 0.01 0.12 0.16 1 1.99 18.01 22.60 82.21 125.40 73.45
gap_ref 0.01 0.01 0.01 0.01 0.07 0.09 1 12.87 34.54 72.74 115.05 125.40 85.63
gcc_integrate 0.01 0.01 0.01 0.01 0.05 0.26 1 3.83 28.14 30.55 61.49 115.96 71.72
gzip_random 0.01 0.01 0.01 0.01 0.02 0.02 1 8.70 82.46 91.99 116.32 125.40 94.48
lucas_in 0.01 0.01 0.01 0.02 0.11 0.11 1 3.54 15.86 25.24 122.77 125.40 78.79
mcf_inp 0.01 0.01 0.01 0.01 0.01 0.01 1 6.50 122.20 122.35 125.40 125.40 99.50
mesa_in 0.01 0.01 0.01 0.01 0.01 0.01 1 8.98 10.01 21.45 123.07 125.40 76.57
mgrid_in 0.02 0.02 0.02 0.02 0.03 0.15 1 1.78 2.07 2.21 6.66 125.40 0.10
parser_ref 0.03 0.03 0.03 0.05 0.07 0.07 1 1.83 7.65 18.84 118.82 125.40 61.51
perlbmk_makerand 0.00 0.00 0.00 0.00 0.06 0.06 1 65.28 67.81 68.69 73.66 73.66 92.00
sixtrack_inp 0.02 0.02 0.01 0.01 0.02 0.02 1 3.71 41.09 98.85 125.40 125.40 96.42
swim_in 0.00 0.00 0.01 0.01 0.16 0.16 1 8.95 9.39 10.33 125.32 125.40 53.78
twolf_ref 0.00 0.00 0.00 0.00 0.01 0.01 1 48.69 80.72 117.89 122.94 125.40 98.86
vortex_bendian3 0.02 0.02 0.02 0.02 0.05 0.06 1 3.29 19.69 80.28 115.60 125.40 89.40
vpr_place 0.00 0.00 0.00 0.00 0.00 0.00 1 89.19 122.37 123.32 125.32 125.40 99.52
vpr_route 0.03 0.03 0.03 0.05 0.07 0.07 1 1.40 4.67 23.80 125.35 125.40 68.37
wupwise_NONE 0.00 0.00 0.01 0.01 0.08 0.11 1 11.39 50.28 50.85 78.58 125.40 84.81
AVE 0.01 0.01 0.01 0.02 0.07 0.10 1 14.42 33.54 48.07 99.86 123.05 68.54

% RUNTIME
 COVERAGE

MEAN ABSOLUTE ERROR AVERAGE WINDOW SIZE

Figure 3. Summary of IPC prediction for SPEC suite. Left half shows the mean absolute error with
respect to measured IPC and the right half shows the average size of variable window. The last
column is the prediction coverage based on the stability criterion.

because we only predict in stable regions.
First consider Figure 1, where the tolerance is set to 0.

This means that two adjacent samples will never be consid-
ered stable and the window size is always equal to 1. Qual-
itatively, the top graph shows that actual and predicted IPC
look fairly similar. The third graph plots the prediction er-
ror; this is the difference between actual and predicted IPC.
Because we only make predictions in the stable regions, the
maximum error observed is quite low: less than 10%.

For comparison, we also plot in Figure 2 the same values
for the case where window size is increased as long as IPC
readings remain within a 10% tolerance of their predeces-
sor. First, fairly large window sizes become commonplace
for this tolerance; the average is 66.74 samples for this run.
This is an indicator of the repetitive phase behavior in the
program. Second, error is slightly increased from the zero
tolerance case. This is actually a good indicator, which we
base our long term metric value predictions in Section 4.3.
As we only make predictions in stable regions, we avoid the
large fluctuations of bursty regions. In the stable regions,
the inter-sample variation is relatively slow, thus most sam-
ples are quite similar to their predecessor. However, over a
long period of stability, the benchmarks can show a trend of
increasing (as in the case of ammp) or decreasing IPC. For
this reason, our long-term IPC predictions in Section 4.3
use the last-value together with the observed inter-sample
gradient to predict long durations of IPC behavior.

The summary data across the SPEC workloads is shown
in Figure 3. The table shows mean absolute error and av-
erage window size for a range of prediction possibilities.
All have very low errors: less than 0.1 IPC for the worst-
performing fixed-window approach, and roughly 0.01 IPC
for the best-performing last-value predictor. In general, we
see very similar prediction accuracy across predictors for
flat benchmarks such as art and crafty. On the other hand,
benchmarks with observable gradients such as ammp and
vortex consistently do better with last value prediction.

For comparison, we also tried a method in which pre-

dictions were made on every sample, regardless of the sta-
bility criterion. Here, all predictors, including last value,
resulted in higher errors, as bursty behavior confounds both
last value and averaging approaches. Under applications
that might require prediction over bursty regions, Duester-
wald et al. [12] show table based approaches actually per-
form better. However, in our case, our goal is to predict
long stable durations in workload execution, and last value
together with gradient information proves to be the right
choice for both simplicity and accuracy.

Based on the results presented here, subsequent sections
start from last-value prediction, and add on small refine-
ments for gradient-based prediction, which is performed
only at prediction checkpoints and for long periods of ex-
ecution.

4 Duration Prediction

The key lynchpin of our work is that we wish to pre-
dict the minimum duration of stable periods in an appli-
cation’s phase behavior. We know of no prior work that
has done this, either for simulation or real-system measure-
ments. The benefit of such prediction techniques is that if
we can say with confidence that a particular behavior will
last for at least 1 second or 100 samples, or some such du-
ration, then we can plan out responses to the behavior that
are commensurate with it.

4.1 Duration Prediction Overview

This section introduces the duration prediction methods
we have considered. As with the near-term value predic-
tions previously discussed, duration prediction boils down
to first a decision of whether to predict, and second a deci-
sion of what to predict.

Since our goal is to identify truly long-term program
phases suitable for ACPI management, OS load-balancing,

4

and the like, we focus on long-duration predictions (tens
of milliseconds or more). Thus, regarding the decision of
whether to predict, our choice is to avoid duration predic-
tions in periods of instability. We use the same definition as
previously described for IPC value prediction. We require 8
consecutive samples of stability to initiate prediction, where
stability is defined by the same stability criterion as Section
3.

The second question for duration prediction is what to
predict. Here, we discuss several tradeoffs, before narrow-
ing in on the possibilities we consider. Duration prediction
is distinct from say branch outcome prediction or even the
value prediction in the previous section, because it has an
inequality at the heart of it. That is, the predictor is betting
on whether stability will last at least N counter samples. For
such a prediction, betting N as 1 cycle is a fairly safe bet,
while betting N=100,000 will almost never be correct. The
downside to repeatedly betting N=1, however, is that such a
short duration may not be long enough to do a major adap-
tation. Furthermore, such short duration predictions mean
that one has to spend much more system time on making
predictions, rather than on executing applications.

Our goal with duration prediction is to be able to predict
very-long-duration events with good accuracy, so that we
can set a response in place and expect some degree of sta-
bility for the time duration we imposed. In this section, we
look at several prediction possibilities, and evaluate them
based on fairly generic metrics concerning their coverage
and accuracy. In Section 5 we apply these prediction tech-
niques to particular problems, where they can be evaluated
in a more domain-specific manner.

0.00%

0.50%
1.00%

1.50%
2.00%

2.50%

70 80
0

15
30

22
60

29
90

37
20

44
50

51
80

59
10

66
40

73
70

81
00

88
30

95
60

10
29

0

11
02

0

11
75

0

12
48

0

13
21

0

13
94

0

14
67

0

15
40

0

16
13

0

16
86

0

17
59

0

18
32

0

19
05

0

19
78

0

Distribution of phase durations [ms]

Figure 4. Distribution of stable phase dura-
tions over all SPEC reference datasets.

We start with a characterization of duration statistics in
the workloads we study. Figure 4 gives a histogram show-
ing the frequency of occurrence for different stable phase
lengths, evaluated over more than 40 reference inputs of 25
SPECCPU benchmarks. The distribution is plotted at 10
ms consecutive bins up to 20 seconds. The y-axis shows the
percentage distribution of phase durations into those bins.
While short phases are definitely the norm, non-negligible
amount of phases are quite long. Indeed, applying curve-
fitting techniques to the histogram indicates that it displays
the heavy-tailed characteristics already documented in other
aspects of computer systems behavior [9]. The flat distribu-
tion of this heavy tail presents the critical challenge in dura-
tion prediction. Most workloads exhibit phase behavior in-
terleaved with short bursty regions. However, the duration
of these stable phases are highly variable from application
to application and in cases, from phase to phase.

Going back to the stability argument, choosing a loose
stability criterion to avoid predicting during unstable re-
gions also misses out on some of the strongest part of the

distribution. However, when we weight the distribution in-
formation with the amount of time each phase consumes,
significantly higher portions of the runtime are spent in the
heavy-tail region. Of the measured 25 SPEC benchmarks,
17 spend more than 70% of their runtime in phases that last
200ms to 2 seconds, while only equake, mgrid and bzip2
tend to be primarily operating at phase granularities smaller
than our stability definition.

For the results presented here, we consider three non-
adaptive duration predictors due to their simplicity. The
first one simply predicts a constant duration. For example,
it uses the current and recent counter readings to determine
when to predict 8 more samples similar to the current sys-
tem behavior. This counter is somewhat conservative, in the
sense that some program phases last for seconds (i.e., hun-
dreds of counter samples). For these cases, predicting such
long phases 8 samples at a time is not as desirable as pre-
dicting a long phase with a single aggressive prediction. In
subsequent results, we refer to this predictor as f (x) = 8 or
constant8.

In response to the conservatism of this simple constant
predictor, we have also looked at two more aggressive pre-
dictors. The first of these we refer to as f (x) = x and denote
it from now on as FXX. This predictor counts the number of
stable samples it has seen thus far (x), and predicts that the
current behavior will continue for at least x more samples
into the future. This predictor, thus, behaves as a doubling
function. When we have seen 8 stable samples, we make
our first prediction—that we will see 8 more. At the end of
that predicted period, if things have remained stable, it will
add up to a total of 16 samples. Thus, our next prediction
will be to see 16 further stable cycles into the future. The
nice attribute of this approach is that it is relatively cautious
for small stable regions, but then grows quickly towards ag-
gressive predictions once longer stability has been shown.
The downside to this prediction approach is that it is prone
to significant overshoot when a phase does end.

To try to lessen the overshoot problem, we have also
looked at a third duration prediction function: f (x) = x=8,
or FXby8. This function does not grow as quickly as the
x function, but lessens the problems with overshoot as we
show in the following results section.

In Figure 5, we show an example of how duration predic-
tion works with the FXby8 dynamic approach on the ammp
benchmark. In the upper plot, we show the original mea-
sured IPC. Superimposed on it is an IPC value prediction
(as in Section 3) that is predicted to be stable for the cur-
rent duration being predicted. The lower plot shows how
the predicted duration grows while FXby8 makes repetitive
successful predictions about the current phase. The shaded
regions in the lower plot show where the prediction actu-
ally performs an overshoot by estimating that the phase will
last longer. Furthermore, the flat IPC predictions are some-
what inaccurate for a long-term prediction scenario. After
presenting our general evaluation for duration, we next de-
scribe and evaluate a more effective gradient-based method
for long-term IPC prediction, where we extrapolate on IPC
trends.

5

-1
0.8
0.6
0.4
0.2

0
0.2
0.4
0.6
0.8

1

0

500

1000

1500

2000

0.00 4.73 9.47 14.21 18.97 23.74 28.48 33.22 37.96 42.71

ipc_overshoot window_overshoot Target_Winsize Orig_IPC Predicted_IPC

Figure 5. Duration prediction for ammp, for a stability of 8 and FXby8 prediction.
4.2 Duration Prediction Results

To evaluate the success of our duration prediction meth-
ods, we first have to determine metrics for gauging them.
As previously stated, our goal is to have a predictor that gets
good accuracy on predictions when it makes them, and that
makes predictions often enough to be worthwhile. Thus,
measures of a predictor’s success include:

� Accuracy or Safety: These two terms are used by dif-
ferent communities to refer to a method’s rate of cor-
rect predictions given that it has chosen to make a pre-
diction [4].

� Safe Duration: Some duration predictions predict
very short durations of stability, while others ‘go long’
in predicting long stable periods. There is value in pre-
dicting long durations, and so we wish to evaluate the
methods not just on the frequency at which they predict
correctly, but also on the duration of time for which a
correct prediction holds. We refer to these durations as
safe durations, and we report the mean lengths of these
safe duration periods.

� Degree of Overshoot The downside to long duration
predictions is that they may significantly overshoot the
actual end of the phase behavior. Our figures of merit
to evaluate this are the mean duration of an overshoot,
and the percentage of the program runtime that is spent
in overshot predictions.

Figure 6 presents the accuracy results for the three du-
ration predictors discussed. The naming convention in the
table is SPEC benchmark inputfile. All data is collected for
full runs of the benchmark with the reference inputs, and
for vpr, we present the place and route datasets separately
as they have distinctly different behavior. For each bench-
mark, and for each of the three duration predictors, this table
presents three results metrics. The first metric, “safe predic-
tions”, is a count of the number of duration predictions in
which the stable phase lasted at least as long as predicted.
The second metric, “incorrect predictions”, refers to over-
shot predictions. The third metric, accuracy, is the ratio of
safe predictions to the total number of predictions.

As one can see, even for the fairly coarse-grained sam-
pling and conservative stability definition (8 samples be-
fore thinking about prediction), these benchmarks typically
show hundreds of points where duration prediction makes

f(x)=8 f(x)=x f(x)=x/8 f(x)=8 f(x)=x f(x)=x/8 f(x)=8 f(x)=x f(x)=x/8
ammp_in 456 57 639 28 16 27 0.942 0.781 0.959
applu_in 112 81 1603 209 173 223 0.349 0.319 0.878
apsi_NONE 308 129 1630 142 93 146 0.684 0.581 0.918
art_ref1 164 95 1641 195 158 218 0.457 0.375 0.883
bzip2_graphic 4 2 84 51 56 78 0.073 0.034 0.519
crafty_in 579 23 455 20 8 20 0.967 0.742 0.958
equake_in 21 4 65 6 2 6 0.778 0.667 0.915
facerec_ref 130 49 376 19 19 19 0.872 0.721 0.952
fma3d_NONE 351 101 1123 102 49 95 0.775 0.673 0.922
galgel_in 334 126 1601 126 115 126 0.726 0.523 0.927
gap_ref 482 81 783 57 34 58 0.894 0.704 0.931
gcc_integrate 49 15 168 14 10 16 0.778 0.600 0.913
gzip_random 563 57 623 27 21 27 0.954 0.731 0.958
lucas_in 379 118 1643 113 74 116 0.770 0.615 0.934
mcf_inp 619 17 124 2 2 2 0.997 0.895 0.984
mesa_in 322 135 1820 151 118 151 0.681 0.534 0.923
mgrid_in 0 0 3 1 1 2 0.000 0.000 0.600
parser_ref 245 107 1354 141 117 151 0.635 0.478 0.900
perlbmk_makerand 16 4 27 0 0 0 1.000 1.000 1.000
sixtrack_inp 584 40 492 19 9 18 0.968 0.816 0.965
swim_in 155 91 1541 183 162 272 0.459 0.360 0.850
twolf_ref 612 28 216 5 5 5 0.992 0.848 0.977
vortex_bendian3 520 50 717 39 17 37 0.930 0.746 0.951
vpr_place 619 15 105 2 2 2 0.997 0.882 0.981
vpr_route 284 106 1551 146 115 162 0.660 0.480 0.905
wupwise_NONE 473 116 1073 58 53 57 0.891 0.686 0.950

0.740 0.607 0.906AVERAGE

SAFE
PREDICTIONS

INCORRECT
PREDICTIONS ACCURACY

Figure 6. Safety measures for three different
duration prediction schemes.

sense. For the simple constant8 predictor, it is able to make
an average of 325 safe predictions per application across the
benchmarks, while the fast-growing FXX function makes
many fewer predictions since its predicted durations are
longer. Overall, FXX shows the worst prediction accuracy,
since it tends to overshoot phases so often; these overshoots
count as incorrect predictions. On the other hand, FXby8
shows the best prediction accuracy, at 90.6%, because it
grows slowly at first and does a better job of capturing short
and intermediate length stable regions.

Prediction accuracy is important, but it is only one piece
of the puzzle. A second aspect of a predictor, as previously
mentioned, is the typical durations it is able to successfully
predict. These results are shown in Figure 7. The three left-
most columns in the figure characterize each benchmarks
true stable-phase behavior. The first column indicates the
percentage of program runtime spent in a stable duration
The second column gives a count of the number of such
stable regions in the benchmark’s full runlength. The third
column gives the mean length (in 10ms samples) of a dura-
tion.

After this point, the table presents results on each predic-
tor’s ability to capture these stable regions. The constant8

6

% STABLE
DURATIONS

STABLE
REGIONS

MEAN STABLE
DURATION

f(x)=8 f(x)=x f(x)=x/8 f(x)=8 f(x)=x f(x)=x/8 f(x)=8 f(x)=x f(x)=x/8
ammp_in 82.07 30 136.73 24 15 27 8 34.67 5.43 0.89 0.48 0.85
applu_in 79.99 226 17.69 108 80 222 8 8.1 1.11 0.22 0.16 0.45
apsi_NONE 93.84 166 28.25 113 77 143 8 12.34 1.73 0.53 0.34 0.60
art_ref1 91.34 244 18.71 79 74 207 8 10.11 1.37 0.29 0.21 0.49
bzip2_graphic 26.23 137 9.57 1 1 49 8 12 1.19 0.02 0.02 0.08
crafty_in 98.98 21 235.57 18 6 20 8 105.7 9.37 0.94 0.49 0.86
equake_in 5.32 6 44.33 4 1 6 8 30 2.75 0.63 0.45 0.67
facerec_ref 26.95 20 67.35 18 18 19 8 17.96 2.83 0.77 0.65 0.79
fma3d_NONE 88.32 121 36.48 59 47 94 8 18.3 2.65 0.64 0.42 0.67
galgel_in 93.06 140 33.22 105 82 125 8 11.68 1.86 0.57 0.32 0.64
gap_ref 95.58 71 67.28 30 27 58 8 26.77 4.77 0.81 0.45 0.78
gcc_integrate 87.17 16 39.5 9 6 14 8 17.07 2.55 0.62 0.41 0.68
gzip_random 98.4 28 175.64 26 19 27 8 42.25 6.76 0.92 0.49 0.86
lucas_in 96.44 126 38.25 102 55 105 8 15.93 2.04 0.63 0.39 0.70
mcf_inp 99.92 3 1664.67 3 3 3 8 152.9 36.53 0.99 0.52 0.91
mesa_in 97.86 152 32.18 117 89 152 8 11.44 1.71 0.53 0.32 0.64
mgrid_in 0.38 2 9.5 0 0 2 0 0 1 0.00 0.00 0.16
parser_ref 87.13 183 23.8 76 67 137 8 12.19 1.79 0.45 0.30 0.56
perlbmk_makerand 96.67 1 145 1 1 1 8 30 4.44 0.88 0.83 0.83
sixtrack_inp 99.5 22 226.05 19 10 19 8 63.2 8.85 0.94 0.51 0.88
swim_in 93.98 287 16.37 98 90 240 8 8.09 1.26 0.26 0.16 0.41
twolf_ref 99.7 6 830.5 6 6 6 8 97.14 20.42 0.98 0.55 0.89
vortex_bendian3 95.7 45 106.29 33 15 37 8 47.84 5.51 0.87 0.50 0.83
vpr_place 99.94 3 1665 2 2 3 8 203.7 44.69 0.99 0.61 0.94
vpr_route 93.02 176 26.41 82 67 154 8 13.36 1.83 0.49 0.30 0.61
wupwise_NONE 93.36 61 76.49 45 44 57 8 17.79 3.42 0.81 0.44 0.79

Predicted Stability
/ Total Stability

PREDICTED
STABLE REGIONS

MEAN SAFE
PREDN DURATION

Figure 7. Efficiency measures for three different duration prediction schemes.
predictor captures many of the stable regions, but the FXby8
predictor actually captures the most stable regions of the
three. This is because its prediction starts out slowly: at the
first prediction, x=8, so the first few predictions are always
a timid single-cycle duration prediction, and then they grow
significantly for longer stable regions. Thus, this function
is best able to capture stable phases of durations around 80-
160ms. The bzip2 benchmark is the best illustration of this;
it has 137 phases with an average stable duration of 9.57
samples. The FXby8 predictor is the only one able to safely
capture more than one of them.

The next set of columns depict the average interval size
of durations predicted safely by each predictor. Predictions
that turn out to be incorrect are not counted in this average.
By design, the constant8 predictor always has a safe predic-
tion size of 8. The other two columns are more interesting.
FXby8, which has thus far been our best predictor, shows
that it accomplishes its success by often making fairly short
predictions. On the other hand, for applications like vpr and
mcf that have a few very long phases, FXby8 is able to even-
tually work out to long duration predictions, with average
interval lengths of 35 or more. FXX is quite good at reach-
ing the long intervals more quickly; its mean safe duration
length is typically above ten, and even tops out at 105.7 for
crafty, which has 21 long, relatively easy-to-predict regions.

Overall, one good measure of a predictor’s success is
in what fraction of a program’s true stability it is able to
successfully capture. This is given in the rightmost set of
columns of Figure 7. The FXby8 predictor is the best of the
three for 15 of the 26 benchmarks, offering good predictions
for typically 60-94% of a program’s stable runtime. For 11
of the benchmarks, however, the simple constant8 predictor
has better coverage than FXby8, and in many cases they are

quite close.

f(x)=8 f(x)=x f(x)=x/8 f(x)=8 f(x)=x f(x)=x/8
ammp_in 4.04 77.63 10.63 2.26 24.85 5.74
applu_in 4.84 8.40 1.31 20.25 29.07 5.84
apsi_NONE 5.04 17.79 1.82 14.31 33.09 5.32
art_ref1 4.73 9.38 1.57 18.45 29.65 6.84
bzip2_graphic 6.94 7.34 1.00 7.08 8.22 1.56
crafty_in 4.70 214.88 6.95 1.88 34.39 2.78
equake_in 4.17 50.00 1.50 0.50 2.00 0.18
facerec_ref 4.05 39.53 4.63 1.54 15.03 1.76
fma3d_NONE 5.13 33.18 2.56 10.46 32.53 4.86
galgel_in 4.61 11.92 2.21 11.62 27.43 5.58
gap_ref 5.47 21.38 4.31 6.24 14.55 5.00
gcc_integrate 3.21 20.30 2.94 0.90 4.06 0.94
gzip_random 4.82 61.24 8.30 2.60 25.73 4.48
lucas_in 4.74 25.72 2.46 10.72 38.07 5.70
mcf_inp 3.00 783.00 16.00 0.12 31.33 0.64
mesa_in 4.44 13.75 2.13 13.41 32.47 6.42
mgrid_in 6.00 6.00 1.00 0.12 0.12 0.04
parser_ref 4.65 13.17 1.83 13.12 30.83 5.52
perlbmk_makerand 0.00 0.00 0.00 0.00 0.00 0.00
sixtrack_inp 5.26 176.89 15.33 2.00 31.85 5.52
swim_in 5.19 7.05 1.34 18.99 22.85 7.30
twolf_ref 5.60 120.80 21.40 0.56 12.08 2.14
vortex_bendian3 5.05 109.29 6.73 3.94 37.17 4.98
vpr_place 4.00 300.00 15.00 0.16 12.00 0.60
vpr_route 5.15 13.27 1.76 15.05 30.53 5.70
wupwise_NONE 4.28 13.64 3.04 4.96 14.47 3.46

MEAN
OVERSHOOT

% runtime in
OVERSHOOT

Figure 8. Overshoot measures for three dif-
ferent duration prediction schemes.

The last figure of merit in designing duration predictors
is the degree of overshoot they exhibit. This is given in
Figure 8. FXX displays poor performance, with very long

7

overshoots in some cases, and with a large fraction of total
program runtime spent in overshoot. Between FXby8 and
constant8, the distinction is once again more subtle. They
both have low overshoot and tend to offer quite good per-
formance. FXby8 tends to have lower overshoots for the
benchmarks that have shorter phases, but when it is wrong,
it can be quite wrong. For example, it has double-digit
average overshoots for ammp, mcf, sixtrack, twolf, and
vpr. These are all benchmarks with very long mean sta-
ble durations—150 samples or more–that lead the dynamic
prediction to build up and overshoot significantly.

4.3 Combining Value and Duration Prediction

As we have mentioned briefly at the beginning of this
section, the duration prediction method is decoupled from
IPC prediction. This section seeks to combine them. As
seen in Figure 5, a simple last-value IPC prediction is good
for short-term prediction, but less effective as one uses it
in conjunction with duration prediction for longer-term pre-
dictions. Here we suggest a simple method to better ex-
trapolate the IPC trend between duration prediction check-
points. To do this, the value prediction incorporates a gradi-
ent (slope) by computing the ∆IPC per sampling interval be-
tween two prediction checkpoints. With this, it can provide
a first-order IPC estimate based on the base IPC and con-
stant gradient, where for each new interval next predicted
IPC equals current prediction+∆IPC. This method relies
on the gradients being consistent within predicted durations,
which is usually a reasonable assumption.

In Figure 9, we show a timeline of duration-prediction
paired with this value and gradient prediction. We plot the
original IPC, the predicted IPC and the difference between
them. During stable regions, the results are quite good. The
only points of significant error are where the duration pre-
dictor overshoots, leading to higher IPC prediction error as
a phase ends.

In Figures 10 and 11, we show the results of duration
and gradient prediction for the whole SPEC suite. We use
the same previous three prediction functions to evaluate our
results. Except for the very highly variable benchmarks
like bzip2, equake and mgrid, the long-term IPC prediction
performs quite well, especially with the FXby8 function.
The coverage plot, by definition, presents the percentage of
runtime the predictor actually made a prediction, including
overshoot. Therefore FXX function in general has slightly
higher coverage. However, Figure 7 shows it has the least
stable coverage of the three. More importantly, Figure 11
provides a direct one to one comparison to the local predic-
tion methods in terms of coverage which is shown in Figure
3. For all benchmarks, our long-term predictions achieve
very close coverage to those of local predictions.

4.4 Summary

Overall, duration prediction is a new aspect to phase pre-
diction research. An interesting wrinkle to this sort of pre-
diction is that there are two ways for a predictor to be con-
servative: it can either not guess at all, lowering its cover-
age of stable regions, or it can guess very short intervals.

The FXby8 predictor is much better than the rest in terms
of accuracy, and its hardware complexity, while higher than
constant8, is not excessive. On the other hand, it is roughly
a toss-up with constant8 in terms of figures of merit other
than accuracy, such as length of predicted durations and de-
gree of overshoot. If a particular application requires very
long predictions for its resource planning, then FXby8 or
even FXX might be preferable, depending on the trade-off
between reaching high predictions quickly and penalty of
overshoot. In addition, if the actual cost of checkpointing
the behavior is significant compared to the penalty of over-
shoot, then the more aggressive approach, FXX can turn out
to be appealing with its few checkpoints.

5 Applications of Duration Prediction

This section gives an example of a concrete application
of duration prediction. In particular, we explore its appli-
cability to a dynamic voltage/frequency scaling (DVS) sce-
nario. For DVS, the goal is to identify program periods with
“slack”, in which slowing down the processor core will save
energy with little impact on performance [25]. These peri-
ods are typically memory-bound periods in the code. Dur-
ing these periods, we can operate the processor at a lower
voltage and frequency, in order to save energy. Since mem-
ory latencies are decoupled from processor clock rate, one
can often operate at the low-frequency mode with little to
no performance impact—if sufficiently memory-bound re-
gions are selected.

DVS has been heavily studied, and so our results here are
mainly to demonstrate an application of value/duration pre-
diction. For this reason, we focus on a somewhat stylized
view of the DVS problem. We consider two modes: high-
energy mode operates the processor at full performance
with full voltage/frequency, and low-energy mode operates
at low voltage/frequency. Practical processors use much
more than two settings typically, but we focus first on the
two-setting case. Our goal in this work is to correctly pre-
dict when to switch to low-energy mode, and gauge how
long to remain there before reconsidering a switch back to
high-energy mode. We evaluate our success at this goal by
considering two conceptual metrics: (i) percentage of time
spent in low-energy mode, and its comparison to an oracle,
and (ii) number of DVS switches required, since these volt-
age/frequency adjustments cost both time and energy.

5.1 DVS Policy

We looked at several possible metrics to predict and ex-
ploit slack in different ways. Possibilities we considered in-
clude DTLB misses, ITLB misses, off-chip L3 references,
and L3 misses. In addition, the counter devoted to data ta-
ble walks (DTWs) indicates cycles spent on behalf of OS
page table activity. We ruled out the ITLB count fairly
quickly since across the SPEC benchmarks we found that
instruction references have little impact in performance due
to higher locality and high predictability. Other metrics, like
DTLB misses, were ruled out because they occur so sporad-
ically that it is difficult to predict based on them.

8

Figure 9. Ammp duration and gradient based metric value prediction for f(x)=x/8.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

am
m

p_
in

ap
pl

u_
in

ap
si

_N
O

N
E

ar
t_

re
f1

bz
ip

2_
gr

ap
hi

c

cr
af

ty
_i

n

eq
ua

ke
_i

n

fa
ce

re
c_

re
f

fm
a3

d_
N

O
N

E

ga
lg

el
_i

n

ga
p_

re
f

gc
c_

in
te

gr
at

e

gz
ip

_r
an

do
m

lu
ca

s_
in

m
cf

_i
np

m
es

a_
in

m
gr

id
_i

n

pa
rs

er
_r

ef

pe
rlb

m
k_

m
ak

er
an

d

si
xt

ra
ck

_i
np

sw
im

_i
n

tw
ol

f_
re

f

vo
rt

ex
_b

en
di

an
3

vp
r_

pl
ac

e

vp
r_

ro
ut

e

w
up

w
is

e_
N

O
N

E

A
VE

M
ea

n
A

bs
ol

ut
e

Er
ro

r

MEAN ABSOLUTE ERROR f(x)=8

MEAN ABSOLUTE ERROR f(x)=x

MEAN ABSOLUTE ERROR f(x)=x/8

Figure 10. Duration and gradient based long
term future IPC prediction results for SPECCPU
benchmarks.

0.00

20.00

40.00

60.00

80.00

100.00

am
m

p_
in

ap
pl

u_
in

ap
si

_N
O

N
E

ar
t_

re
f1

bz
ip

2_
gr

ap
hi

c

cr
af

ty
_i

n

eq
ua

ke
_i

n

fa
ce

re
c_

re
f

fm
a3

d_
N

O
N

E

ga
lg

el
_i

n

ga
p_

re
f

gc
c_

in
te

gr
at

e

gz
ip

_r
an

do
m

lu
ca

s_
in

m
cf

_i
np

m
es

a_
in

m
gr

id
_i

n

pa
rs

er
_r

ef

pe
rlb

m
k_

m
ak

er
an

d

si
xt

ra
ck

_i
np

sw
im

_i
n

tw
ol

f_
re

f

vo
rt

ex
_b

en
di

an
3

vp
r_

pl
ac

e

vp
r_

ro
ut

e

w
up

w
is

e_
N

O
N

E

A
VE

C
ov

er
ag

e
(%

 o
f R

un
tim

e)

% COVERAGE f(x)=8 % COVERAGE f(x)=x % COVERAGE f(x)=x/8

Figure 11. % Coverage of long term IPC and
duration prediction.

For the remaining metrics under consideration (DTWs,
L3 references) we used scatter plots with IPC (not shown
due to space constraints) to make our policy choice. Our
goal is to find metrics of significance, and to use as few
counters as possible. Clear breakpoints were observed
across the SPEC benchmarks. As a result of these break-
points, we refer to a low IPC region when the IPC values are
less than 25% of maximum observed IPC. Similar bound-
aries for DTWs and L3 references are 6% and 10% respec-
tively.

When we analyze the statistics of these metrics over the
whole SPEC suite, the probability of encountering high L3
references given that we observe low IPC is 81%, while
the same probability for DTWs is only 58%. This is be-
cause there is no significant case where DTWs are high
while L3 references are low, while the converse is possible–
i.e. art, which has very high L3 references with no signifi-
cant DTWs. This means that if we only have two counters
available to us, IPC and L3 references offer the best signif-
icance. If we have three counters available to us, we can
do a joint IPC/L3/DTW prediction: the probability that ei-
ther L3 references or DTWs are high given that IPC is low
is 89%. So, there is an additional 8% prediction that can
be extracted with the help of DTWs. However, since the
POWER4 counter architecture precludes reading both L3
references and DTWs in the same measurement, we focus
from here forward on DVS policies based on IPC and L3

references.
Having decided on the metrics to use for our DVS pol-

icy, we turn now to the other specific aspects of our ap-
proach. Our goal is to explore performance-oriented DVS
policies; if we are in an unstable region where predictions
are uncertain, we use the highest-possible clock frequency
to avoid harming performance. Duration prediction is per-
formed (with gradient prediction) as described in the previ-
ous section, and our definition of region stability also holds.
Layered on top of the metric prediction is a DVS policy de-
cision.

The low-energy setting (slow clock and low voltage) is
used for memory-bound portions of the code. The high-
energy setting is used at all other times. Our policy is to
switch to the low-energy state when we are in a stable phase
in which IPC is 25% or less than the maximum IPC value
and L3 references are high (greater than 10% of the maxi-
mum value).

During stable phases, we can make good predictions
about program behavior and apply DVS accordingly. What
remains is to handle unstable regions. At the end of a stable
phase, that is when a transition is detected at the new pre-
diction checkpoint, one can either keep the DVS state as-is,
or one can return the DVS state back to high-energy/high-
performance. In early experiments, we used the more con-
servative technique of retaining the DVS state as-is. How-
ever, although this works quite efficiently for very stable

9

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2

0.00 4.73 9.47 14.22

DVS Oracle DVS State L3_Refs Orig_IPC Predicted_IPC

Figure 12. Duration and long term value prediction applied to DVS for ammp.

-1
0.8
0.6
0.4
0.2

0
0.2
0.4
0.6
0.8

1

0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2

0.00 1.78 3.68 5.56 7.45 9.34 11.23 13.14

DVS Oracle DVS State L3_Refs Orig_IPC Predicted_IPC

Figure 13. Duration and long term value prediction applied to DVS for apsi.
benchmarks, it can result in significant performance penalty
in highly-varying benchmarks. For example, mgrid has two
short stable periods at the benchmark initialization with
mean duration of 9.5 samples as we describe in Figure 7.
The predictor catches one of them and pushes the DVS state
to low at the start of the benchmark. After this point, how-
ever, there is only instability for the remainder 99% of the
benchmark, and the DVS state is never returned. As a re-
sult, mgrid was incorrectly kept in the low energy state 87%
of its runtime.

Based on our experiences with unstable benchmarks like
mgrid, and based on our goal of valuing performance as a
primary metric, we instead use a policy in which unstable
regions all revert to the high-energy DVS state.

5.2 DVS Results

We will show DVS results for four SPEC benchmarks
The four chosen benchmarks represent different corners of
workload behavior. Ammp presents a case with repetitive
large-scale phases. On the other hand, apsi has numerous
smaller scale phases. Mgrid is a very bursty benchmark
with almost no stable phase. And mcf has a long stable
phase with a significant gradient.

Figures 12 and 13 show DVS for two of the benchmarks.
(The other two are not shown as timelines due to space con-
straints, but their statistics are given in the summary graphs
and tables to follow.) In this figure, the duration prediction
uses the FXby8 predictor and the value prediction uses the
long-term gradient method. The IPC and L3 reference rates
are normalized. In the figures, the thin striped “DVS oracle”
regions correspond to portions of execution that would be
DVS’d using our criterion but with oracle knowledge, i.e.,
zero-error duration and value prediction. The thick striped
“DVS state” shows the regions where DVS is actually ap-
plied based on our duration predictor and the solid shaded
regions show where the two overlap. In general, there is
a performance penalty for points where our predictor is in
low-energy mode but the oracle is not. Likewise, there is
an energy penalty associated with regions where the oracle

is in low-energy mode but our predictor is not. We include
these timelines to give a qualitative feel about the style and
quantity of DVS opportunities that exist. More quantitative
results are in the graphs and tables that follow.

Figure 14 summarizes the effectiveness of DVS for four
benchmarks, for different duration prediction methods. For
each application, we show five bars. The rightmost bar
shows the percentage of runtime that would be spent in
low-energy DVS mode with oracle knowledge of system be-
havior. The other four bars are stacked bars giving a DVS
results breakdown for different predictors. The predictors
we show here are the three familiar ones: constant8, FXX,
FXby8, and a fourth one: constant1. This fourth predictor
predicts every stable cycle, and thus never overshoots for
more than one sample.

For each function, the lowest portion of the stacked bar
shows the correctly-predicted low energy regions. Next, we
show the percentage of time where our method incorrectly
predicts a low-energy region, while in reality the applica-
tion is in a high-energy region. This represents the over-
shoots our predicted duration will cause. The top portions
of the stack then represent the converse: lost opportunity
time. That is, they plot the amount of time where the appli-
cation is truly in low-energy mode, but our prediction has
been for high-energy.

These stacked bars show first, that significant DVS op-
portunities exist, and second, that most of the predictors
are able to capture them. Except for mgrid, all the bench-
marks spend 20% or more of their time in low-energy mode.
Mgrid’s behavior is distinct, as it is too unstable to make
DVS predictions. All of the predictors come within 92%
of the oracle approach. Ammp and apsi with the FXX pre-
dictor have a somewhat larger incorrect low-energy mode.
In case of ammp, this is due to a single large overshoot af-
ter its first huge low-energy phase. In apsi, this is due to
smaller overshoots accumulated over the large number of
smaller phases. On the other hand, apsi spends relatively
more time in the lost-opportunity high-energy mode. This is
because of short low-energy regions that are slightly larger
than the stability criterion. In this case the initial fixed sta-

10

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

f(x
)=

8

f(x
)=

x

f(x
)=

x/
8

f(x
)=

1

O
ra

cl
e

f(x
)=

8

f(x
)=

x

f(x
)=

x/
8

f(x
)=

1

O
ra

cl
e

f(x
)=

8

f(x
)=

x

f(x
)=

x/
8

f(x
)=

1

O
ra

cl
e

f(x
)=

8

f(x
)=

x

f(x
)=

x/
8

f(x
)=

1

O
ra

cl
e

Ammp (in) Apsi Mcf (inp) Mgrid (in)

Pe
rc

en
ta

ge
 o

f R
un

tim
e

% of Time in Predicted High Energy while Application in Low Energy

% of Time in Predicted Low Energy while Application in High Energy

% of Time in Low Energy (Predicted)

Figure 14. Evaluation of duration and gradient prediction under DVS.
bility timeout of 8 samples becomes comparable to the ac-
tual predicted durations. Consequently, even the most timid
prediction scheme incurs a lost-opportunity compared to an
oracle predictor. We include the constant1 results to demon-
strate that our prediction-based techniques achieve results
nearly identical (within 1%) to those of a method that reads
counters on every cycle. The relatively simple predictors
we propose offer equal accuracy and a greater degree of au-
tonomy for this sort of system adaptation.

In Figure 15, we show the number of DVS’s made as
a proxy to DVS overhead cost and number of predictions
made as a proxy to the prediction overhead cost. For both
metrics, lower quantities are better. For all prediction meth-
ods and benchmarks, the number of DVS’s required is quite
low. While constant1 makes many predictions and DVS’s,
the other predictors are much more stable. The apsi bench-
mark shows some weakness in FXX, where its more aggres-
sive behavior leads to more DVS’s. The predicted gradients
in the overshot regions lead to additional false DVS regions.
Mgrid and mcf show very low DVS transition counts, but
for opposite reasons. In mcf, the behavior is very stable,
roughly 90% of the time is spent in low-energy mode, and
our predictors quickly identify the low-energy opportunity
and exploit it. In mgrid, behavior is so unstable, that dura-
tion prediction does not occur, and thus the program spends
all of its time in high-energy mode.

488 666 3814 458 1760 3027 620 4955

0

50

100

150

200

250

300

f(x
)=

8

f(x
)=

x

f(x
)=

x/
8

f(x
)=

1

f(x
)=

8

f(x
)=

x

f(x
)=

x/
8

f(x
)=

1

f(x
)=

8

f(x
)=

x

f(x
)=

x/
8

f(x
)=

1

f(x
)=

8

f(x
)=

x

f(x
)=

x/
8

f(x
)=

1

Ammp (in) Apsi Mcf (inp) Mgrid (in)

of DVS's

of Predictions

Figure 15. Overheads associated with predic-
tion and DVS.

In summary, in all predictable cases the long term predic-
tors perform within 1% of the constant1 case in recovering
stable low energy regions. Moreover, unlike the constant1
case that performs continuous monitoring of metrics, they
all make substantially less number of predictions–which is
equivalent number of counter reads for metric updates.

6 Related Work

Prior phase characterization and prediction work oper-
ates at various abstraction levels with different endgoals.
One group of research particularly focuses on offline sim-
ulator or counter analysis to select representative execution
points [17, 18, 21, 22, 24]. While this work is largely phase
characterization research, our work is distinct in that it fo-
cuses on predictions guided by online phase change detec-
tion.

A second class of work explores architectural dynamic
optimizations guided by fine-grained phase information
[11, 14, 23]. These are fine grained techniques requiring de-
tailed execution space information, while our work operates
at large scale phases. Furthermore, our work uses transition
information only at prediction boundaries, thus removing
monitoring from the main loop and allowing long durations
of time without system probes or adjustments.

At the operating system level, some application-oriented
work has been done to read hardware counters and use
their information for techniques like DVS or thermal-aware
OS scheduling [3, 7, 25]. All of these are reactive, while
our presented approach shows the ability to predict and
to proactively adjust system behavior. Furthermore, these
techniques all rely on fixed-interval system probes, while
our techniques perform duration prediction so as to reduce
the number of system probes required during the (not un-
common) very long phases.

Last, Duesterwald et al. [12] recently present the per-
formance of various coarse-grained (also millisecond gran-
ularity) prediction schemes for performance counter met-
rics on two different IBM POWER platforms. They show
the possibility of cross metric predictions and mention po-
tential applications of such predictive techniques. Their
schemes, however, focus on near-term sample-to-sample
predictions. Our work has developed longer-term ap-
proaches incorporating duration prediction with gradient
prediction schemes.

7 Conclusion

Duration prediction, in conjunction with future value
prediction is an important area, since many phase directed

11

system level readjustments are only feasible if phases are
long enough. In this work we offer the first published meth-
ods for applying duration and long-term value prediction ef-
fectively. Our methods achieve prediction accuracies close
to 90% of actual stable durations, despite the high variabil-
ity of phase lengths across the SPEC suite. A key to our
approach is pairing duration prediction with gradient-based
long-term value prediction for stable regions. This allows
several duration predictors to achieve low errors across the
SPEC suite. For example, our FXby8 predictor achieves
an average IPC error of 5% over the whole SPEC suite,
including highly variant bzip2 and mgrid. These predic-
tors provide similar prediction coverage (66.5% on average
over SPEC) as sample-by-sample predictors (68.5%), while
avoiding constant counter polling. Over the SPEC suite,
even our less agressive predictors monitor performance be-
havior 10X less frequently than a constant-polling system.

The contributions of this work are: (i) a comprehensive
analysis of different prediction scenarios, both near-term
and long-term, over the whole SPEC suite; (ii) a simple-yet-
effective duration prediction method, which provides accu-
rate long-range information without the need for constant
polling; (iii) a gradient-based, long-term value prediction
method which aids in extrapolate application phase behav-
ior over long stable durations; and (iv) description and con-
ceptual evaluation of a dynamic management application
(DVS) that can benefit from this method.

With an increasing industry-wide focus on adaptive and
autonomous system management, schemes for predicting
and responding to very-long-term system behavior (tens of
milliseconds up to seconds) become critical. The work pre-
sented here offers practical, low-overhead techniques for
such long-range prediction, as well as evaluations of their
possible application to important concrete problems.

References

[1] D. Albonesi, R. Balasubramonian, S. Dropsho, S. Dwarkadas,
E. Friedman, M. Huang, V. Kursun, G. Magklis, M. Scott, G. Se-
meraro, P. Bose, A. Buyuktosunoglu, P. Cook, , and S. Schuster. Dy-
namically tuning processor resources with adaptive processing. IEEE
Computer, 36(12):43–51, 2003.

[2] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A Transparent
Dynamic Optimization System. In Proc. ACM SIGPLAN Conf. on
Programming Language Design and Implementation, June 2000.

[3] F. Bellosa, A. Weissel, M. Waitz, and S. Kellner. Event-driven en-
ergy accounting for dynamic thermal management. In Proceedings
of the Workshop on Compilers and Operating Systems for Low Power
(COLP’03), New Orleans, Sept. 2003.

[4] L. Benini, A. Bogliolo, and G. D. Micheli. A survey of design tech-
niques for system-level dynamic power management. IEEE Trans.
Very Large Scale Integr. Syst., 8(3):299–316, 2000.

[5] B. Calder, T. Sherwood, E. Perelman, and G. Hamerly. SimPoint
web page. http://www.cs.ucsd.edu/simpoint/.

[6] F. Chang, K. Farkas, and P. Ranganathan. Energy driven statistical
profiling: Detecting software hotspots. In Proceedings of the Pro-
ceedings of the Workshop on Computer Systems, 2002.

[7] K. Choi, R. Soma, and M. Pedram. Dynamic voltage and fre-
quency scaling based on workload decomposition. In Proceedings
of International Symposium on Low Power Electronics and Design
(ISLPED), Aug. 2004.

[8] J. Cook, R. L. Oliver, and E. E. Johnson. Examining performance
differences in workload execution phases. In Proceedings of the
IEEE International Workshop on Workload Characterization (WWC-
4), 2001.

[9] M. E. Crovella and A. Bestavros. Self-similarity in World Wide Web
traffic: evidence and possible causes. IEEE /ACM Transactions on
Networking, 5(6):835–846, 1997.

[10] P. J. Denning. The working set model for program behavior. Com-
munications of the ACM, pages 323–333, May 1968.

[11] A. Dhodapkar and J. Smith. Managing multi-configurable hardware
via dynamic working set analysis. In 29th Annual International Sym-
posium on Computer Architecture, 2002.

[12] E. Duesterwald, C. Cascaval, and S. Dwarkadas. Characterizing and
predicting program behavior and its variability. In IEEE PACT, pages
220–231, 2003.

[13] J. Flinn and M. Satyanarayanan. Powerscope: a tool for profiling
the energy usage of mobile applications. In Second IEEE Workshop
on Mobile Computing Systems and Applications, pages 2–10, Feb.
1999.

[14] M. Huang, J. Renau, and J. Torrellas. Positional adaptation of pro-
cessors: Application to energy reduction. In Proceedings of the In-
ternational Symp. on Computer Architecture, 2003.

[15] C. Hughes, J. Srinivasan, and S. Adve. Saving energy with architec-
tural and frequency adaptations for multimedia applications. In Pro-
ceedings of the 34th Annual International Symposium on Microar-
chitecture (MICRO-34), Dec. 2001.

[16] IBM. PMAPI structure and function Reference.
http://www16.boulder.ibm.com/pseries/en US/files/aixfiles/pmapi.h.htm.

[17] C. Isci and M. Martonosi. Identifying program power phase behav-
ior using power vectors. In Proceedings of the IEEE International
Workshop on Workload Characterization (WWC-6), 2003.

[18] C. Isci and M. Martonosi. Runtime Power Monitoring in High-End
Processors: Methodology and Empirical Data. In Proceedings of the
36th International Symp. on Microarchitecture, Dec. 2003.

[19] A. Iyer and D. Marculescu. Power aware microarchitecture resource
scaling. In Proceedings of Design Automation and Test in Europe,
DATE, Mar. 2001.

[20] I. Kadayif, T. Chinoda, M. T. Kandemir, N. Vijaykrishnan, M. J.
Irwin, and A. Sivasubramaniam. vEC: virtual energy counters. In
Workshop on Program Analysis for Software Tools and Engineering,
pages 28–31, 2001.

[21] T. Sherwood, E. Perelman, and B. Calder. Basic block distribution
analysis to find periodic behavior and simulation points in appli-
cations. In International Conference on Parallel Architectures and
Compilation Techniques, Sept. 2001.

[22] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Au-
tomatically characterizing large scale program behavior, 2002.
In Tenth International Conference on Architectural Support for
Programming Languages and Operating Systems, October 2002.
http://www.cs.ucsd.edu/users/calder/simpoint/.

[23] T. Sherwood, S. Sair, and B. Calder. Phase tracking and prediction.
In Proceedings of the 28th International Symposium on Computer
Architecture (ISCA-30), June 2003.

[24] R. Todi. Speclite: using representative samples to reduce spec
cpu2000 workload. In Proceedings of the IEEE International Work-
shop on Workload Characterization (WWC-4), 2001.

[25] A. Weissel and F. Bellosa. Process cruise control: Event-driven clock
scaling for dynamic power management. In Proceedings of the In-
ternational Conference on Compilers, Architecture and Synthesis for
Embedded Systems (CASES 2002), Grenoble, France,, Aug. 2002.

[26] A. Weissel, B. Beutel, and F. Bellosa. Cooperative i/o-a novel
i/o semantics for energy-aware applications. In Proceedings of the
Fifth Symposium on Operating System Design and Implementation
OSDI’02, 2002.

[27] H. Zeng, X. Fan, C. Ellis, A. Lebeck, and A. Vahdat. ECOSystem:
Managing energy as a first class operating system resource. In Tenth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS X), Oct. 2002.

12

