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Abstract

The complex quadratic form Vz�P � � z�Pz� where z is a �xed vector in Cn and z� is

its transpose� and P is any permutation matrix� is shown to be a convex combination of

the quadratic forms Vz�P��� where P� denotes the symmetric permutation matrices� We

deduce that the optimal probability density associated to the chiral index of a sample

from a bivariate distribution is symmetric� This result is used to locate the upper bound

of the chiral index of any bivariate distribution in the interval ��� ���� � � ������

R�esum�e



�

Nous montrons que la forme quadratique complexe Vz�P � � z�Pz� o�u z est un vecteur

donn�e dans Cn et z� est son transpos�e� et P est une matrice de permutation� est une

combinaison convexe des formes quadratiques Vz�P��� o�u les P� sont des matrices de

permutation sym�etriques� On en d�eduit que la densit�e de probabilit�e optimale associ�ee

�a l�indice chiral d�un �echantillon d�une distribution bivari�ee est sym�etrique� Ce r�esultat

est utilis�e pour localiser la borne sup�erieure de l�indice chiral d�une distribution bivari�ee

quelconque dans l�intervalle ��� ���� � � ������

AMS ���� subject classi�cation� �E��

�� Introduction

The chiral index � of a �nite variance d�variate probability distribution P is the Wasser�

stein distance between the distribution P and its inverted image �P� minimized for all

rotations and translations of �P� and normalized to the inertia of P ���� It takes values

over ��� ��� It is a skewness measure o�ering various applications in computer sciences

���� In the case of a sample of size n� the optimal joint density between and P and �P is

known to exist ���� The matrix associated to this optimal density is shown to be ���n�

times a permutation matrix ������ In the univariate case� this permutation matrix is sym�

metric ���� We extend the result in this paper to the bivariate case� the optimal joint

density is symmetric� The upper bound of the chiral index of a d�variate distribution is

unknown� except in the univariate case� for which it is ��� ���� In the bivariate case� the

symmetry of the optimal joint density of a sample is used to locate the upper bound in

��� ���� �� ������

�� Symmetry of the permutation

We �rst need to establish two theorems in the complex plane�



�

Fix a complex n�vector z � �z�� z�� � � � � zn� �Cn� Given a permutation � on n indices

f�� �� � � � � ng� de�ne the function Vz of � as Vz��� �
nP

j��
zjz��j�� Notice that we are not

taking complex conjugates� When z is understood� we will write V ��� for Vz����

A symmetric permutation � is one satisfying � � ���� It is the product of disjoint ��cycles

and ��cycles� The permutation matrix P� is symmetric and V �P�� � V �P �
���

Theorem �� For any permutation � � V �� � is a convex combination of fV ��� � � � ���g�

This following lemma will be crucial�

Lemma �� If � is an n�cycle� then there is a symmetric permutation � satisfying

��V ���� � ��V �� ���

To prove the lemma� Let � � ��� �� �� � � � � n�� When n � f�� �g the result is immediate� �

itself is a symmetric permutation� When n is even� de�ne two permutations �as products

of n
� disjoint ��cycles�

� � ��� ����� �� � � � �n� �� n�

	 � ��� ����� �� � � � �n� ��

and compute that

V �� � �
�

�
�V ��� � V �	�� �

So V �� � is a convex combination of V ��� and V �	�� whence minf��V �������V �	��g �

��V �� ���

We are left with the case where n is odd� n � ��

Consider the following �n permutations�

�j � �j��j � �� j � ���j � �� j � �� � � � �j � �� j � ��

	j � �j � �� j � ���j��j � �� j � ���j � �� j � �� � � � �j � �� j � ��

�����
����
� � j � n
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We compute�

V ��j� � V ��j���� �V �� � � z�j � z�j�� � �zjzj�� � �zj�� � zj�
��

where we are considering the indices modulo n� so that if j � n then zj�� � z��

V ��j� � V �	j�� �V �� � � �z�j � �zj��zj�� � �zj��zj � �zjzj�� � ���zj�� � zj��zj � zj����

Now suppose the lemma is false� so that for all j� ��V ��j�� 
 ��V �� �� and ��V �	j�� 


��V �� ��� Then for all j�

���zj�� � zj�
�� 
 ��

In particular

��zj�� � zj� �� ��

Also�

�����zj�� � zj��zj � zj���� 
 ��

Fix j� De�ne

b � zj�� � zj

c � zj � zj���

We have just seen that ��b�� 
 � and ��c�� 
 � and ��bc� � �� Observe also that

���b�c���c�b� is pure imaginary� so its square is real and nonpositive�

��b��c� � ��c��b� � ���b���c�bc � ��
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Taking the real parts of all terms and rearranging�

���b���c���bc� � ��b����c�� � ��c����b�� 
 ��

and from ��bc� � � we conclude

��b���c� � ��

So the sign of ��b� � ��zj�� � zj� and the sign of ��c� � ��zj � zj��� are opposite� As

j cycles around �� �� � � � � n� �� the signs of ��zj�� � zj� alternate� But n is odd� so this

alternation is impossible� The contradiction proves the lemma�

Lemma �� If � is an n�cycle� then V �� � is a convex combination of fV ��� � � � ���g�

Proof� Suppose the conclusion is false� Then there is a line � through V �� � in the complex

plane� with all fV ��� � � � ���g lying on one side of the line� If � has direction � we

have ��Vz���ei�������� 
 ��Vz�� �ei�������� for all � with � � ���� Now set w � zei���������

so that Vw�� � � ei�������Vz�� �� and apply Lemma ��

Proof of Theorem �� To see that the theorem follows from Lemma �� express an arbitrary

permutation � as a product of disjoint cycles �j� apply the lemma to each cycle �and its

reduced set of variables fzkg�� and use additivity of V ����

Then Theorem � is deduced immediately from Theorem ��

Theorem �� The modulus of z�Pz is maximized by a symmetric permutation matrix P��

It is pointed out that the optimal permutation may be not unique� An example is

z� � ��� i� � � i�� where i �
p��� The identity permutation � and the permutation �

interchanging the last two elements share jV ���j � jV �� �j � � 
 V ��� for all other per�

mutations �� Non symmetric permutations may be optimal �e�g� when z has several

identical elements��





�� Application to the chiral index

We set z � x� iy� x and y being �xed vectors in Rd� Then� the modulus of the complex

quadratic form z�Pz is the di�erence of the eigenvalues �� and �� �sorted in decreasing

order�� of the matrix X ��P�P
�

� �X� where the matrix X � �xjy� has two columns and n

lines� Thus�

jz�Pzj � �� � ��

The chiral index � is computed at null expectation from equations �� and ��� in ���� For

a sample of a bivariate distribution P with inertia T � kzk� and kzk� � x�x � y�y� we

have�

nT ��� �� � max
fPg

��� � ���

The matrix associated to the joint density between P and �P is �P�n�� and the Wasserstein

distance betweenP and �P is maxfP�ng�������� It follows fromTheorem � that the optimal

joint density matrix �P�n� is symmetric�

We consider now the more general situation where the n points are partitioned into groups

of colors �������� Permutations involving cycles over two groups are no more considered�

and the optimal permutation is taken over a subset of the n� permutations� Obviously�

Theorems � and � stand again� and the optimal joint density matrix is still symmetric�

Colors are not further considered in this paper�

	� Localization of the upper bound of the chiral index
 part �

We exhibit here a family of centered sets for which the ratio maxfPg jz�Pzj�kzk� is arbi�

trarily close to ���� �Centering means working at null expectation� It means here that

��z � �� where � is a vector in Cn each of whose elements is �� It is also recalled that the

ratio is insensitive to an arbitrary planar rotation �phase��



�

Fix � 
 �� Choose an even integer m 
 ���� Let � � ei
��

�m be a complex root of unity� so

that ��m � �� Select an integer r 
 m���� and an even integer k 
 rm����� The complex

vector z has n � �� � r � r� � � � � � rm�� � �k� elements as follows� There are m � �

blocks labelled j � �� � � � �m� �� each consisting of identical elements� For j � m� block

j has rj identical elements with value �j�rj��� Let S denote the sum of these elements�

S �
j�m��P
j��

�jrj��� Block m contains k identical elements with value �S�k� block m � �

contains k�� elements with value iS�k� and block m�� contains k�� elements with value

�iS�k� The sum of elements of z is zero� block m cancels the �rst m blocks� and blocks

m � �� m � � cancel each other� Also� the sum of squares of elements of z is zero� the

squares of elements in the �rst m blocks add to
Pm��

j�� ��j � �� while blocks m � � and

m� � cancel block m� One can compute x�x � y�y � m�� �O��� and x�y � ��

We know from Theorem � that the optimal permutation P pairs the elements of z� some

being paired with themselves when P contains ��cycles� Let Bj be the number of elements

paired within the block j� We set 	j � Bj�r
j � so that � � 	j � � for j � � � � �m� �� The

contribution of these elements to z�Pz is 	j��j�

One can see that the contribution to z�Pz of the elements paired between two di�er�

ent blocks j� and j� is O���r�����jj��j�j� � O���m�� when j� � m and j� � m� so

that the m� � m o��diagonal blocks contribute a total of O��� to z�Pz� The contri�

bution of the elements paired between the blocks j � m and blocks m�m � ��m � � is

O
�
rm��

�
�p

rm��

� jSj
k

�
� O���� The contribution of the elements paired within the last

three blocks is O
�
k
� jSj

k

���
� O���� All these contributions sum to at most O���� except

for the diagonal terms j� � j� � m�

We are looking for the limit when m tends to in�nity� of the ratio maxfPg jz�Pzj�kzk��



�

When m is arbitrarily large� we look for the m values 	j maximizing�

j
j�m��P
j��

	j�
�j �O���j

m�O���

The complex number � �
j�m��P
j��

	j�
�j is the sum of m terms having all modulus in

the interval ��� ��� Neglecting the term O���� we can see that only the terms o�ering a

di�erence of phase � such that cos��� � 	j��j�j will contribute to the modulus of �� Since

j�j tends to in�nity when m tends to in�nity� only the terms having a di�erence of phase

within ����������� with � will contribute to the modulus of ��

For these latter we set 	j � �� and we set 	j � � elsewhere� Working with a free arbitrary

phase� we have�

� � � � �� � �� � � � � � ���m����� �
�� �m

�� ��
�

�

��i���� sin�����m��

Its modulus is

j�j � �

sin���m�
�

m

�
�O

�
�

m

�
�

m

�
�O���

Therefore� the limit is�

lim
m��fmax

fPg
jz�Pzj�kzk�g � ���

It means that our family of centered sets z has a chiral index arbitrarily close to �� ����

Thus we have proved Lemma ��

Lemma �� The upper bound of the chiral index of a bivariate sample cannot be smaller

than �� ����

�� Localization of the upper bound of the chiral index
 part �
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We �rst show that no set can have the ratio maxfPg jz�Pzj�kzk� smaller than ��� under

the additional condition that at least half of the n elements zj are null� The centering

condition is not set here�

We consider an arbitrary phase  and its associated permutation P� such that zj is paired

with itself when ��z�j ei�� 
 � and zj is paired with a null element when ��z�j ei�� � ��

Setting z�j � rje
i�j� we have ei�z�P�z �

P
rje

i����j�� and since jz�P�zj � j��ei�z�P�z�j� we

have�

jz�P�zj
kzk� �

P
rj maxf�� cos� � �j�gP

rj

The numerator of the right member of the inequality above is a continuous function of

 maximized for some unknown value of � where �� is the phase of the free rotation�

Although the maximum is di!cult to locate� it cannot be smaller than the mean value of

the function� This mean value is�

������

����Z
���

X
rj maxf�� cos� � �j�gd

Permuting the two summation operators� we are left with a �nite sum of integrals� each

of them being equal to �rj � The mean value of the function is �
P
rj���� and thus we

obtain Lemma ��

Lemma 	� For any complex vector having at least half of its elements null� we have the

following inequality� �maxfPg jz�Pzj�kzk�� � ����

The condition �at least half of the elements are null is asymptotically satis�ed for the

sets considered in the previous section� Now we remove this condition� and we set instead

the centering condition ��z � ��



��

We know that an angle  can be found such that�

X
rj maxf�� cos� � �j�g � �����

X
rj

Let k be the number of elements zj such that ��z�j � � �� We de�ne zk as the k�dimensional

vector such that ��z�j � � �� and zn�k as the �n�k��dimensional vector such that ��z�j � � ��

such that ��zk � ��zn�k � �� We set the arbitrary phase such that  � �� without loss of

generality�

X
maxf����z�j �g � �����

X jzjj�

Then we build the matrix �nW��� such that �W�� is a joint density matrix and �nW�� is

a doubly stochastic matrix� as follows�

�n� k��nW�� � � � �� �

	
BBB

�� � �� � nI �

� � � ��

�
CCCA

in which I is the identity matrix of size n� k and the vectors � have the appropriate size

�either k� or n� k� or n�� Then� building z� � �z�n�kjz�k�� we have�

z��nW��z �
n

n � k
�z�n�kzn�k�

jz��nW��zj � n

n� k
j��z�n�kzn�k�j

jz��nW��zj � n

n� k
�
�

�
�
X jzjj�

The permutation matrices are the extreme points of the closed bounded convex set of



��

bistochastic matrices� Then� maxfPg jz�Pzj � jz��nW��zj and�

max
fPg

jz�Pzj � n

n� k
�
�

�
�kzk�

And since k � n�

max
fPg

jz�Pzj�kzk� � ����

We obtain Lemma ��

Lemma �� The chiral index of any bivariate sample cannot be greater than � � �����

A slight improvement is obtained when the condition z�z � � is added� We build the

doubly stochastic matrix �nW���

�n � �n� k���nW�� � � � �� �

	
BBB

� � �� �

� �� � �� � nI

�
CCCA

Then�

z��nW��z �
n

n� �n � k�
�z�kzk�

Since z�kzk � �z�n�kzn�k� we are led to the same inequalities as above� except that the

factor n��n� k� is now replaced by n��n � �n� k���

max
fPg

jz�Pzj � n

n� �n� k�
�
�

�
�kzk�

Depending which of k or �n � k� is the smaller� the largest of the ratios n��n � k� and

n��n � �n� k�� cannot be smaller than ���� and thus�

max
fPg

jz�Pzj�kzk� � ����
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The condition z�z � �� i�e� x�x � y�y and x�y � �� means that the variance matrix of the

centered set �xjy� is proportional to the identity matrix� This condition is asymptotically

satis�ed by the sets described in the previous section�

�� Conclusion

From Lemmas � and �� the upper bound of the chiral index of any bivariate sample is

lying somewhere in the interval �� � ���� � � ������ From the convergence theorem in

section IV in ���� we deduce that this interval is still valid for any bivariate distribution

with �nite and non null inertia�
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