
RC23468 (W0412-040) December 15, 2004
Computer Science

IBM Research Report

Improved Approximation Algorithms for
Broadcast Scheduling

Nikhil Bansal, Don Coppersmith, Maxim Sviridenko
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Improved approximation algorithms for Broadcast Scheduling

Nikhil Bansal Don Coppersmith Maxim Sviridenko∗

Abstract

We consider two scheduling problems in a broadcast setting. The first problem is that of minimizing
the average response time of requests. For the offline version of this problem we give an algorithm with
an approximation ratio ofO(log2(T +n)), wheren is the total number of pages andT is the time horizon
(arrival time of the last request). This substantially improves the previously best known approximation
factor ofO(

√
n) for the problem [3].

Our second result is for the throughput maximization version of the broadcast scheduling problem.
Here each request has a deadline and the goal is to satisfy the maximum number of requests by their
deadlines. We give an algorithm with an approximation ratio of5/6. This improves the previously best
known approximation guarantee of3/4 for the problem. [10].

1 Introduction

In this paper we consider two problems in a broadcast setting. The first problem is the problem of minimizing
the average response time inon-demand data broadcastingsystems.

The problem of minimizing the response time is formalized as follows: There is a collection of pages
P = {p1, . . . , pn}. We assume that time is slotted and any page can be broadcast in asingletime slot. At
any timet, the broadcast server receivesnp(t) requests for pagep for eachp ∈ P . We say that a request
ρ ∈ Ψ = {1, . . . ,m} for pagepiρ ∈ P that arrives at timetρ is satisfied at timeciρ(tρ), if ciρ(tρ) is the first
time aftertρ when pagepiρ is transmitted by the broadcast server. Theresponse timeof the requestρ ∈ Ψ
is defined to be the time that elapses from its arrival till the time it is satisfied, i.e.ciρ(tρ) − tρ. We assume
that requestρ arrives in the end of the time slottρ and therefore, it cannot be satisfied in the time-slot in
which it arrived, i.e. the response time for any request is at least 1. We want to find a broadcast schedule that
minimizes the average response time, defined to be(

∑
p∈P

∑T
t=1 np(t)(cp(t)− t))/(

∑
p∈P

∑T
t=1 np(t)).

In the second problem every request has a deadline; if a request is not served before its deadline it is
lost. The goal is to maximize the total throughput, i.e. the total number of satisfied requests. More formally,
every requestρ ∈ Ψ has three parameters associated with it. The arrival timetρ, the pagepiρ ∈ P which
it requests and the deadlinedρ, i.e. if pagepρ is not transmitted during the time interval(tρ, dρ] the request
is lost, otherwise it is satisfied. The goal is to assign one page per time unit during the planning horizon
[0, dmax] and maximize the total number of satisfied requests.

Previous Work and Our results: We first discuss the average response time problem. Our paper focuses
on the offline version of the problem where the request sequence is known in advance to the scheduling
algorithm. This problem was shown to be NP hard by Erlebach and Hall [8].

Most of the previous algorithmic work on the problem has focused on resource augmentation where the
server is given extra speed compared to the optimal algorithm. These results can be viewed as bicriteria
approximation algorithms that comparek-speed approximation algorithm against the performance of an

∗IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598. E-mail:
{bansal,dcopper,sviri }@us.ibm.com .

1

optimal1-speed algorithm, where ak-speed algorithm is one that allows a server to broadcastk pages in
each time slot. Kalyanasundaram et al. [11] gave a1

α -speed, 1
1−2α -approximation algorithm for any fixed

α, for 0 ≤ α ≤ 1/3. Gandhi et al. [9] have given a1α -speed, 1
1−α -approximation algorithm for any

α ∈ (0, 1/2]. Erlebach and Hall [8] gave a6-speed1-approximation algorithm for the problem, which
was improved to a4-speed1-approximation algorithm by [9]. Later, Gandhi et al. [10] give a2-speed,2-
approximation, (which they improved further in their journal version to a2-speed,1-approximation). Very
recently, Bansal et al. [3] gave an algorithm that works for arbitrary small speed up factor (such algorithms
are referred to as fully-scalable algorithms in the scheduling literature [13]). Their algorithm achieved an
approximation ratio ofO(1/ε) with a (1+ ε)-speed. Here(1+ ε)-speed means that the algorithm is allowed
to transmit one extra page every1/ε time steps.

In the case where no extra speed is allowed, observe that transmitting the pages in the cyclic order
p1, . . . , pn repeatedly is a trivialO(n) approximation. This follows because every request has response time
of no more thann in the cyclic schedule above, whereas it has response time of at least 1 in any optimum
schedule. For a while this was essentially the best known guarantee, and only very recently Bansal et al. [3]
gave an algorithm that achieves anO(

√
n) approximation.

We give here an improved algorithm for the problem in the absence of extra speed that achievesO(log2 (T + n))
approximation, whereT is the time at which the last request arrives. In fact our algorithm achieves a some-
what stronger guarantee in that it gives a schedule with average response time of3 ·OPT+O(log2(T +n)),
where OPT denote the value of the optimum solution. We also show that the above algorithm can be modi-
fied to yield a slightly better approximation ratio ofO(log2(T + n)/ log log(T + n)).

The minimum average response time problem has also been studied in the online setting. A lower
bound ofΩ(

√
n) without speedup and a lower bound ofΩ(1/ε) with a speedup factor of(1 + ε), on the

competitive ratio of any randomized online algorithm is known [3]. In [11, Lemma 7], anΩ(n) lower bound
on the competitive ratio of deterministic algorithms is given. Edmonds and Pruhs [6] gave a(4 + ε)-speed,
O(1 + 1/ε)-competitive online algorithm. Later, they [7] showed that a natural algorithm, Longest Wait
First, is 6-speed,O(1)-competitive. Another measure that has been studied in the literature is minimizing
the maximum response time (of a request). For this problem, Bartal and Muthukrishnan [4], gave anO(1)-
competitive algorithm.

The throughput maximization problem was first studied in [2] in a much more general setting. Bar-Noy
et al. [2] designed a1/2-approximation algorithm for the problem. Gandhi et al. [10] designed a3/4-
approximation algorithm for the problem considered in this paper by using depended randomized rounding.
By using the deterministic rounding approach from [1] we obtain a5/6-approximation algorithm for the
throughput maximization version of the broadcast scheduling problem.

2 Preliminaries

We begin by considering an LP relaxation of a natural integer linear program (ILP) for the problem, which
is also the starting point of all previously known approximation algorithms for this problem [11, 9, 10, 3]1.

Let ypt′ = 1 iff pagep is broadcast at timet′, and letxptt′ = 1 iff a request for pagep arrived at timet
is satisfied at timet′ > t. Let npt denote the number of requests for pagep arrived at timet. Relaxing the

1Strictly speaking, [11] considered a different flow-based LP formulation, however Khuller and Kim [12] showed that this
formulation is infact identical to the one considered by [9, 10, 3] and others.

2

integrality constraints onxptt′ andypt gives the following linear program.

min
∑

p

∑
t

T+n∑
t′=t+1

(t′ − t) · npt · xptt′ (1)

subject toxptt′ ≤ ypt′ , ∀p, t, t′ > t, (2)
T+n∑

t′=t+1

xptt′ ≥ 1, ∀p, t, (3)

∑
p

ypt′ = 1, ∀t′, (4)

xptt′ ≥ 0, ∀p, t, t′, (5)

ypt′ ≥ 0, ∀p, t′. (6)

HereT refers to the last time when any request arrives. Observe that it suffices to define variables
until time T + n, as all requests can be satisfied by timeT + n by transmitting pagepi at timeT + i for
i = 1, . . . , n.

We solve the fractional relaxation of this ILP. The relaxed solution may be viewed as broadcasting pages
fractionally at each unit of time such that total fraction of all the pages broadcast in any unit of time is1. A
request for a pagep arriving at a timet is considered completely satisfied at timet′ if t′ is the earliest time
such that the total amount of pagep broadcast during the interval(t, t′] is at least1.

Given an optimal solution of (1)-(6), we first define some useful notation and properties of this LP
solution. We will user(p, t) to denote the LP cost for the response time for a request for pagep that arrives
at timet. That isr(p, t) =

∑
t′>t(t

′ − t)xptt′ .
It is easy to see that in any optimum solution,xptt′ is completely determined by the values ofypt′′ .

In particular, for anyp, t and t′, if
∑t′

t′′=t+1 ypt′′ < 1, thenxptt′ = ypt, and if
∑t′

t′′=t+1 ypt′′ ≥ 1, then

xptt′ = max{0, 1 −
∑t′−1

t′′=t+1 ypt′′}. Otherwise, the solution to the LP can be improved trivially. This

implies that if we definezptt′ = max{0, 1 −
∑t′−1

t′′=t+1 ypt′′}, thenr(p, t) can be expressed as
∑

t′>t zptt′ .
Finally, it is trivial to see that in any optimum solution, each request is completely satisfied by timeT + n
and moreover we can assume that for any timet, the total amount of page transmitted is exactly 1, that is∑

p ypt = 1 for all 1 ≤ t ≤ T + n.
The following observation about response time is crucial and will be used repeatedly:

Lemma 2.1. Consider a request for a pagep that arrives at timet. For α ∈ (0, 1], let t(α) denote the
earliest time aftert such that a total ofα fraction or more of pagep is broadcast during[t, t(α)]. Then∫ 1
0 (t(α)− t)dα = r(p, t). Equivalently if we chooseα uniformly at random in(0, 1] and transmit pagep at

t(α), then the expected response time for this request is LP cost for this request.

Proof. Sinceα is chosen uniformly at random in(0, 1], the probability thatt(α) ≥ t′, is exactly equal
to the probability thatα >

∑t′−1
t′′=t+1 ypt′′ which is exactly equal tomax{1 −

∑t′−1
t′′=t+1 ypt′′ , 0} = zptt′ .

As,
∫ 1
0 (t(α) − t)dα = E[t(α) − t] =

∑
t′>t Pr[t(α) ≥ t′] =

∑
t′>t zptt′ = r(p, t), the desired result

follows.

The following lemma is straightforward and will allow us later to consider a discrete version of Lemma
2.1. The proof is deferred to the appendix.

Lemma 2.2. We can assume thatxptt′ andypt are integral multiples ofδ = 1/(T + n)2. This adds at most
1 to the response time of each request.

3

3 Overview of Techniques

The structure of our algorithm is similar to that of theO(
√

n) approximation algorithm of [3].
We first obtain atentativeschedule which may be an invalid schedule in the sense that it is allowed to

violate the capacity constraints (4) in the ILP. In particular, this schedule may transmit multiple pages at a
time step. Suppose this tentative schedule has the following additional properties:

1. The total response time for this schedule is at mostc = O(1) times the cost of ILP.

2. The capacity constraints are satisfied approximately in the following sense. For any interval of time
(t, t′], the number of pages broadcast by the tentative schedule in this interval is no more thant−t′+b,
for some fixedb. We refer to thisb as thebacklogof the tentative schedule.

In this case, the tentative schedule can be transformed into a valid schedule as follows: We transmit pages
in the same order as the tentative schedule while ensuring that no page is transmitted at an earlier time than
in the tentative schedule. It is not hard to see that the backlog property ensures that no page is transmitted
more thanb steps later than in the tentative schedule (See Lemma 4.6 for a formal proof). This implies a
solution with average response timec · OPT+ b. In the algorithm of [3],c was 1 andb wasO(

√
n).

Our improved approximation is based on two new ideas:
First, we use some global information of the LP solution to construct a tentative solution. Prior to our

work, all algorithms were local in the following sense: Given a solution to the LP above, they produce a
schedule (or a tentative schedule) that ensures that for each requestrt

p, it is satisfied at some time slott′ such
that the cumulative amount of pagep transmitted by the LP solution during the interval(t, t′] is no more
than 1. The main reason for this is that the response time for each request in the integral schedule can be
charged to its response time in the LP solution.

Note that one consequence of having a local schedule is that if a pagep is broadcast at timet, then
the next broadcast of pagep must be at a timet′ such that cumulative amount of pagep transmitted by the
LP solution during(t, t′] is no more than 1. Interestingly, the example described in detail in the Appendix
(Section 7) shows that it is unlikely an algorithm based on a local schedule can achieve an approximation
ratio better thanO(

√
n).

We get around this problem by adopting a more global approach. We show that for each pagep, we
can partition the time horizon,1, . . . , T + n, into intervalsB(p, i), such that the cumulative amount of page
p transmitted inB(p, i) is O(log (T + n)), and that the tentative schedule for eachB(p, i) can be chosen
independently of the other blocks. While this could lead to requests not being satisfied by a transmission
locally, we show that our choice ofB(p, i) allows us to charge their response time toO(1) times their cost
in ILP.

The second part of the algorithm is to give a scheme to choose the tentative schedule for eachB(p, i)
in such a way that when all the tentative schedules for eachB(p, i) are combined together, the backlog at
any time step is bounded byO(log2(T + n)). To do this, we define a linear program where the variables
correspond to the possible tentative schedules that can be chosen for eachB(p, i). This program has the
property that there is feasible (fractional) solution where the backlog is0 and the response time is onlyO(1)
times that of ILP. The main idea then is to solve a sequence of linear programs, where we successively relax
the constraints in this linear program such that the number of fractionally set variables decrease geometri-
cally at each step, the cost of the objective function does not increase and the increase in backlog is bounded
during each iteration of relaxing the constraints. In the end we obtain a tentative schedule with backlog
O(log2(T + n)).

4

4 Minimizing Average Response Time

Our algorithm begins by solving the LP (1)-(6). Letr(p, t) denote the response time according to the
LP solution for a request for pagep that at timet. Let c(p, t, t′) denote the cumulative amount of page
transmitted by the LP solution during the time interval(t, t′], that isc(p, t, t′) =

∑t′

t′′=t+1 ypt′′ . We now
define the key concepts of blocks andp-good time points.

4.1 Blocks andp-good time points

Definition 1. Let r(p, t) denote the response times as determined by the solution to the linear program
(1)-(6). For a pagep we call a time pointt to bep-good if r(p, t) ≤ 2r(p, τ) for all τ < t such that
c(p, τ, t) ≤ 1.

The following lemma shows that ap-good point can be found in any interval of time that broadcasts a
sufficient amount of pagep.

Lemma 4.1. Any time interval(t, t′] such thatc(p, t, t′) > log (T + n) contains ap-good point.

Proof. Suppose all the points in(t, t′] are notp-good. Since,t′ is notp-good, there exists at1 < t′ such
thatc(p, t1, t

′) ≤ 1 andr(p, t1) > 2r(p, t′). Note thatt1 lies in the interval(t, t′), and hence is notp-good
by our assumption. Thus there existst2 such thatc(p, t2, t1) ≤ 1 andr(p, t2) > 2r(p, t′). Repeating the
argument forlog (T + n) steps, we obtain a sequence of pointst < tlog (T+n) < · · · < t2 < t1 < t′ such
that c(p, tlog (T+n), t

′) ≤ log (T + n) andr(p, tlog (T+n)) > 2log (T+n)r(p, t′), which is impossible as the
response time for any request is bounded between1 and(T + n).

Lemma 4.1 implies that ift is ap-good point, and such thatc(p, t, T + n) > log (T + n), then there is
anotherp-good pointt′ > t such thatc(p, t, t′) ≤ log (T + n). Thus, for eachp we can form a collection
G(p) = {0 = t(p, 0), t(p, 1), t(p, 2), . . . , t(p, bp) = (T + n)} of time points such that thet(p, i) is p-good
for 1 ≤ i ≤ bp − 1 and1 ≤ c(p, t(p, i − 1), t(p, i)) ≤ 1 + log (T + n) for all 1 ≤ i ≤ bp − 1. The last
interval must be such that1 ≤ c(p, t(p, bp − 1), t(p, bp)) ≤ 2 + log (T + n) and such a collection of points
can be formed by a simple greedy strategy. If the last interval produced by this greedy strategy has length
smaller than 1, we merge this interval and the second-last interval (this is why we have slack for the size of
the last interval).

We call the time intervals(0 = t(p, 0), t(p, 1)], (t(p, 1), t(p, 2)], . . . , (t(p, bp − 1), t(p, bp)], blocks for
pagep. Note that there arebp blocks for pagep. We will useB(p, i) to denote theith block for pagep. Let
Bp denote the set of all blocks for pagep and letB = ∪pBp denote the set of allblocks. For a blockB(p, i),
we define its tail to be the time slotst such thatc(p, t, t(p, i)) < 1. That is, the cumulative amount of page
p transmitted after timet until the end of the block in whicht lies, is less than1.

Let us focus on a particular block, sayB(p, i). Forα ∈ (0, 1], andl = 0, 1, 2, . . . , and blockB(p, i), let
t(p, i, l, α) denote the time such thatt(p, i, l, α) ∈ B(p, i) and it is the earliest time whenl+α units of page
have been broadcast during(t(p, i), t(p, i, l, α)], i.e. since the start of the blockB(p, i) until t(p, i, l, α).
For a given blockB(p, i) and α ∈ (0, 1], let C(p, i, α) denote the set of all time slotst(p, i, l, α) for
l = 0, 1, 2,

We will only be interested in tentative schedules that are obtained by choosing an offsetα(p, i) for each
blockB(p, i) and transmitting pagep at all time slots inC(p, i, α). We useΓ to denote the class of all such
possible tentative schedules. Observe that any tentative schedule inΓ satisfies all the requests. This follows
as each request for pagep that arrives inB(p, i) for 1 ≤ i ≤ bp − 1 (i.e. except for the last block for page
p) is served withinB(p, i) or in B(p, i + 1) by any tentative schedule inΓ. Finally, as there is at least unit

5

of pagep broadcast in the LP solution after the arrival of the last request for pagep, all requests for pagep
that arrive during the last blockB(p, bp) are served withinB(p, bp).

The following lemma shows that there is a convex combination of tentative schedules inΓ, such that the
total response time is not too high and all the capacity constraints are satisfied at each time step.

Lemma 4.2. Suppose for each blockB(p, i) ∈ B, we choose the offsetα(p, i) uniformly at random in[0, 1].
Then the tentative schedule satisfies the following properties:

1. The expected number of pages transmitted at any time stept is exactly 1.

2. For each request, its expected response time is at most 3 times the cost incurred by it in the LP solution
of (1)-(6).

Proof. 1. For any timet ∈ B(p, i), since we chooseα(p, i) uniformly at random in(0, 1], then the
probability that pagep is transmitted at timet is exactlyypt.

For anyp, as the blocksB(p, i) partition the entire time interval(0, T + n], for each timet there is
exactly one block for pagep that containst. Thus, the probability that pagep is transmitted at time
t in the tentative schedule is exactlyypt. Summing up over all the pages we have that the expected
number of pages transmitted at timet is exactly

∑
p ypt which is exactly1 by (4).

2. Consider a particular blockB(p, i). We say that requestρ is early if it does not arrive in the tail
of B(p, i), or equivalently thatc(p, tρ, t(p, i)) ≥ 1. Note that if a requestρ is early this implies
that irrespective of the choice ofα(p, i), it will always be served at some time withinB(p, i) in the
tentative schedule. Sinceα(p, i) is chosen uniformly at random in(0, 1], by Lemma 2.1 the expected
response time for early requests is the same as the cost in the LP solution.

Thus we focus on the contribution of requests that are not early. We call such requests late requests.
For late requests, it could be the case that they arrive during the blockB(p, i) but they are only
served duringB(p, i + 1) in the tentative schedule. Consider a late requestρ for pagep that arrives
at time tρ ∈ B(p, i) for somei such that1 ≤ i ≤ bp − 1. Since this request is late, we have
that c(p, tρ, t(p, i)) < 1. With probabilityc(p, tρ, t(p, i))) this request is served inB(p, i) and with
probability1 − c(p, tρ, t(p, i)) it is served inB(p, i + 1). Conditioned on the event that this request
is served inB(p, i + 1), asα(p, i + 1) is chosen uniformly at random in(0, 1], by Lemma 2.1, its
expected response time is(t(p, i)− tρ)+ r(p, t(p, i)). Thus the overall expected response time ofρ is

t(p,i)∑
t′′=tρ+1

(t′′ − tρ) · xptρt′′ + (1− c(p, tρ, t(p, i))) · (t(p, i)− tρ + r(p, t(p, i)))

=
t(p,i)∑

t′′=tρ+1

(t′′ − tρ) · xptρt′′ +
∞∑

t′′=t(p,i)+1

(t(p, i)− tρ) · xptρt′′ + (1− c(p, tρ, t(p, i))) · r(p, t(p, i))

≤
∞∑

t′′=tρ+1

(t′′ − tρ) · xptρt′′ + r(p, t(p, i))

≤ r(p, tρ) + 2r(p, tρ) = 3r(p, tρ)

The first step follows as
∑∞

t′′=t(p,i)+1 xptρt′′ = 1 − c(p, tρ, t(p, i)); the second step follows by upper

bounding
∑t(p,i)

t′′=tρ+1(t
′′−tρ) ·xptρt′′ +(t(p, i)−tρ)

∑∞
t′′=t(p,i)+1 xptρt′′ by

∑∞
t′′=tρ+1(t

′′−tρ) ·xptρt′′ ;
and the last step follows ast(p, i) is ap-good point and hence by definitionr(p, t(p, i)) ≤ 2r(p, tρ).

6

Finally, by Lemma 2.2 we can assume that all the offsetsα are integral multiples ofδ. For ease of
notation, we will useB(p, i, j) to denote the time slots inC(p, i, α = δj). We will call B(p, i, j) a block-
offset.

4.2 Auxiliary LP

Recall that our goal is to choose the offsets for each block in such a way that the total response time of
the tentative schedule is not too high, and secondly the backlog is small at all times. For this purpose we
consider the linear program defined by (7)-(10) below.

We have variableszpij . These correspond to choosingα(p, i) = j/(T + n)2 for blockB(p, i). We will
have a set of constraints that the total amount of offsets chosen for each block is exactly1. We will also
have the capacity constraints at for each time step, that is the total amount of page transmitted at any time
is at most 1. Finally, express the objective function of minimizing the total response time in terms of the
variableszpij as follows: For each blockB(p, i) we associate ablock-offset response timeR(B(p, i, j))
which essentially accounts for the contribution of the block-offsetB(p, i, j) to the total response time.
Observe that choosing an offset for blockB(p, i) can affect the response time of requests for pagep that
arrive inB(p, i) and possibly the late requests inB(p, i− 1). The block-offset response timeR(B(p, i, j))
is computed as follows:

1. Let t′ denote the earliest time inB(p, i, j). Each request for pagep in the tail of the previous block
B(p, i− 1) contributest′ − t(p, i− 1) to R(B(p, i, j)). Note that this is time (restricted to time units
in B(p, i)), that any late request inB(p, i− 1) might possibly have to wait.

2. For a requestrt
p for pagep that arrive at timet, wheret ∈ B(p, i), we do the following. Lett′ denote

the earliest time such thatt′ > t andt′ ∈ B(p, i, j), if such at′ does not exist, then we sett′ = t(p, i).
Then, the requestrt

p contributest′ − t to R(B(p, i, j)). Note that this quantity is the contribution to
the response time ofrt

p restricted to the time units inB(p, i).

It is easy to verify by the definition ofR(B(p, i, j)) that they have the following property.

Lemma 4.3. If we construct a tentative schedule where for each blockB(p, i), we choose a block-offset
B(p, i, j(p, i)), then the total response time for this tentative schedule is no more than

∑
p,i R(B(p, i, j(p, i))).

We define the following auxiliary linear program:

min
∑

p

∑
i

∑
j

R(B(p, i, j)) · zpij (7)

subject to
∑

j

zpij = 1, ∀p, i, (8)

∑
p

∑
i

∑
j

w(B(p, i, j), t) · zpij ≤ 1, ∀t, (9)

zpij ≥ 0, ∀p, i, j. (10)

Herew(B(p, i, j), t) is an indicator function:w(B(p, i, j), t) is 1 if t ∈ B(p, i, j) and0 otherwise.
The following lemma essentially follows from Lemma 4.2.

Lemma 4.4. There is a feasible solution to the LP (7)-(10) with cost no more than 3 times the cost of the
LP (1)-(6).

7

Proof. Consider the solution wherezpij = δ, for all p, i and0 ≤ j ≤ 1/δ−1. This corresponds to choosing
an offset uniformly at random for each blockB(p, i). By Lemma 4.2 (part 1) implies that constraints (10)
are satisfied.

We now show that the cost of this solution is no more than 3 times the cost of 1-6. Consider an early
request inB(p, i). Since this request is completely served withinB(p, i) by Lemma 2.1, the contribution of
this request to the objective function is exactly its response time. For a late request for pagep that arrives at
timet in B(p, i−1), its contribution to the objective function corresponding to

∑
j zp,i−1,j ·R(B(p, i−1, j))

is exactly
∑t(p,i)

t′′=t+1(t
′′ − t)xptt′′ + (1− c(p, t, t(p, i))) · (t(p, i)− t) which is at mostr(p, t). Similarly, the

contribution to
∑

j zp,i,j ·R(B(p, i− 1, j)) is exactlyr(p, t(p, i− 1)) which is at most2r(p, t).

Observe that the LP above in weak in thatzpij could have fractional values, however on the other hand it
is tight in the sense that the capacity constraints (9) are satisfied exactly. The rest of algorithm for will deal
with obtaining an integral solution to the above LP by relaxing the constraints (9), but still ensuring that the
solution thus obtained is useful enough to imply our desired result.

4.3 The algorithm

The idea for our algorithm is the following: We relax the constraints (9) in the auxiliary LP such that we
only require these to hold for certain time intervals of rather than for each time unit. We will show that this
gives a basic solution where a constant fraction of the variableszpij are assigned integrally. We then redefine
the intervals and solve another LP. We repeat this forO(log (T + n)) steps, until all butO(1) variableszpij

are non-zero. These are simply set to either 0 or 1 to obtain a valid integral solution, which is our tentative
schedule.

To complete the proof we show that the total response of the tentative schedule obtained above is not
too high, and that the backlog of this tentative schedule is alwaysO(log2(T + n)).

Before we can describe the algorithm to compute the tentative schedule formally, we need some notation.
Let I = (t1, t2] be an interval of time. The size ofI denoted bySize(I) is defined ast2 − t1. The weight
of an interval with respectB(p, i, j), which we denote byw(B(p, i, j), I), is the cardinality of the set
B(p, i, j) ∩ I. That is,w(B(p, i, j), I) is the number of time slots inI that belong toB(p, i, j).

Our algorithm will solve a sequence of LP’s. At each stepk, some variablesx(p, i, j) that were fractional
at the end of stepk − 1 get assigned to 1. A partial solution is an assignment where somex(p, i, j) are set
to 1. For a partial solution obtained at the end of stepk, and an intervalI, let Used(I, k) denote the
number of time slots in this interval used up byx(p, i, j) that are assigned integrally to 1 by the end of
stepk, i.e.Used(I, k) =

∑
p,i,j w(B(p, i, j), I) such thatx(p, i, j) = 1. We will useFree(I, k) to denote

Size(I)−Used(I, k).
We now describe the algorithm to compute the tentative schedule.

1. Initialize: We divide the time horizon from1, . . . , T+n into consecutive intervals of size5 log (T + n).
We call this collection of intervalsI0. For all I ∈ I0, we defineUsed(I, 0) = 0 andFree(I, 0) =
Size(I)−Used(I, 0) = Size(I). LetB0 be the set of all blocksB(p, i) and letS0 = ∅.

2. Repeat the following fork = 1, . . . ,.

• Consider the following linear program defined iteratively based onBk−1, Ik−1 andFree(I, k −
1). (This can viewed as a relaxation of the auxiliary linear program (7)-(10) restricted to partic-
ular variables).

8

min
∑

B(p,i)∈Bk−1

∑
j

R(B(p, i, j)) · zpij (11)

subject to
∑

j

zpij = 1, ∀p, i such thatB(p, i) ∈ Bk−1,(12)

∑
p

∑
i

∑
j

w(B(p, i, j), I) · zpij = Free(I, k − 1), ∀I ∈ Ik−1, (13)

zpij ≥ 0, ∀p, i, j. (14)

• Solve this LP. LetP denote the set of blocksB(p, i) such thatzpij = 1 for somej. LetS denote
the set of block-offset pairsB(p, i, j) such thatzpij = 1.

• SetBk = Bk−1 \ P. These are precisely the blocksB(p, i) for which zpij is not equal to 1 for
any j at the end of stepk. SetSk = Sk−1 ∪ S. These are precisely the variableszpij that are
integrally set to 1 thus far by the end of stepk. For each intervalI ∈ Ik−1, recompute

Used(I, k) = Used(I, k − 1) +
∑

p,i,j:B(p,i,j)∈S

w(B(p, i, j), I)

Note that
∑

p,i,j:B(p,i,j)∈S w(B(p, i, j), I) is exactly the number of pages that are assigned to
be transmitted during intervalI in stepk. SetFree(I, k) = Size(I) − Used(I, k). Essentially,
Free(I, k) denotes the number of free time slots in intervalI, at the end of stepk.

• Finally, we compute the set of intervalsIk by merging the intervals inIk−1 as follows: Initially
Ik = ∅. Starting from the leftmost interval inIk−1, merge intervalsI1, I2...Il ∈ Ik−1 greedily
to form I until Free(I1, k) + Free(I2, k) + . . . ,Free(Il, k) first exceeds5 log (T + n). We set
Free(I, k) = Free(I1, k) + Free(I2, k) + . . . ,Free(Il, k) andUsed(I, k) = Used(I1, k) +
Used(I2, k) + . . . ,Used(Il, k). By construction, we have that5 log (T + n) ≤ Free(I, k) ≤
10 log (T + n). Add I to Ik and removeI1, . . . , Il from Ik−1 and repeat the process until the
total free space in the intervals inIk−1 is less than5 log (T + n) and hence we cannot form new
intervals. In this case we just merge all the remaining intervals inIk−1 into one interval and add
this final interval toIk.

• If |Ik| = 1 then the algorithm makes one more iteration and then stops. On this last iteration
there is just one constraint of type (13) in the relaxed auxiliary LP. The optimal solution is
integral and very easy to define. We choose the best offset for every remaining block, i.e. we
definezpij = 1 if R(B(p, i, j)) = mins R(B(p, i, s)) for blockB(p, i).

4.4 Analysis

Lemma 4.5. At each iteration of step 2 in the above algorithm, the number of blocksB(p, i) that do not
have anyzpij set to 1 decreases (almost) by a constant factor. In particular

|Bk| ≤ 0.2 · |Bk−1|+ 2

Proof. The total number of non-trivial constraints (of type (12) and (13)) in the LP at stepk is |Ik−1| +
|Bk−1|. Consider a basic optimal solution of the LP at stagek. Let fk be the number of non-zero variables
that are set fractionally (strictly between 0 and 1) and letgk denote the number of variables set to 1. Then,
since we have a basic solution, we have thatfk + gk ≤ |Ik−1| + |Bk−1|. Now, consider the constraints

9

of type 12, if in some blockB(p, i) there is nozpij that is set to 1, then there must be at least2 variables
zpij set fractionally, which implies thatfk/2 + gk ≥ |Bk−1|. Combining these two facts implies that
gk ≥ |Bk−1| − |Ik−1|. By definition, as|Bk| = |Bk−1| − gk, this implies that|Bk| ≤ |Ik−1|.

We now upper bound|Ik−1|. LetFreek−1 denote the total free space at the end of iterationk−1, that is,∑
I∈Ik−1

Free(I, k − 1). Since each interval except probably the last has at least5 log (T + n) free spaces,
we have that|Ik−1| ≤ dFreek−1/(5 log (T + n))e. As for any block-offsetB(p, i, j) and intervalI, the
number of time slotsw(B(p, i, j), I) is mostlog (T + n)+2 time slots, it follows from constraints (12) and
(13) thatFreek−1 is at most(log (T + n) + 2)|Bk−1|. This implies that

|Ik−1| ≤ d0.2 · |Bk−1|+
0.4

log(T + n)
e ≤ 0.2 · |Bk−1|+ 2

Combining Lemma 4.5 with the fact that|B0| ≤ T + n we obtain that the algorithm stops after
log (T + n) + Θ(1) iterations.

In the end of our algorithm we obtain an assignment of zero-one values to variableszpij . Since on every
step of our algorithm we relaxed the LP from the previous step, the cost of this final integral solution is
upper bounded by the optimal value of (7)-(10), which is at most 3 times the optimal value of (1)-(6). This
solution also provides us with integral tentative schedule since it gives us an assignment of pages to the time
slots.

To actually obtain a proper schedule from this tentative schedule, we look at the pages transmitted in the
tentative schedule at time0 and greedily assign it to the next free slot after timet. Formally, we can view
the process of constructing the feasible schedule from the tentative schedule as follows: There is a queueQ,
whenever a pagep is tentatively scheduled at timet, we addp to the tail ofQ at timet. At every time step,
if Q is non-empty, we broadcast the page at the head ofQ.

To complete the proof, we show that no page is delayed more thanO(log2(T + n)) than its position in
the tentative schedule. Thus it suffices to show that the queue lengthQ(t) at timet, in the above description
is always bounded byO(log2(T + n)) at all timest.

Lemma 4.6. Let Used(t1, t2) denote the pages transmitted during(t1, t2] in the tentative schedule. The
maximum queue length at any time is bounded bymaxt1<t2(Used(t1, t2)− (t2 − t1)).

Proof. Let t2 be the time when the backlog in the queue is maximum, and letb denote this backlog. Consider
the last timet1 beforet2 the queue was empty. Sincet1 was the last time when the queue was empty, it must
be the case that exactlyt2 − t1 pages were transmitted during the interval(t1, t2], and henceb is exactly
Used(t1, t2) + t2 − t1. This implies the desired result.

Lemma 4.7. For everyt1, t2, Used(t1, t2)− (t2 − t1) ≤ 20 log2(T + n) + O(log(T + n))

Proof. Consider time interval(t1, t2]. If Λ ≤ log (T + n)+Θ(1) is the number of iterations of our algorithm
then there are at most2Λ intervals[a, b] generated by the algorithm which strictly overlap witht1, i.e.a <
t1 < b or strictly overlapt2, i.e. a < t2 < b. The total number of pages assigned to this intervals by the
tentative schedule is at most2Λ · 10 log n ≤ 20 log2(T + n) + O(log(T + n)).

All other intervals generated by our algorithm do not strictly overlap witht1 andt2. They are either
completely inside or completely outside(t1, t2]. We claim that by constraints (13) the total number of pages
assigned to the remained intervals overlapping with(t1, t2] is upper bounded byt2 − t1. It follows from the
facts that on each iteration we are allowed to use only time slots which were not occupied by the integral
assignments from previous iterations and the total number of pages transmitted in every interval on each
iteration is exactly length of this interval minus the amount of free space which could be used on the next
iteration. The lemma follows.

10

Thus we have that

Theorem 1. The above algorithm produces a broadcast schedule with average response time at most3 ·
OPT+ O(log2(T + n)), where OPT denote the average response time of the optimum schedule.

4.5 Improving the approximation ratio to log2 (T + n)/ log log (T + n)

The main idea is to trade-off the constant multiplier term with the additiveO(log2(T + n)) term in the
approximation ratio in Theorem 1. We modify the definition (see Definition 1) of ap-good such that, we
call a timet to bep-good if r(p, t) ≤ log (T + n)r(p, τ) for all τ, t such thatc(p, τ, t) < 1. With this
modification, imitating Lemma 4.1, we can form blocksB(p, i) where the amount of pagep transmitted in a
block is at most(log(T + n)/ log log(T + n)) + 2. Also, Lemma 4.2 now gives us that the expect response
time of the tentative schedule obtained isO(log(T + n)) times that of the optimum cost. Now repeat the
algorithm in Section 4.3 with intervals of size5 log(T + n)/(log log(T + n)) (instead of intervals of size
5 log(T + n)). As there areO(log (T + n)) iterations of step 2 of the algorithm, it follows directly that the
backlog at any time step is at mostO(log2 (T + n)/ log log (T + n).

Thus we have that

Theorem 2. The above algorithm is anO(log2(T + n)/ log log(T + n)) approximation algorithm for
minimizing the average response time.

5 Throughput maximization version

LP relaxation. We use the same LP formulation as in the paper [10]. The boolean variablexpt = 1 if the
pagep is transmitted at timet. The boolean variableyρ = 1 if requestρ ∈ Ψ is satisfied.

max
∑
ρ∈Ψ

yρ (15)

dρ∑
t=tρ+1

xpρt ≥ yρ, ρ ∈ Ψ, (16)

∑
p∈P

xpt ≤ 1, 1 ≤ t ≤ T, (17)

0 ≤ xpt ≤ 1, 1 ≤ t ≤ T, p ∈ P, (18)

0 ≤ yρ ≤ 1, ρ ∈ Ψ. (19)

As usual on the first step we solve LP (15)-(19) optimally. Let(y∗, x∗) be an optimal solution of that
LP.

Defining bipartite graph. We construct the edge weighted bipartite graphG = (U, V, E, λ) exactly as
in [10]. The vertices inU = {1, . . . , T} represent time slots.

To construct vertices inV and edgesE we first choosez ∈ [0, 1] uniformly at random. The vertices in
V consist of groups corresponding to each page. For pagep we define time intervalsI1p, . . . , Imp(z)p where

mp(z) is eitherd
∑T

t=1 x∗pte or d
∑T

t=1 x∗pte + 1 depending on random variablez and solution(y∗, x∗). All
intervals except first and last are defined that exactly one unit of pagep is broadcast during its duration. The
intervals are defined iteratively,I1p = (0, τ1p] whereτ1p is the earliest time slot such that

∑τ1p

t=1 x∗pt ≥ z.
We define vertexv1p ∈ V corresponding to this interval and connect it to all vertices inU corresponding to
time slotst ∈ I1p with x∗pt > 0. The weightλ(v1p, t) of each edge(v1p, t) is exactlyx∗pt except the last one

which isz −
∑τ1p−1

t=1 x∗pt.

11

The intervalIjp for j ≥ 2 is defined in a similar way,Ijp = (τj−1,p − 1, τj,p] whereτjp is the first time
slot such that

∑τjp

t=1 x∗pt ≥ j − 1 + z. We define vertexvjp ∈ V and connect it by edges to vertices inU
corresponding to time slots inIjp with nonzero variablesx∗pt. The weights on edges are again equal tox∗pt

for all edges(vjp, t) except two edges(vjp, τj−1,p) and(vjp, τjp). The weight of the edge(vjp, τj−1,p) is
x∗pτj−1,p

minus weight of the edge(vj−1,p, τj−1,p), i.e. leftover of the fractional value of pagep located at

that slot. The weight of the edge(vjp, τjp) is j − 1 + z −
∑τjp−1

t=1 x∗pt.
The last interval is defined analogously. The only difference is that the total fractional amount of page

located in this interval can be any number in the interval(0, 1] depending on solution and random variable
z.

Pipage rounding.For every requestρ ∈ Ψ we define the following nonlinear function on edge weights
of graphG. Let Ijρpρ be the first interval where the requestρ for pagepρ was released, i.e.tρ + 1 ∈ Ijρpρ

andtρ + 1 6∈ Ijρ−1,pρ . Then

Fρ(λ) = 1−

1−
min{dρ,τjρpρ}∑

t=tρ+1

λ(vjρpρ , t)

1−
min{dρ,τjρ+1,pρ}∑

t=τjρpρ

λ(vjρ+1pρ , t)

 .

The following two lemmata on properties of the function
∑

ρ∈Ψ Fρ(λ) combined with pipage rounding yield
the desired result.

Lemma 5.1. LetLP ∗ be the value of the optimal solution(y∗, x∗). ThenE(
∑

ρ∈Ψ Fρ(λ)) ≥ 5
6LP ∗.

Proof. If dρ < τjρpρ thenFρ(λ) =
∑dρ

t=tρ+1 λ(vjρpρ , t) = y∗ρ and this event occurs with probability1− y∗ρ.

Otherwise, the value of
∑τjρpρ

t=tρ+1 λ(vjρpρ , t) is distributed uniformly at random in[0, y∗ρ] by the uniformity
of z and the way we defined variablesλ. In this case we also can estimate the value of the second sum∑min{dρ,τjρ+1,pρ}

t=τjρpρ
λ(vjρ+1pρ , t) ≥ y∗ρ −

∑τjρpρ

t=tρ+1 λ(vjρpρ , t) sincey∗ρ is the lower bound on amount of page

p transmitted in the interval(tρ,min{dρ, τjρ+1,pρ}]. Therefore,

E(Fρ(λ)) ≥ (1− y∗ρ)y
∗
ρ +

∫ y∗ρ

0
(1− (1− ξ)(1− (y∗ρ − ξ)))dξ =(

1−
(y∗ρ)

2

6

)
y∗ρ ≥

5
6
y∗ρ.

Using the linearity of expectation we get the claim of the lemma.

Lemma 5.2. Consider an arbitrary integral feasible solution(x̃, ỹ) of the linear program (15)-(19) with the
additional property that at most one pagep is transmitted during any time intervalIjp, j = 1, . . . ,mp(z)
andIP (x̃, ỹ) is the value of(x̃, ỹ). Let λ̃ be the weight function defined on graphG such thatλ(vjp, t) =
1 iff page p is transmitted during time slott ∈ Ijp in the integral solution(x̃, ỹ). ThenIP (x̃, ỹ) ≥∑

ρ∈Ψ Fρ(λ̃).

Proof. The fact that pagep is transmitted only once during any time intervalIjp, j = 1, . . . ,mp(z) guaran-

tees thatFρ(λ̃) ∈ {0, 1}. If Fρ(λ̃) = 1 then either
∑min{dρ,τjρpρ}

t=tρ+1 λ(vjρpρ , t) = 1 or
∑min{dρ,τjρ+1,pρ}

t=τjρpρ
λ(vjρ+1pρ , t) =

1. Each case guarantees thatx̃ρ = 1 which implies the statement of the lemma.

Theorem 3. There exists an integral solution of linear program (15)-(19) of value at least5
6LP ∗ and such

a solution can be found in polynomial time.

12

Proof. We first show that there exists an integral feasible solution(x̃, ỹ) of the linear program (15)-(19) with
additional property that at most one pagep is transmitted during any time intervalIjp, j = 1, . . . ,mp(z)
such that

∑
ρ∈Ψ Fρ(λ̃) ≥

∑
ρ∈Ψ Fρ(λ) and that such a solution can be found in polynomial time.

We construct integral assignment(λ̃) of pages into time slots iteratively starting with fractional assign-
mentλ and graphG. On every step we keep only edges with fractional weightsλ. We find a cycle in a
current graphG or any maximal path ifG is acyclic. This cycle or a path can be represented as a union of
two matchingsM1 andM2 sinceG is bipartite. We modify edge weights by addingε to weight of edges in
M1 and subtractε from weight of edges inM2. Let λ(ε) be new weight function. The functionFρ(λ(ε)) is
a convex function ofε since it is a quadratic polynomial with nonnegative main coefficient. Therefore it is
maximized on endpoints of the interval from whereε is chosen. We chose the largest or smallestε whichever
maximizesFρ(λ(ε)) and makes one of the weights inM1 ∪ M2 integral (0 or 1). The detailed description
of pipage rounding and its applications is contained in [1].

By repeating this procedure at most|E| times we get an integral feasible assignment(λ̃) of pages into
intervals such that at most one pagep is transmitted during any time intervalIjp, j = 1, . . . ,mp(z). The
(x̃, ỹ) is a corresponding solution of LP (15)-(19).

Combining Lemmata 5.1 and 5.2 we obtain that expected value of the solution(x̃, ỹ) is at least56LP ∗.
To find such a solution deterministically we can as usual discretize the probability space for random variable
z and chose the outcome with best value. Details of this procedure are omitted.

6 Acknowledgments

We thank Moses Charikar, Sanjeev Khanna, Tomasz Nowicki, Tracy Kimbrel, Seffi Naor, Kirk Pruhs,
Baruch Schieber and Grzegorz Swirscsz for helpful discussions.

References

[1] A. Ageev and M. Sviridenko,Pipage Rounding: a New Method of Constructing Algorithms with Proven
Performance Guarantee.Journal of Combinatorial Optimization, 8, 2004.

[2] A. Bar-noy, S. Guha, Y. Katz, J. Naor, B. Schieber and H. Shachnai, Throughput Maximization of
Real-Time Scheduling with Batching, In Proc. of Soda 2002, pp.742-751.

[3] N. Bansal and M. Charikar and S. Khanna and J. Naor.Approximating the average response time in
broadcast scheduling.Proc. of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, 2005.

[4] Y. Bartal and S. Muthukrishnan.Minimizing maximum response time in scheduling broadcasts.Proc.
of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 558-559, 2000.

[5] B. Chazelle. The Discrepancy Method: Randomness and Complexity. Cambridge University Press,
First Edition, 2000.

[6] J. Edmonds and K. Pruhs.Broadcast scheduling: when fairness is fine.Proc. of the 13th Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 421-430, 2002.

[7] J. Edmonds and K. Pruhs.A maiden analysis of Longest Wait First.Proc. of the 15th Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 818-827, 2004.

[8] T. Erlebach and A. Hall.NP-hardness of broadcast scheduling and inapproximability of single-source
unsplittable min-cost flow.Proc. 13th ACM-SIAM Symp. on Disc. Algorithms, 2002, pp. 194-202.

13

[9] R. Gandhi, S. Khuller, Y. Kim and Y-C. Wan.Approximation algorithms for broadcast scheduling.Proc.
of the 9th Conference on Integer Programming and Combinatorial Optimization (IPCO), 2002.

[10] R. Gandhi, S. Khuller, S. Parthasarathy and A. Srinivasan.Dependent Rounding in Bipartite Graphs
submitted for publication, preliminary version in Proc. of the Forty-Third IEEE Symposium on Foun-
dations of Computer Science (FOCS’02), pages 323-332, Nov. 2002.

[11] B. Kalyanasundaram, K. Pruhs, and M. Velauthapillai,Scheduling broadcasts in wireless networks,
Proc. of the 8th Annual European Symposium on Algorithms, 2000, pp. 290-301.

[12] S. Khuller and Y. Kim,Equivalence of Two Linear Programming Relaxations for Broadcast Schedul-
ing, Operations Research Letters, 32(5), 473–478 2004.

[13] K. Pruhs, J. Sgall, E. Torng,Online Scheduling.Handbook of Scheduling: Algorithms, Models, and
Performance Analysis, editor Joseph Y-T. Leung, CRC Press, 2004.

14

7 Appendix

Proof of Lemma 2.2.

Lemma 7.1. We can assume thatxptt′ andypt are integral multiples ofδ = 1/(T + n)2. This at most adds
1 to the response time of each request.

Proof. Given an arbitrary LP solution, we simply round down the values ofypt to the closest multiple ofδ
and modifyxptt′ accordingly. We also transmitδ ·T ≤ 1/n units of each pagep at timeT +n+1 to ensure
that each request remains completely satisfied.

Observe that eachxptt′ is reduced by at mostδ. As the response time for a request for pagep at timet
is
∑

t′>t(t
′ − t)x(p, t, t′), the rounding adds at mostT · T · δ ≤ 1 to the response time of each request.

Bad example:
We give an example of an LP solution for which every tentative schedule that is local has a backlog of

Ω(
√

n) at some time. This will imply that algorithmic techniques based on local tentative schedules are
unlikely to yield an approximation guarantee better thanΘ(

√
n).

We construct a half integral solution to the LP as follows: LetH be the Hadamard matrix of ordern,
andJ be the matrix of ordern with all entries equal to1. Consider the matrixA = 1

2(H + J). The matrix
A is a{0, 1} matrix where each rowAi (expect for the one will all 1’s contains contains exactlyn/2 1’s.
It is well known that for any vectorx ∈ {−1,+1}n, there is row with discrepancy at least

√
n/2 (See for

example, Page 17, [5]). That is, for each vectorx ∈ {−1,+1}n, |Aix| >=
√

n/2 for some1 ≤ i ≤ n.
We view theseAi as subsets of{1, . . . , n}. We also assume thatn is a multiple of4. Let ni denote the

number of1′s in Ai. LetSi = n1 + . . .+ni, and letS0 = 0. The LP schedule is constructed as follows: The
schedule transmits 1/2 unit of each page inAi during the interval(Si−1, Si−1 + ni/2], and again during the
interval(Si−1 + ni/2, Si]. Forj ∈ Ai, we call its (half unit) transmission time during(Si−1, Si−1 + ni/2]
its oddslot and its transmission during(Si−1 + ni/2, Si] its evenslot.

Note that one consequence of having a local tentative schedule is that if a page is transmitted in its odd
slot at some timet, then the next transmission of this page must be no later than next odd slot for this page.
We first consider strictly local schedules where each page in transmitted in the tentative schedule only during
the odd slots or only during the even slots. This associates a vectorx ∈ {−1,+1}n where is theith entry is
−1 if pagei is transmitted during odd slots and is1 otherwise. As the number of pages transmitted by the
tentative schedule during(Si−1, Si] is exactlyni, it is easy to see that|Aix| is exactly equal to the backlog
at timeSi−1 + ni/2 or Si, which implies the desired claim for strict tentative schedules. If the tentative
schedule is not strict, the tentative schedule will end up transmitting a higher cumulative amount of pages
than transmitted by the LP. By repeating the above instance sayk times, it is easy to see that this will create
a backlog of at leastk.

15

