
RC23451 (W0411-188) November 22, 2004
Computer Science

IBM Research Report

A Comprehensive Toolset for Workload Characterization,
Performance Modeling and On-line Control

Li Zhang, Zhen Liu, Anton Riabov, Monty Schulman, Cathy Xia, Fan Zhang
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

A Comprehensive Toolset for Workload
Characterization, Performance Modeling and On-line

Control

Li Zhang, Zhen Liu, Anton Riabov, Monty Schulman, Cathy Xia, Fan Zhang a

aIBM Thomas J. Watson Research CenterP.O. Box 704, Yorktown Heights, NY 10598

Keywords: Performance analysis, performance prediction, capacity
planning, Web service modeling, queueing networks, on-line

control.

Abstract

With the advances of computer hardware and software technologies, electronic businesses
are moving towards the on-demand era, where services and applications can be deployed or
accommodated in a dynamic and autonomic fashion. This leads to a more flexible and ef-
ficient way to manage various system resources. For on-demand services and applications,
performance modeling and analysis play key roles in many aspects of such an autonomic
system. In this paper, we present a comprehensive toolset developed for workload char-
acterization, performance modeling and analysis, and on-line control. The development of
the toolset is based on state-of-the art techniques in statistical analysis, queueing theory,
scheduling techniques, and on-line control methodologies. Built on a flexible software ar-
chitecture, this toolset provides significant value for key business processes. This includes
capacity planning, performance prediction, performance engineering and on-line control of
system resources.

1 Introduction

As e-businesses evolve and are being adopted by more and more industries, increas-
ing portions of the business processes are being handled by computers, through
Web interfaces and Web services. Complex business logic is built into these enter-
prise systems with routers, Web servers, authentication servers, application servers,

Email address:
{zhangli,zhenl,riabov,schulman,cathyx,fzhang}@us.ibm.com (Li
Zhang, Zhen Liu, Anton Riabov, Monty Schulman, Cathy Xia, Fan Zhang).

Preprint submitted to Elsevier Science

back-end databases, etc. These enterprise systems, controlled by sophisticated soft-
ware, perform a variety of business functions including authentication/verification,
ordering, approval, billing, account management, etc. In order for such complex
systems to perform critical business functions reliably and efficiently, system ad-
ministrators need to be able to monitor and manage the whole system effectively.
There are many challenging issues in the analysis and management of these large
distributed systems. Here, we present a rich set of performance modeling and anal-
ysis tools called COMPASS, to assist in dynamic capacity planning and in the effi-
cient management of highly accessed, commercial Web systems. COMPASS stands
for Control and Optimization based on Modeling, Prediction and AnalySiS. The
main components of this set of tools are workload characterization, system and ap-
plication modeling and analysis, and on-line optimal control. Each component can
function as an independent module. More importantly, these components also work
in coordination to provide better understanding and management of the underlying
system.

In order to better manage such complex service systems we need to first under-
stand what the requests to the system are, how these requests arrive, what the key
characteristics are, and how the requests will change over time. Workload charac-
terization is mainly concerned with the analysis of the request arrivals processes. It
also includes on-line monitoring and prediction services for the request arrival and
system usage measurements.

We next need to understand how various requests are served by the system. We
need to be able to build models for the system architecture, specify the service
components for each types of request, and quantify the speed and overhead for all
type of requests at each service component. These details form system application
modeling and analysis.

The systems, which contain many different types of resources, and may have ex-
tra capacity, typically have various resource control and scheduling mechanisms.
Administrators can tune these mechanisms to achieve more efficient system usage,
lower system cost and increased overall profit. The on-line optimal control compo-
nent provides efficient algorithms to dynamically adjust the control policies on-line
based on the recently observed arrival processes, the system and application mod-
els, and the specified control objective function.

Based on advanced statistics, stochastic processes, queueing, control and optimiza-
tion theories, the use of COMPASS tools can lead to significantly improved solu-
tions for a range of mission critical business processes including capacity planning,
performance engineering, life cycle management, and business process manage-
ment, etc. For example, a number of fundamental problems for capacity planning,
performance prediction, and service level agreement provisioning include: What is
the capacity of the current system? What is the current request traffic volume? What
level of response times are users experiencing? What can be done to improve the

2

system’s performance? Where is the potential bottleneck for the system? When will
the servers run out of capacity? and so on. The answers are often obtained through
benchmarking, on-line monitoring, system modeling and analysis. The COMPASS
tools will apply sophisticated statistics and modeling techniques for analyzing the
request arrival patterns to the system, forecast how these arrivals will change over
time, construct system models for the request service processes, and trigger ap-
propriate control actions. The use of COMPASS tools will lead the current system
toward a better operating state. In general, the systems will be managed more effi-
ciently, in an autonomic, on-demand fashion.

The rest of the paper is organized as follows. In Section 2, we present the overall
architecture and interfaces for the toolset. Sections 3 though 5 present the main
functional modules of the toolset. We summarize in the end with discussions.

2 The Overall Architecture

In this section we first describe technologies used in COMPASS implementation.
Next, we list high-level components of our implementation and explain how these
components interact in different typical usage scenarios. In this section, we provide
only general descriptions of algorithm families, without describing the details of
methods used for modeling, analyzing and controlling target systems. We leave all
relevant detailed descriptions for following sections, and focus on overall COM-
PASS toolkit architecture.

The implementation of COMPASS tools and algorithms is based on the Java 2
Standard Edition platform 1 [18]. Java was chosen as the language used for imple-
mentation, because it satisfied our requirements of portability, short development
cycle, development of an extensive GUI, and compatibility with other performance
analysis tools. We used platform version 1.4.1 in our development and testing. At
least version 1.4.1, or higher, is required to run COMPASS.

In our implementation, we make use of several API sets included in the Java 2 SE
platform. All user interface code is based on the portable and lightweight Swing
library. JDBC is used for operations with large data arrays, which can be stored
in a JDBC-compatible relational database. DOM parser provided by Java API for
XML Processing (JAXP) is used to process XML files. We use Remote Method
Invocation (RMI) API in some of our implementations of measurement and con-
trol components, in order to communicate to systems that are being monitored or
controlled by COMPASS. Finally, Java Native Interface (JNI) is used on the target
system to invoke kernel control code written in C.

1 Java and all Java-based trademarks and logos are trademarks or registered trademarks of
Sun Microsystems, Inc. in the U.S. and other countries.

3

We also use two modules that are not included in standard Java 2 Platform. We
make use of advanced mathematical functions included in the freely available open
source JSci library [6]. To achieve compatibility with Agent Building and Learning
Environment (ABLE) we utilize open-source ABLE API [1, 2].

Figure 1 presents an overview of software components comprising of the current
COMPASS toolkit. From the end-user point of view, there are three options for
invoking COMPASS tools: end-system configuration mode, on-line measurement,
analysis and control mode, and off-line analysis mode. Back-end algorithms and
methodologies support the two analysis modes and the GUI elements. The GUI
elements are responsible for the configuration of algorithm parameters. These al-
gorithms and methodologies are often shared between on-line and off-line imple-
mentations, with minor differences in parts responsible for control flow.

ANALYSIS AND PREDICTION ALGORITHMS

Statistical Analysis,
Distribution Fitting

BlueQueue (simulation)

Mathematical Tools

Custom Binary

XML JDBC

Persistence Target Systems Interface

Control Components

Components

Measurement

GUI

Monitoring and Alarms

What−if Analysis

Model Specification

PeriodicEWMA

Traffic ModelsSystem Models

Queueing Model

INFRASTRUCTURE

MODELS

Approximation

Simulation

Performance Analysis

Session Identification

Pattern Classification

Workload Analysis

Fig. 1. COMPASS Components

The core part of COMPASS toolkit consists of several families of analysis and
prediction algorithms (shown on top in figure 1). Methods used for system per-
formance analysis include simulation and approximation. Workload (traffic) anal-
ysis is based on session identification and pattern classification algorithms. Most
algorithms can be used in both on-line and off-line modes, depending on the user-
specified configuration. The most trivial example of this is when the traffic analysis
algorithms are used in off-line mode to infer traffic model parameters based on web
server logs. In on-line mode, performance analysis algorithms can initiate control
actions for improving user-perceived system response time or for maximizing profit
based on a service level agreement contract. A possible action can be raising alarms
to warn about potential system malfunctions, or about unusually high loads. More
sophisticated control algorithms use the abstract system control interface (listed in
infrastructure section on figure 1), in order to change configuration parameters of
the target system in runtime. Algorithm components are designed to conform to a
specified interface, and are made to be easily interchangeable and interconnectable,
in order to achieve maximal code re-use in our implementation.

4

Our algorithms are based on a set of mathematical models, which are used to de-
scribe system and traffic behavior. Initial model parameters and target system con-
figuration are specified with the assistance of the COMPASS GUI. Afterwards, sys-
tem or traffic analysis algorithms can update model parameters based on observed
system behavior.

Implementation of COMPASS analysis and optimization algorithms is supported
by a set of utility classes. Mathematical utility packages include the home-grown
discrete event queueing network simulation library, BlueQueue, and statistical anal-
ysis tools, which include probability distribution fitting algorithms. Algorithm pa-
rameters, time series of measurements, control actions and predictions can be per-
sisted to a relational database via JDBC interface, or to custom binary files. Persis-
tence utilities also provide XML serialization infrastructure for Java objects. Mea-
surements and control actions are taken through a set of interfaces that form a
target system abstraction layer. This layer, consisting of measurement and control
interfaces, allows COMPASS to interact with a variety of platforms and software
packages. This makes it easier to add support for new systems.

The Java Swing-based graphical user interface is essential to the COMPASS toolkit.
Most of COMPASS operations can be performed or monitored via the graphical
interface. These operations include system configuration setup, on-line system and
workload monitoring, and off-line what-if analysis. COMPASS uses custom GUI
components for displaying charts and plots, which allow to efficiently display easy
to read representation of system status, forecast and other types of data.

Web Users
Analysis
Workload

Measurement
Interface

Analysis and Prediction
Performance

Algorithms
ControlControl

Interface

System
Target

Fig. 2. Data flow in an on-line mode

In on-line analysis mode, algorithm components of COMPASS are connected through
a flexible data interface. This interface supports automatic recording of time series
data, raising alarms based on user specified sets of predicates, and allows GUI
components to receive data for monitoring. Monitoring, saving time series data and
alarms are optional. They may be enabled or disabled, according to user specifica-
tions at any particular data transfer point.

5

Figure 2 illustrates data flow between COMPASS components, when COMPASS
is started in on-line analysis mode. Measurements are taken from the target system
via system-specific components that conform to the COMPASS measurement in-
terface. Measurements of traffic intensity are used to analyze workload and make
predictions of future workload. System performance parameters, such as CPU uti-
lization and memory, are measured and analyzed. The resulting model system per-
formance, together with workload predictions, are used to make predictions about
future system performance, make decisions about possible control actions, and raise
alarms. Control actions, such as re-assigning system resources allocated to different
types of tasks in the target system, are taken through the unified control interface.
This interface allows easy customization for particular software configurations. The
same sequence of algorithms can be used in training mode to infer system model
parameters. This would be the case, if instead of connecting to a production sys-
tem driven by web users, COMPASS components are connected to a test system,
driven by a workload generator. In this scenario, the workload generator can also
be controlled by COMPASS, and used to supply additional information to traffic
modeling algorithms.

3 Workload Characterization

The workload characterization of COMPASS consists of three key components:
traffic monitoring and analysis, workload profiling and classification, and traffic
prediction.

Request arrival information is collected and passed to the workload characterization
module through a flexible data flow interface. The analysis module analyzes arrival
information and builds models for the arrival process. For example, such models for
Web site usages may describe user arrivals in sessions. Within each session, users
may visit multiple pages, with think times in between page views. When a page
is loaded, a series of requests for embedded images is initiated. Algorithms from
[10] are implemented to identify the session, and page view (or click) information.
Figure 3 shows the analysis result of a customer workload. The top plot shows
the number of user session arrivals every minute over the specified time window.
The middle plot shows the distribution for the number of clicks in each session.
The bottom plot shows the inter-click time distribution. The analysis module also
provides the distribution fitting function. This function is used to calculate the best
estimate of the distribution parameters for the session arrival processes, the inter-
page-view, and number of page-views per session distributions. Users can select the
format and type of mixture of distributions to use for the fitting of the distributions.
The output result can be stored in a given file. This file also includes the goodness
of fit measures, which is used for the fitting.

Key characteristics of the arrival process that have strong impacts on the server’s

6

Fig. 3. Example of A Customer Workload

performance are also extracted by the workload characterization module. Studies
[15, 16, 17] have shown that the correlation characteristics, such as short-range
and long-range dependencies, have significant impact on user response times. The
burstiness characteristics, such as the variability and heavy-tailness of the request
distributions, also have significant impact. The user response times, under long-
range dependent and heavy-tailed request processes, can degrade by orders of mag-
nitude and have fundamentally different decay rates, when compared with the tradi-
tional Poisson models. These key parameters include correlation factors, marginal
distributions, identified user access patterns, page visit sequences, think times, and
various matching distribution parameters. These parameters are calculated by the
workload characterization module to establish a complete workload profile, which
is used as input to the other modeling modules.

The profiling and classification module further builds a profile for the arrival pro-
cess for each customer system. It represents arrival patterns over time for each
customer system. The clustering engine construct groups for the customer systems
that have similar arrival patterns. For a new customer system, its pattern can be
mapped into the most similar group by the classification engine. Clustering and
classification algorithms are explained in detail in [12]. The left figure in Figure 4

7

is the customer view panel. It shows for a given customer, the normalized request
patterns for different days of the week and their corresponding classes. The right
figure in Figure 4 is the cluster view. It shows for a given class, the common request
pattern and the list of class members. Each member of the class corresponds to a
one-day pattern for a customer site.

Fig. 4. Example of Customer View and Cluster View in Profiling

The prediction module makes predictions of the request arrival process, using the
time series models. It’s predictions are based on the past access patterns, and the
constantly changing volume. Figure 5 provides the prediction results for two anony-
mous customer Web systems, based on one of our adaptive, template-based algo-
rithms. The top plot in Figure 5 shows the measurements and the predictions. The
closer the measurement and prediction lines appear, the better the prediction will
be. The prediction errors are also analyzed and plotted in the middle plot of Fig-
ure 5, to demonstrate the effectiveness of the prediction algorithm. This plot shows
the percentage of relative error against the fraction of time, where the relative error
is below a given value. The lower the curve appears, the better the prediction will
be. One can also implement other prediction algorithms under our flexible frame-
work, and compare with the collection of prediction algorithms in the repository.
Figure 6 shows the prediction accuracy for a subset of available customer Web
sites. The algorithm predicts to above eighty percent accuracy over eighty percent
of time for most of the customer Web sites.

The request volume usually changes over time for a live running system. Given the
changing system load as the result of the changing arrival volume, the system may
need to take certain actions to better accommodate for the changing situation. A
change point detection algorithm is provided to detect on-line the changing state
of the arrival process. Within each state, the arrival process remains relatively un-
changed. The vertical lines in the bottom plots of Figure 5 illustrate the changing
points as detected by our algorithm.

8

Fig. 5. Predictions for Two Customer Web Site

Fig. 6. Prediction Accuracy

A centralized repository is set up so that all of the measurement data, analysis re-
sults, and prediction algorithms can be stored for later re-use and comparisons.
One can also re-play the historical data from the repository in order to drive an-
other system for benchmarking, and evaluate the prediction/change-point detection
algorithms.

The workload models in the repository can be used to scale up the traffic volume,
and generate synthetic, realistic workloads. A set of clients can then generate web

9

requests according to these synthetic workloads. An example that uses this sce-
nario is a realistic benchmarking tool named Bluestone, which is currently being
developed.

4 System and Application Modeling and Analysis

Queueing network models are commonly used to model the request serving process
in many service systems, including manufacturing and Web server systems [9, 13].
More functions provided by the Web service infrastructures have resulted in more
complex systems, as well as more complicated user access patterns. To model how
the user requests, ortransactions, are served by such complex systems, a single
type of request stream feeding into a single black box is far from adequate.

The system and application module constructs flexible queueing network models
to capture the Web serving process. Each of the multiple components within the
server system can be represented as a queue, or as a more complex sub-queueing
network. For example, one can use a queue to model the network component within
a system, and use a single server queue to model a database, etc. Different routing
mechanisms, such as round robin and probabilistic routing, can be used to approx-
imate the load balancing schemes in the system [7]. Common service policies,
such as processor sharing or priority policies, can be used for each queueing or
server component within the model to mimic the components service behavior.
Users can be categorized into multiple classes based on their access behaviors. For
given routing and service parameters of such a queueing system, the system and ap-
plication modeling module readily obtains the performance related measures such
as throughput, utilization and response times, via simulations and queueing net-
work theories. The workload profile feeding into the system can be the original as
well as the forecasted profile from the workload models.

Figure 7 shows a sample system architecture. The two types of sources on the left
represent two classes of arrival streams to a queue. The splitter represents a load
balancing router, which spreads these jobs to a single server and a complex server
station. The server station again has two servers, with a splitter to balance the load.
After finishing service from either the top-level server or the server station, the jobs
complete their service at the system and exit. The system editor supports many
different kinds of queueing disciplines, load-balancing algorithms, and server pro-
cessing policies. The supported queueing disciplines include first-come-first-serve
(or FIFO), priority (or HOL) and time-dependent-priority (or TD) [9]. A range
of supported load balancing algorithms include round robin (RR), class-dependent
probabilistic routings (PRV, DET, and PRM in Figure 7), and send-to-first-available
(STF). Each server can serve one job at a time (Single Job), or can serve multi-
ple jobs concurrently according to the processor sharing, discriminatory processor
sharing [4], or weighted fair queueing policies [3]. Figure 8 shows an example of

10

Fig. 7. The System Model Editor

the screen for server configuration. This panel allows users to specify the class-
dependent service time distributions at the server, the maximum number of jobs the
server can serve at any given time, and the blocking policies for new jobs arriving
to a busy server.

The specified system is analyzed by running regenerative discrete event simula-
tions, using our BlueQueue queueing network simulation class library. BlueQueue
provides a set of components that facilitates the modeling of a queueing network,
using a set of queueing, service and load balancing policies. Service and inter-
arrival times can be modeled with random variables, following one of several com-
monly used families of probability distributions. BlueQueue models allow to spec-
ify pre-determined or random routings for multiple classes of jobs. Simulated pa-
rameters, such as response time, can be analyzed for individual components or
arbitrary parts of the queueing network, using statistics collection objects.

The statistics objects collect per-class response time mean, standard deviation,
and distribution information for each checked component (including queues and
servers) in the system. The system begins a regeneration cycle when a job arrives
to an empty system. The confidence intervals are calculated at the end of each
regeneration cycle. The simulation stops when the specified confidence levels are
reached for all of the checked components. The total running time of the simulation
depends on the load of the simulated system. If the simulated system is heavily uti-
lized, then it does not become empty very often. It takes a longer time for a heavily
utilized system to observe the same number of regeneration cycles, compared with

11

Fig. 8. The Server Specification Screen

an under-utilized system. Hence, simulating a heavily utilized system takes a longer
time. During the simulation run, the per-class queue lengths and server utilizations
are displayed and periodically refreshed as shown in Figure 7. The simulation can
be interrupted in the middle of a run or continue until confidence is reached. The
detailed simulation results are shown in a display window and can be saved in text
format.

Analytical analysis can be conducted for the system throughput and utilization anal-
ysis. Given the type of growth rate for each type of request, the analytical analysis
module identifies the potential bottleneck components and the time horizon for
these bottlenecks to reach their limits.

While drag and drop editing makes COMPASS tools user friendly, the XML import
and export functions for model specification make the tools open and extensible.
Using the extensible markup language (XML), the constructed models are easily
described and customized for many different platforms in heterogeneous environ-
ments. Models can be built and saved in native binary format, or in XML format.
We can load stored models, or import models from their XML descriptions. This
makes it easier for users to communicate and share their work.

After the system model has been built, we can further feed the workload predic-
tions from the workload characterization component in Section 3, and obtain the
predicted performance measures. Combining the predicted performance measures

12

with the bottleneck analysis results, we can then obtain a deeper understanding of
how the system functions. In particular, many capacity planning related issues can
be solved. For example, the report includes the projected performance measures,
for a projected load or a projected time horizon. These performance measures in-
clude the user response times, and system utilizations. The report also includes the
projected time for the system to experience performance problems, identification of
the overload component, and recommendations for the best actions. Examples of
such recommendations are adding front-end or back-end servers, so that the system
can deliver the expected performance.

5 On-line Optimal Control

Based on the appropriate data of sufficient detail and accuracy, we can construct
workload, system and performance models automatically. Based on these models
and the measurements from the live system, various control actions can be taken.

Many systems are capable of performing real-time resource manangement and
scheduling functions [5]. These systems can be configured to adjust system re-
sources, such as network bandwidth and CPU, allocated to different types of jobs
based on the user’s class, or the type of requested service. These control mecha-
nisms are used to achieve a certain QoS objective, as well as minimize overall sys-
tem operating cost. The optimization functions in the modeling modules map the
given QoS requirements into the most cost and operation efficient hardware and
software configurations. The on-line optimal control module activates a controller
using RMI to dynamically change the scheduling and resource allocation policies
within the servers, based on the system and performance prediction models. Results
of these actions are reflected in changes in the monitored performance measures.
These performance measures, together with the changing workload, will again in-
fluence the control decisions. With all of these functions in place, the system will
then be empowered with self-managing capabilities.

A sample test system has been set up for this on-line optimal control module. The
system consists of a front end web server and a back-end database. A set of client
machines are used to generate three classes of user requests. These three classes
of requests are static images, CPU intensive CGI (Common Gateway Interface)
scripts, and database queries. A proportional share scheduler is activited on the web
server to provide proportional CPU allocation to the three classes of requests, based
on the weight parameters assigned to them. These weights can be adjusted in real-
time by the control module. Measurement agents collect throughput and response
information from the web server, and then sends the collected information to the
control module. The control module calculates the best parameter setting for the
proportional share scheduler, in order to minimize a weighted sum of the response
times. These control parameters are then passed on to the scheduler, and become

13

active immediately.

Figure 9 shows a sample control panel for the live system. The top two plots in
Figure 9 provide the response time and request volume information, for each class
of request. The lower left plot shows sharing proportions among the request classes
for the system resources. The goal is for the system to minimize a weighted sum
of the response times. This objective function over time is plotted on the lower
right plot. These delay penalty weights can be specified, and changed on screen.
They are used to distinguish the importance of different requests. The automatic
control actions can be activated or deactivated on the screen. An improvement in
the overall system performance has been observed in our system testbed, as a result
of the control actions.

Fig. 9. The Control Panel

6 Summary

We have presented a comprehensive toolset for workload characterization, perfor-
mance modeling and analysis, and on-line control, based on advanced techniques in
statistical analysis, queueing theory and dynamic scheduling and control method-
ologies.

14

Workload characterization provides on-line monitoring and analysis of requests to
the system. It also provides agents to collect and display system usage measure-
ments. This module conducts profiling, traffic analysis and predictions for the in-
coming workload. The workload models can be the input to the system and appli-
cation modeling module. They are also used to generate realistic benchmarks for
testing purposes.

The use of system application modeling and analysis builds multi-class queueing
network models for the request serving process. It provides a flexible way to build
models for the general system architecture, specifies the service components, and
quantifies the speed and overhead for each type of request at each service compo-
nent. Simulation and analytical solutions are used to analyze the given system, and
provide valuable throughput, response time, and bottleneck analysis.

The on-line optimal control component provides efficient algorithms to dynami-
cally adjust resource control policies on-line, based on recently observed arrival
processes, system and application models, and the control objective function.

Built on top of a flexible architecture, with a rich set of functional components
working in coordination, this toolset provides significant value for key business
processes. The significant value includes capacity planning, performance predic-
tion, performance engineering and on-line control of system resources.

References

[1] J. P. Bigus, J. Bigus. Constructing Intelligent Agents with JavaTM: A Program-
mer’s Guide to Smarter Applications. John Wiley & Sons; Book and CD-ROM
edition (December 1997). ISBN 0471191353.

[2] J. P. Bigus, D. Schlosnagle,et al. Agent Building and Learning Environment.
http://www.alphaworks.ibm.com/tech/able/

[3] A. Dmers, S. Keshav and S. Shenker. Analysis and Simulation of Fair Queueing
System. Internetworking Research and Experience, Vol. 1, 1990.

[4] G. Fayolle, I. Mitrani, R. Iasnogorodski. Sharing a Processor Among Many
Job Classes. J. ACM, Vol. 14, No. 2, 1967.

[5] L. L. Fong, M. H. Kalantar, D. P. Pazel, G. Goldszmidt, K. Appleby, T. Eilam,
S. A. Fakhouri, S. M. Krishnakumar, S. Miller and J. A. Pershing. Dy-
namic Resource Management in an eUtility. InProceedings of NOMS 2002
IEEE/IFIP Network Operations and Management Symposium, Piscataway, NJ,
IEEE. 2002, p. 727-40, April 2002.

[6] M. Hale, et al. JSci - A science API for JavaTM.
http://jsci.sourceforge.net/

[7] G. Hunt, G. Goldszmidt, R. King, and R. Mukherjee. Network dispatcher:
A connection router for scalable internet services. InProceedings of the 7th
International World Wide Web Conference, April, 1998.

15

[8] A. K. Iyengar, M. S. Squillante, and L. Zhang. Analysis and characterization
of large-scale web server access patterns and performance.World Wide Web,
2, June 1999.

[9] L. Kleinrock. Queueing Systems Volume II: Computer Applications. John
Wiley and Sons, 1976.

[10] Z. Liu, N. Niclausse, and C. Jalpa-Villanueva. Web traffic modeling and per-
formance comparison between HTTP 1.0 and HTTP 1.1. In E. Gelenbe, edi-
tor, Systems Performance Evaluation: Methodologies and Applications, pages
177–189. CRC Press, 2000.

[11] Z. Liu, M. S. Squillante, C. H. Xia, and L. Zhang. Preliminary analysis of
various SurfAid customers. Technical report, IBM Research Division, July
2000. Revised, December 2000.

[12] Z. Liu, M. S. Squillante, C. H. Xia, S. Yu, and L. Zhang Web Traffic Profil-
ing, Clustering and Classification for Commercial Web Sites. The 10th Inter-
national Conference on Telecommunication Systems, Modeling and Analysis
(ICTSM10), 2002.

[13] D. A. Menasce, and V. A. F. Almeida.Capacity Planning for Web Perfor-
mance: metrics, models, and methods. Prentice Hall, 1998.

[14] A. K. Parekh, and R. G. Gallager. A Generalized Processor Sharing Approach
to Flow Control in Integrated Services Networks: The Single-Node Case.IEEE
Transactions on Networking, Vol 1, No. 3, 1993.

[15] M. S. Squillante, B. Woo, and L. Zhang. Analysis of queues with depen-
dent arrival processes and general service processes. Technical report, IBM
Research Division, 2000.

[16] M. S. Squillante, D. D. Yao, and L. Zhang. Web traffic modeling and web
server performance analysis. InProceedings of the IEEE Conference on Deci-
sion and Control, December 1999.

[17] M. S. Squillante, D. D. Yao, and L. Zhang. Internet traffic: Periodicity, tail
behavior and performance implications. In E. Gelenbe, editor,Systems Perfor-
mance Evaluation: Methodologies and Applications. CRC Press, 2000.

[18] Sun Microsystems, Inc. JavaTM 2 Platform, Standard Edition (J2SETM).
http://java.sun.com/j2se/

[19] R. W. Wolff. Stochastic Modeling and the Theory of Queues. Prentice Hall,
1989.

[20] L. Zhang, C. H. Xia, M. S. Squillante, and W. N. Mills III. Workload ser-
vice sequirements analysis: A queueing network optimization approach. In
Tenth IEEE International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS), 2002.

16

