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Improved approximation algorithms for Broadcast Scheduling

Nikhil Bansal Don Coppersmith Maxim Sviridenko

Abstract

We consider two scheduling problems in a broadcast setting. The first problem is that of minimizing
the average response time of requests. For the offline version of this problem we give an algorithm with

an approximation ratio ab (log?(7+n)), wheren is the total number of pages afids the time horizon
(arrival time of the last request). This substantially improves the previously best known approximation

factor of O(y/n) for the problem [3].
Our second result is for the throughput maximization version of the broadcast scheduling problem.
Here each request has a deadline and the goal is to satisfy the maximum number of requests by their

deadlines. We give an algorithm with an approximation rati6 /. This improves the previously best
known approximation guarantee ®f4 for the problem. [10].

1 Introduction

In this paper we consider two problems in a broadcast setting. The first problem is the problem of minimizing
the average response timedn-demand data broadcastimystems.

The problem of minimizing the response time is formalized as follows: There is a collection of pages
P = {p1,...,pn}. We assume that time is slotted and any page can be broadcasingletime slot. At
any timet, the broadcast server receives(t) requests for pagge for eachp € P. We say that a request
pe¥={1,...,m} for pagep;, € P that arrives at time, is satisfied at time; (t,), if ¢;,(t,) is the first
time aftert, when pagep;, is transmitted by the broadcast server. Tégponse timef the requesp € ¥
is defined to be the time that elapses from its arrival till the time it is satisfied; j(@,) — t,. We assume
that requesp arrives in the end of the time slot and therefore, it cannot be satisfied in the time-slot in
which it arrived, i.e. the response time for any request is at least 1. We want to find a broadcast schedule that
minimizes the average response time, defined t®bg. ST () (ep(t) — )/ (X pep ST np(t)).

In the second problem every request has a deadline; if a request is not served before its deadline it is
lost. The goal is to maximize the total throughput, i.e. the total number of satisfied requests. More formally,
every requesp € ¥ has three parameters associated with it. The arrival tynthe pagep;, € P which
it requests and the deadlidg, i.e. if pagep, is not transmitted during the time interv@l,, d,] the request
is lost, otherwise it is satisfied. The goal is to assign one page per time unit during the planning horizon
[0, dimaz) @and maximize the total number of satisfied requests.

Previous Work and Our results: We first discuss the average response time problem. Our paper focuses
on the offline version of the problem where the request sequence is known in advance to the scheduling
algorithm. This problem was shown to be NP hard by Erlebach and Hall [8].

Most of the previous algorithmic work on the problem has focused on resource augmentation where the
server is given extra speed compared to the optimal algorithm. These results can be viewed as bicriteria
approximation algorithms that compaktespeed approximation algorithm against the performance of an

*IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598. E-mail:
{bansal,dcopper,sviri }@us.ibm.com .



optimal 1-speed algorithm, where faspeed algorithm is one that allows a server to broadcgstges in

each time slot. Kalyanasundaram et al. [11] ga\@speed,ﬁ-approximation algorithm for any fixed

a, for0 < o < 1/3. Gandhi et al. [9] have given é—speed,ﬁ—approximaﬂon algorithm for any

a € (0,1/2]. Erlebach and Hall [8] gave éspeedl-approximation algorithm for the problem, which

was improved to a@-speedl-approximation algorithm by [9]. Later, Gandhi et al. [10] give-apeed2-
approximation, (which they improved further in their journal version ®Baspeed,l-approximation). Very
recently, Bansal et al. [3] gave an algorithm that works for arbitrary small speed up factor (such algorithms
are referred to as fully-scalable algorithms in the scheduling literature [13]). Their algorithm achieved an
approximation ratio 0O (1/¢) with a(1 + €)-speed. Herél + ¢)-speed means that the algorithm is allowed

to transmit one extra page evelrye time steps.

In the case where no extra speed is allowed, observe that transmitting the pages in the cyclic order
p1,...,pn repeatedly is a triviaD (n) approximation. This follows because every request has response time
of no more tham in the cyclic schedule above, whereas it has response time of at least 1 in any optimum
schedule. For a while this was essentially the best known guarantee, and only very recently Bansal et al. [3]
gave an algorithm that achieves @f,/n) approximation.

We give here an improved algorithm for the problem in the absence of extra speed that a0lliey&§I" + 1))
approximation, wher& is the time at which the last request arrives. In fact our algorithm achieves a some-
what stronger guarantee in that it gives a schedule with average response 3in@R¥+ O(log?(T +n)),
where OPT denote the value of the optimum solution. We also show that the above algorithm can be modi-
fied to yield a slightly better approximation ratio ©flog?(T + n)/ loglog(T + n)).

The minimum average response time problem has also been studied in the online setting. A lower
bound of$2(y/n) without speedup and a lower bound$f1/¢) with a speedup factor dfl + ¢), on the
competitive ratio of any randomized online algorithm is known [3]. In [11, Lemma 7]} (@) lower bound
on the competitive ratio of deterministic algorithms is given. Edmonds and Pruhs [6] gave @-speed,

O(1 + 1/¢)-competitive online algorithm. Later, they [7] showed that a natural algorithm, Longest Wait
First, is 6-speed)(1)-competitive. Another measure that has been studied in the literature is minimizing
the maximum response time (of a request). For this problem, Bartal and Muthukrishnan [4], gayE)an
competitive algorithm.

The throughput maximization problem was first studied in [2] in a much more general setting. Bar-Noy
et al. [2] designed & /2-approximation algorithm for the problem. Gandhi et al. [10] design&d4a
approximation algorithm for the problem considered in this paper by using depended randomized rounding.
By using the deterministic rounding approach from [1] we obtalfy @approximation algorithm for the
throughput maximization version of the broadcast scheduling problem.

2 Preliminaries

We begin by considering an LP relaxation of a natural integer linear program (ILP) for the problem, which

is also the starting point of all previously known approximation algorithms for this problem [11, 9,10, 3]
Lety, = 1iff pagep is broadcast at tim¢, and letz,,» = 1 iff a request for page arrived at timef

is satisfied at time¢’ > ¢. Letn,; denote the number of requests for pagerrived at timef. Relaxing the

IStrictly speaking, [11] considered a different flow-based LP formulation, however Khuller and Kim [12] showed that this
formulation is infact identical to the one considered by [9, 10, 3] and others.



integrality constraints om,,» andy,; gives the following linear program.

T+n
mlnzz Z t—t) - npt - T D)
t t/=t+1
subject towp <y,  Vp,t,t' >t (2)
T+n
Z Tpr > 1, Vp, t, (3
t'=t+1
=1, W, (4)
p
Ty >0,  Vp,t,t, (5)

Ypt! > 07 va t/' (6)

Here T refers to the last time when any request arrives. Observe that it suffices to define variables
until time T + n, as all requests can be satisfied by tifhe- n by transmitting page; at timeT + i for
1=1,...,n

We solve the fractional relaxation of this ILP. The relaxed solution may be viewed as broadcasting pages
fractionally at each unit of time such that total fraction of all the pages broadcast in any unit of im& is
request for a page arriving at a timet is considered completely satisfied at timéf ¢’ is the earliest time
such that the total amount of pagéroadcast during the intervél, '] is at leastl.

Given an optimal solution of (1)-(6), we first define some useful notation and properties of this LP
solution. We will use-(p, t) to denote the LP cost for the response time for a request forptge arrives
attimet. Thatisr(p,t) =Y, o, (t' — t)zpu.

It is easy to see that in any optimum solutian,,s is completely determined by the valuesigf.

In particular, for anyp, ¢ and?/, if zgi,:tﬂ Yo < 1, thenz,y = yu, and if zgi,:tﬂ yper > 1, then
zp = max{0,1 — >4} 11 Yper }. Otherwise, the solution to the LP can be improved trivially. This
implies that if we define;,;y = max{0,1 — Zii;lm yper }, thenr(p, t) can be expressed s,/ , Zpi/-
Finally, it is trivial to see that in any optimum solution, each request is completely satisfied by time
and moreover we can assume that for any timihe total amount of page transmitted is exactly 1, that is
Zpypt =1foralll <¢t<T 4 n.

The following observation about response time is crucial and will be used repeatedly:

Lemma 2.1. Consider a request for a pagethat arrives at timet. For o € (0, 1], let¢(«) denote the

earliest time aftert such that a total ofx fraction or more of page is broadcast durind¢, ¢(«)]. Then
fo da = r(p,t). Equivalently if we choose uniformly at random in(0, 1] and transmit page at

t(a), then the expected response time for this request is LP cost for this request.

Proof. Sincea is chosen uniformly at random if0, 1], the probability that(«) > ¢/, is exactly equal
to the probability thaty > S5,~L, .+ which is exactly equal tonax{l — >4% | 4,0} = zpsr.
As, [ (t(a) — t)da = Elt(a) —t] = S, Prit(a) > #] = Yo, 2o = 7(p,t), the desired result
follows. m

The following lemma is straightforward and will allow us later to consider a discrete version of Lemma
2.1. The proof is deferred to the appendix.

Lemma 2.2. We can assume thaj,;» andy,, are integral multiples o6 = 1/(7 + n)?. This adds at most
1 to the response time of each request.



3 Overview of Techniques

The structure of our algorithm is similar to that of t,/n) approximation algorithm of [3].

We first obtain dentativeschedule which may be an invalid schedule in the sense that it is allowed to
violate the capacity constraints (4) in the ILP. In particular, this schedule may transmit multiple pages at a
time step. Suppose this tentative schedule has the following additional properties:

1. The total response time for this schedule is at mestO(1) times the cost of ILP.

2. The capacity constraints are satisfied approximately in the following sense. For any interval of time
(t,t'], the number of pages broadcast by the tentative schedule in this interval is no mare thah,
for some fixedh. We refer to thig as thebacklogof the tentative schedule.

In this case, the tentative schedule can be transformed into a valid schedule as follows: We transmit pages
in the same order as the tentative schedule while ensuring that no page is transmitted at an earlier time than
in the tentative schedule. It is not hard to see that the backlog property ensures that no page is transmitted
more thanb steps later than in the tentative schedule (See Lemma 4.6 for a formal proof). This implies a
solution with average response timeOPT+ b. In the algorithm of [3]¢ was 1 and wasO(y/n).

Our improved approximation is based on two new ideas:

First, we use some global information of the LP solution to construct a tentative solution. Prior to our
work, all algorithms were local in the following sense: Given a solution to the LP above, they produce a
schedule (or a tentative schedule) that ensures that for each repu'eisisatisfied at some time sldtsuch
that the cumulative amount of pageransmitted by the LP solution during the interyalt’] is no more
than 1. The main reason for this is that the response time for each request in the integral schedule can be
charged to its response time in the LP solution.

Note that one consequence of having a local schedule is that if aypesgleroadcast at time, then
the next broadcast of pagemust be at a time such that cumulative amount of pagéransmitted by the
LP solution during(¢, '] is no more than 1. Interestingly, the example described in detail in the Appendix
(Section 7) shows that it is unlikely an algorithm based on a local schedule can achieve an approximation
ratio better tharO(y/n).

We get around this problem by adopting a more global approach. We show that for eagh page
can partition the time horizon, ..., T + n, into intervalsB(p, i), such that the cumulative amount of page
p transmitted inB(p, i) is O(log (T'+ n)), and that the tentative schedule for edgfp, i) can be chosen
independently of the other blocks. While this could lead to requests not being satisfied by a transmission
locally, we show that our choice @ (p, i) allows us to charge their response timexgl) times their cost
in ILP.

The second part of the algorithm is to give a scheme to choose the tentative schedule B(gath
in such a way that when all the tentative schedules for éaghi) are combined together, the backlog at
any time step is bounded 9 (log?(T + n)). To do this, we define a linear program where the variables
correspond to the possible tentative schedules that can be chosen faB@ach This program has the
property that there is feasible (fractional) solution where the backlo@il the response time is or}(1)
times that of ILP. The main idea then is to solve a sequence of linear programs, where we successively relax
the constraints in this linear program such that the number of fractionally set variables decrease geometri-
cally at each step, the cost of the objective function does not increase and the increase in backlog is bounded
during each iteration of relaxing the constraints. In the end we obtain a tentative schedule with backlog
O(log*(T +n)).



4  Minimizing Average Response Time

Our algorithm begins by solving the LP (1)-(6). Letp,¢) denote the response time according to the
LP solution for a request for pagethat at timet. Let ¢(p,t,t") denote the cumulative amount of page
transmitted by the LP solution during the time interyalt’], that isc(p, t,t') = Zﬁ:/:tﬂ Yperr. \We now
define the key concepts of blocks gmgood time points.

4.1 Blocks andp-good time points

Definition 1. Letr(p,t) denote the response times as determined by the solution to the linear program
(1)-(6). For a pagep we call a time pointt to be p-good if r(p,t) < 2r(p,7) for all 7 < ¢ such that
c(p,7,t) < 1.

The following lemma shows thatyagood point can be found in any interval of time that broadcasts a
sufficient amount of page.

Lemma 4.1. Any time intervalt, t'] such that(p, ¢,t") > log (T' + n) contains gp-good point.

Proof. Suppose all the points ift, t'] are notp-good. Sincet’ is notp-good, there exists & < ¢’ such
thate(p, t1,t') < 1andr(p,t1) > 2r(p,t'). Note thatt; lies in the intervalt, ¢'), and hence is ngi-good
by our assumption. Thus there exigissuch thate(p, t2,t1) < 1 andr(p,t2) > 2r(p,t’). Repeating the
argument follog (7" + n) steps, we obtain a sequence of poiNts g (14n) < -+ < t2 < 1 < t’ such
that c(p, tiog (74n): t') < log (T + n) andr(p, tiog (74n)) > 216 T+r(p, 1), which is impossible as the
response time for any request is bounded betwesmd (7" + n). O

Lemma 4.1 implies that if is ap-good point, and such thatp, ¢, T + n) > log (T + n), then there is
anotherp-good pointt’ > t such thate(p, t,t') < log (T + n). Thus, for eachp we can form a collection
G(p) = {0 =t(p,0),t(p,1),t(p,2),...,t(p,by) = (T'+ n)} of time points such that th&p, ¢) is p-good
for1 <i <b,—1andl < ¢(p,t(p,i —1),t(p,i)) < 1+log (T +n)foralll <i <b,—1. The last
interval must be such that< ¢(p, t(p, b, — 1), t(p,by)) < 2 +log (T' + n) and such a collection of points
can be formed by a simple greedy strategy. If the last interval produced by this greedy strategy has length
smaller than 1, we merge this interval and the second-last interval (this is why we have slack for the size of
the last interval).

We call the time interval$0 = t(p,0),t(p, 1)], (t(p,1),t(p,2)],..., (t(p,bp — 1),t(p, bp)], blocks for
pagep. Note that there ar&, blocks for page». We will use B(p, i) to denote the'" block for pagep. Let
B, denote the set of all blocks for pagend let3 = U, 3, denote the set of allocks. For a blockB(p, 1),
we define its tail to be the time slotsuch that(p, ¢, t(p,7)) < 1. That is, the cumulative amount of page
p transmitted after time until the end of the block in whichlies, is less than.

Let us focus on a particular block, s&(p, ). Fora € (0, 1], andl =0, 1,2, ..., and blockB(p, i), let
t(p, 1,1, «) denote the time such théip, i, 1, «) € B(p,i) and itis the earliest time whént « units of page
have been broadcast duriit(p, i), t(p, 1,1, «)], i.e. since the start of the blocR(p, ) until ¢(p, 7,1, a).
For a given blockB(p,i) anda € (0,1], let C(p,i,«) denote the set of all time slotgp, 4,1, ) for
1=0,1,2,....

We will only be interested in tentative schedules that are obtained by choosing amgffsgtfor each
block B(p, ) and transmitting page at all time slots inC(p, 7, «). We usel” to denote the class of all such
possible tentative schedules. Observe that any tentative schedusatisfies all the requests. This follows
as each request for pagehat arrives inB(p, i) for 1 < i < b, — 1 (i.e. except for the last block for page
p) is served withinB(p, ) or in B(p,i + 1) by any tentative schedule In Finally, as there is at least unit



of pagep broadcast in the LP solution after the arrival of the last request for paglérequests for page
that arrive during the last block(p, b,) are served withirB(p, b,).

The following lemma shows that there is a convex combination of tentative schedllesuch that the
total response time is not too high and all the capacity constraints are satisfied at each time step.

Lemma 4.2. Suppose for each blodk(p, i) € B, we choose the offse{p, i) uniformly at random irj0, 1].
Then the tentative schedule satisfies the following properties:

1. The expected number of pages transmitted at any time segxactly 1.

2. For each request, its expected response time is at most 3 times the cost incurred by it in the LP solution
of (1)-(6).

Proof. 1. For any timet € B(p,i), since we choose(p,:) uniformly at random in(0, 1], then the
probability that page is transmitted at time is exactlyy,,.

For anyp, as the blocks3(p, ) partition the entire time intervdD, T' + n], for each time there is
exactly one block for page that containg. Thus, the probability that pageis transmitted at time

t in the tentative schedule is exactly;. Summing up over all the pages we have that the expected
number of pages transmitted at tiis exactlyzp ype Which is exactlyl by (4).

2. Consider a particular blocB(p,7). We say that requegt is early if it does not arrive in the tail
of B(p,i), or equivalently that(p,t,,t(p,i)) > 1. Note that if a request is early this implies
that irrespective of the choice of(p, i), it will always be served at some time withi®(p, i) in the
tentative schedule. Sinegp, ) is chosen uniformly at random i, 1], by Lemma 2.1 the expected
response time for early requests is the same as the cost in the LP solution.

Thus we focus on the contribution of requests that are not early. We call such requests late requests.
For late requests, it could be the case that they arrive during the B¢gki) but they are only

served duringB(p, i + 1) in the tentative schedule. Consider a late requédet pagep that arrives

at timet, € B(p,i) for somei such thatl < i < b, — 1. Since this request is late, we have
thatc(p, t,, t(p,4)) < 1. With probability ¢(p, tp,t(p,i))) this request is served iB(p, :) and with
probability 1 — ¢(p, t,, t(p,?)) it is served inB(p,i + 1). Conditioned on the event that this request

is served inB(p,i + 1), asa(p,i + 1) is chosen uniformly at random if®, 1], by Lemma 2.1, its
expected response time(i§p, i) —t,) +r(p, t(p, 1)). Thus the overall expected response time isf

t(pi)

Z (t// - tp) : xptpt” + (1 - C(p> tP? t(p, Z))) ' (t<p7 Z) - tp + ’I”(p, t(p> Z)))
t=t,+1

t(psi)

= > (" —tp) wp + Z ;7)) = tp) - Tptyem + (1= clp, Ly, 1(p, 7)) - 7(p, Up, ©))

t”:tp-i-l = tpz)-‘rl
0o
<Y (W —tp) - @y +1(p,t(p, 7))
t'=t,+1

< 7n(p? tp) + 270(177 tﬂ) = 37’(}?, tp)
The first step follows agl‘t’,‘fzt(m)+1 Ty, = 1 — c(p,t,,t(p,1)); the second step follows by upper

bOUﬂdlngZif(/p lt) +1 t” _tp) "Lt ot + (t(p, 2) _tp) Zt”:t(p,i)Jrl Lptot! by Zt“:thrl(t/ _tp) “Tpt
and the last step follows @sp, i) is ap-good point and hence by definitiotip, t(p, 7)) < 2r(p,t,).
O



Finally, by Lemma 2.2 we can assume that all the offgetre integral multiples of. For ease of
notation, we will useB(p, i, j) to denote the time slots i@'(p, i, « = 7). We will call B(p, 7, j) ablock-
offset

4.2 Auxiliary LP

Recall that our goal is to choose the offsets for each block in such a way that the total response time of
the tentative schedule is not too high, and secondly the backlog is small at all times. For this purpose we
consider the linear program defined by (7)-(10) below.

We have variables,;;. These correspond to choosiagp, i) = j/(T + n)? for block B(p, ). We will
have a set of constraints that the total amount of offsets chosen for each block is éxas#ywill also
have the capacity constraints at for each time step, that is the total amount of page transmitted at any time
is at most 1. Finally, express the objective function of minimizing the total response time in terms of the
variablesz,;; as follows: For each blocB(p,i) we associate alock-offset response tim&(B(p, i, j))
which essentially accounts for the contribution of the block-off8ép, i, j) to the total response time.
Observe that choosing an offset for bloBXp, i) can affect the response time of requests for pateat
arrive in B(p, i) and possibly the late requestsiip, i — 1). The block-offset response tinf& B(p, i, j))
is computed as follows:

1. Lett’ denote the earliest time iB(p, 7, j). Each request for pagein the tail of the previous block
B(p,i— 1) contributes’ — t(p,i — 1) to R(B(p, 1, j)). Note that this is time (restricted to time units
in B(p,1)), that any late request iB(p, i — 1) might possibly have to wait.

2. Fora request;, for pagep that arrive at time, wheret € B(p, i), we do the following. Let’ denote
the earliest time such thdt> ¢ andt’ € B(p, 1, j), if such a’ does not exist, then we sét= t(p, i).
Then, the reque:m; contributes’ — ¢t to R(B(p,i,7)). Note that this quantity is the contribution to
the response time of, restricted to the time units iB(p, ).

It is easy to verify by the definition ak(B(p, i, j)) that they have the following property.

Lemma 4.3. If we construct a tentative schedule where for each blB¢k, i), we choose a block-offset
B(p,i,j(p,1)), then the total response time for this tentative schedule is no mor@gglﬂ(B(p, i,7(p,1))).

We define the following auxiliary linear program:

minZZZR(B(p,i,j)) i (7)

subjectto Y "z =1,  Vp,i, (8)
J
S w(B@ i d),t) -z <1,V ©)
P i J

Herew(B(p,1,j),t) is an indicator functionw(B(p, i, j), t) is 1 if t € B(p,1,j) and0 otherwise.
The following lemma essentially follows from Lemma 4.2.

Lemma 4.4. There is a feasible solution to the LP (7)-(10) with cost no more than 3 times the cost of the
LP (2)-(6).



Proof. Consider the solution wheeg,;; = ¢, for all p, i and0 < j < 1/6 — 1. This corresponds to choosing
an offset uniformly at random for each bloék(p, ). By Lemma 4.2 (part 1) implies that constraints (10)
are satisfied.

We now show that the cost of this solution is no more than 3 times the cost of 1-6. Consider an early
request inB(p, 7). Since this request is completely served withi(p, i) by Lemma 2.1, the contribution of
this request to the objective function is exactly its response time. For a late request fprthagarrives at
timetin B(p,i—1), its contribution to the objective function correspondingtg 2 ;—1,;- R(B(p,i—1, j))

iS exactlyzgfjt)ﬂ(t” — )z + (1 — c(p, t,t(p,7))) - (¢(p, i) — t) which is at most(p, t). Similarly, the

contribution to} _; z;,; ; - R(B(p,i — 1, 7)) is exactlyr(p, t(p, 1 — 1)) which is at moser (p, t). O

Observe that the LP above in weak in thgt; could have fractional values, however on the other hand it
is tight in the sense that the capacity constraints (9) are satisfied exactly. The rest of algorithm for will deal
with obtaining an integral solution to the above LP by relaxing the constraints (9), but still ensuring that the
solution thus obtained is useful enough to imply our desired result.

4.3 The algorithm

The idea for our algorithm is the following: We relax the constraints (9) in the auxiliary LP such that we
only require these to hold for certain time intervals of rather than for each time unit. We will show that this
gives a basic solution where a constant fraction of the variahjeare assigned integrally. We then redefine
the intervals and solve another LP. We repeat thiging (7" + n)) steps, until all buD(1) variablesz,;;
are non-zero. These are simply set to either 0 or 1 to obtain a valid integral solution, which is our tentative
schedule.

To complete the proof we show that the total response of the tentative schedule obtained above is not
too high, and that the backlog of this tentative schedule is al@ysg?(T + n)).

Before we can describe the algorithm to compute the tentative schedule formally, we need some notation.
Let I = (¢1,t2] be an interval of time. The size dfdenoted bySize(!) is defined ass — ¢;. The weight
of an interval with respecB(p,i,;), which we denote byu(B(p,i,j),I), is the cardinality of the set
B(p,i,j) N 1. Thatis,w(B(p,1,7), I) is the number of time slots i that belong taB(p, , j).

Our algorithm will solve a sequence of LP’s. At each stepome variables(p, i, j) that were fractional
at the end of step — 1 get assigned to 1. A partial solution is an assignment where s¢me, ;j) are set
to 1. For a partial solution obtained at the end of ste@nd an intervall, let Used(I, k) denote the
number of time slots in this interval used up byp, i, j) that are assigned integrally to 1 by the end of
stepk, i.e. Used(I, k) = >_,, ; w(B(p,i,j),I) such thate(p, 4, j) = 1. We will use Free(!, k) to denote
Size(I) — Used(I, k).

We now describe the algorithm to compute the tentative schedule.

1. Initialize: We divide the time horizon from . . ., T4n into consecutive intervals of sizdog (T + n).
We call this collection of interval,. For allI € Z,, we defineUsed(I,0) = 0 and Free(I,0) =
Size(I) — Used(I,0) = Size(I). Let By be the set of all block®(p, i) and letS, = 0.

2. Repeat the following fok =1, ...,.

e Consider the following linear program defined iteratively base#pn, 7, and Free(1, k —
1). (This can viewed as a relaxation of the auxiliary linear program (7)-(10) restricted to partic-
ular variables).



min Z Z R(B(p,i,7)) - 2pij (12)
B(pi)eBr—1 J
subjectto Y "z, =1,  Vp,isuch thatB(p,i) € By_1,(12)
J
SN w(B@.i,4), 1) - zpij = Free(Ik —1), VI € Tjy, (13)
p ? J
Zpij > 0, vp, 1, J. (14)

e Solve this LP. LetP denote the set of blockB(p, i) such that,,;; = 1 for somej. LetS denote
the set of block-offset pairB(p, i, j) such that;,;; = 1.

e SetB), = B;_1 \ P. These are precisely the blockp, i) for which z,;; is not equal to 1 for
any j at the end of step. SetS;, = S, US. These are precisely the variablgg; that are
integrally set to 1 thus far by the end of stepFor each interval € Z,_;, recompute

Used(I,k) = Used(I,k—1)+ > w(B(p.i,j).])
pyi,5:B(p,i,j)ES

Note thatd ;- 5(,.i )es W(B(p, i, ), 1) is exactly the number of pages that are assigned to
be transmitted during intervdlin stepk. SetFree(l, k) = Size(I) — Used(I, k). Essentially,
Free(I, k) denotes the number of free time slots in interizt the end of step.

¢ Finally, we compute the set of intervalg by merging the intervals ifi,_, as follows: Initially
7, = (. Starting from the leftmost interval ify,_;, merge intervald, I>...I; € 7;._; greedily
to form I until Free(I1,k) + Free(Ia, k) + ..., Free(1}, k) first exceed$ log (T + n). We set
Free(I,k) = Free(l1,k) + Free(Ia, k) + ..., Free(I;, k) and Used(I,k) = Used(I1,k) +
Used(I2, k) + ..., Used(I}, k). By construction, we have thatlog (7' +n) < Free(I,k) <
10log (T'+ n). Add I to Z;, and remove, ..., I; from Z;_, and repeat the process until the
total free space in the intervals1j_; is less thar log (7' + n) and hence we cannot form new
intervals. In this case we just merge all the remaining intervdlg in into one interval and add
this final interval taZy.

e If |Z;| = 1 then the algorithm makes one more iteration and then stops. On this last iteration
there is just one constraint of type (13) in the relaxed auxiliary LP. The optimal solution is
integral and very easy to define. We choose the best offset for every remaining block, i.e. we
definez,;; = 1if R(B(p,1,J)) = mins R(B(p, 1, s)) for block B(p, 7).

4.4 Analysis

Lemma 4.5. At each iteration of step 2 in the above algorithm, the number of blétks) that do not
have anyz,;; set to 1 decreases (almost) by a constant factor. In particular

By <02+ Byo| +2

Proof. The total number of non-trivial constraints (of type (12) and (13)) in the LP at/sispZ;_1| +
|Br—1|. Consider a basic optimal solution of the LP at stagéet f; be the number of non-zero variables
that are set fractionally (strictly between 0 and 1) angjletlenote the number of variables set to 1. Then,
since we have a basic solution, we have that- g < |Zx—1| + |Br—1]. Now, consider the constraints



of type 12, if in some block3(p, i) there is noz,;; that is set to 1, then there must be at lehsariables
zpij set fractionally, which implies thafy, /2 + g, > |By—1|. Combining these two facts implies that
gk > |Br—1| — |Zx—1]. By definition, agBy| = |Bi_1| — gk, this implies thatBj| < |Zj_1|.

We now upper boun{f;,_|. Let Free;_, denote the total free space at the end of iteratierl, that is,
>_rez, , Free(I,k — 1). Since each interval except probably the last has at idagt(7" + n) free spaces,
we have thatZ_1| < [Free,_1/(5log (T'+ n))]. As for any block-offsetB(p, i, j) and intervall, the
number of time slots(B(p, 7, j), I) is mostlog (T + n) + 2 time slots, it follows from constraints (12) and
(13) thatFreey,_; is at most(log (1" + n) + 2)|Bi_1|. This implies that

0.4
|Zy—1] < [0.2- [Bp—1| + 1

— 1 <0.2-|Bx_ 2
og(T—i-n)]_ [Bra+

O

Combining Lemma 4.5 with the fact th&B,| < T + n we obtain that the algorithm stops after
log (T + n) + ©(1) iterations.

In the end of our algorithm we obtain an assignment of zero-one values to varighleSince on every
step of our algorithm we relaxed the LP from the previous step, the cost of this final integral solution is
upper bounded by the optimal value of (7)-(10), which is at most 3 times the optimal value of (1)-(6). This
solution also provides us with integral tentative schedule since it gives us an assignment of pages to the time
slots.

To actually obtain a proper schedule from this tentative schedule, we look at the pages transmitted in the
tentative schedule at tinfeand greedily assign it to the next free slot after titn€-ormally, we can view
the process of constructing the feasible schedule from the tentative schedule as follows: There i<3 queue
whenever a page is tentatively scheduled at timtewe addp to the tail of at timet. At every time step,
if @ is non-empty, we broadcast the page at the hedgl of

To complete the proof, we show that no page is delayed more@l?(T + n)) than its position in
the tentative schedule. Thus it suffices to show that the queue I§gttat timet, in the above description
is always bounded b@ (log?(T + n)) at all timest.

Lemma 4.6. Let Used(t1,t2) denote the pages transmitted durifyg, ¢2] in the tentative schedule. The
maximum queue length at any time is boundethby;, <1, (Used(t1,t2) — (t2 — t1)).

Proof. Letts be the time when the backlog in the queue is maximum, aricdenote this backlog. Consider
the last timet; beforet, the queue was empty. Sintewas the last time when the queue was empty, it must
be the case that exactly — ¢; pages were transmitted during the inter{al, ¢2], and hence is exactly
Used(t1,ts) + t2 — t1. This implies the desired result. O

Lemma 4.7. For everyty, to, Used(t1,t2) — (ta — t1) < 201og®(T + n) + O(log(T + n))

Proof. Consider time intervelty, to]. If A < log (T + n)+0(1) is the number of iterations of our algorithm
then there are at mo8t\ intervals|a, b] generated by the algorithm which strictly overlap withi.e.a <

t1 < b or strictly overlapts, i.e.a < to < b. The total number of pages assigned to this intervals by the
tentative schedule is at mazh - 10logn < 201og?(T + n) + O(log(T + n)).

All other intervals generated by our algorithm do not strictly overlap witland¢,. They are either
completely inside or completely outsidie, ¢2]. We claim that by constraints (13) the total number of pages
assigned to the remained intervals overlapping \{fithts] is upper bounded bgs — ¢;. It follows from the
facts that on each iteration we are allowed to use only time slots which were not occupied by the integral
assignments from previous iterations and the total number of pages transmitted in every interval on each
iteration is exactly length of this interval minus the amount of free space which could be used on the next
iteration. The lemma follows. O
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Thus we have that

Theorem 1. The above algorithm produces a broadcast schedule with average response time at-most
OPT+ O(log?(T + n)), where OPT denote the average response time of the optimum schedule.

4.5 Improving the approximation ratio to log® (T + n)/ loglog (T + n)

The main idea is to trade-off the constant multiplier term with the addiiiVeg?(T + n)) term in the
approximation ratio in Theorem 1. We modify the definition (see Definition 1) @fgaod such that, we
call a timet to bep-good if r(p,t) < log (T + n)r(p,7) for all ,¢ such thate(p, 7,¢t) < 1. With this
modification, imitating Lemma 4.1, we can form blodk$p, i) where the amount of pagetransmitted in a
block is at mostlog(T + n)/ loglog(T + n)) + 2. Also, Lemma 4.2 now gives us that the expect response
time of the tentative schedule obtainedd¢log(7" + n)) times that of the optimum cost. Now repeat the
algorithm in Section 4.3 with intervals of sizdog(T" + n)/(loglog(T + n)) (instead of intervals of size
5log(T + n)). As there ar@(log (T + n)) iterations of step 2 of the algorithm, it follows directly that the
backlog at any time step is at mastlog® (T + n)/ loglog (T + n).

Thus we have that

Theorem 2. The above algorithm is af®(log*(T + n)/loglog(T + n)) approximation algorithm for
minimizing the average response time.

5 Throughput maximization version

LP relaxation. We use the same LP formulation as in the paper [10]. The boolean vazigbte 1 if the
pagep is transmitted at timé. The boolean variablg, = 1 if requestp ¢ ¥ is satisfied.

max 3y, (15)
peEY
dp
Z l'ppt > Yo, pE \Ijv (16)
t=tp,+1
Za:ptgl, 1<t<T, (17)
peEP
0<zp <1, 1<t<T,pepP, (18)

As usual on the first step we solve LP (15)-(19) optimally. gt z*) be an optimal solution of that
LP.
Defining bipartite graph. We construct the edge weighted bipartite graph- (U, V, E, \) exactly as

in [10]. The vertices itV = {1, ..., T} represent time slots.
To construct vertices iV and edgesr we first choose € [0, 1] uniformly at random. The vertices in
V' consist of groups corresponding to each page. For pagedefine time intervalg, , . .., I,,, (.), where

my(2) is either[ZtT:1 x| or (Zthl x| + 1 depending on random variabteand solution(y*, z*). All
intervals except first and last are defined that exactly one unit of pageroadcast during its duration. The
intervals are defined iteratively;, = (0, 71,] wherery,, is the earliest time slot such thaf, ' «%, > =.
We define vertex;, € V corresponding to this interval and connect it to all vertice§ icorresponding to
time slotst € Iy, with z;;, > 0. The weight\(v1,,t) of each edgéuv,, t) is exactlyzy, except the last one

. . —1
whichisz — Y717 a7,

11



The intervaII]p forj > 2is defined in a similar wayl;, = (-1, — 1, 7] Wherer;,, is the first time
slot such thaf ;" zy > j — 1+ z. We define vertex;, € V and connect it by edges to verticeslin
corresponding to time slots ify, with nonzero variables;,. The weights on edges are again equat}p
for all edges(vj,, t) except two edgeév;,, 7j—1,) and(v;,, 7j,). The weight of the edgev;,, 7j—1,p) is

Ty, , minus weight of the edg@v; 1, 7-1,), i.€. leftover of the fractional value of pageocated at
that slot. The weight of the edde;,, 7j,) isj — 1+ 2z — ;ffl Tyt

The last interval is defined analogously. The only difference is that the total fractional amount of page
located in this interval can be any number in the intef@al] depending on solution and random variable
Z.

Pipage rounding. For every request € ¥ we define the following nonlinear function on edge weights
of graphG. LetI; ;,, be the first interval where the requestor pagep, was released, i.¢, +1 € [;
andt, +1¢ I;,1,,. Then

pPp

min{dP7ijPp} min{dP7ij+1,Pp}
F,N)=1-{1= Y AMujp.t) | [1- > A, +1p, )
t:tﬂ+1 t:7—.7ppp

The following two lemmata on properties of the funct@)}eq, F,(\) combined with pipage rounding yield
the desired result.

Lemma5.1. Let LP* be the value of the optimal solutigp™, z*). ThenE(}_ oy F(A)) = gLP".

[e[<2

Proof. If d, < 75, thenF,()\) = Zfitpﬂ A(vj,p,+t) =y, and this event occurs with probability— 7.
Otherwise, the value ozt“””’ A(vj,p, t) is distributed uniformly at random if, y;| by the uniformity

tp+1
of z and the way we defined variabls In this case we also can estimate the value of the second sum
min{dp,7j,+1,p, } Tipp ; ;
Zt:%pp TNVt 1pp, ) 2 Y, — t:PtpPH A(vj,p,,t) sincey; is the lower bound on amount of page

p transmitted in the intervdk ,, min{d,, 7,11, }]. Therefore,

*

B(E,(N) > (1— ) + / Y- (- €))dE =

< 6 yp 2 gyp

Using the linearity of expectation we get the claim of the lemma. O

Lemma 5.2. Consider an arbitrary integral feasible solutidt, y) of the linear program (15)-(19) with the
additional property that at most one pagés transmitted during any time intervd},,j = 1,...,m,(z)
andIP(z,7) is the value ofz, 7). Let\ be the weight function defined on graghsuch that\(vp, t) =
1 iff page p is transmitted during time slat € I;, in the integral solution(z,y). ThenIP(z,y) >

> pew Ep(N).

Proof. The fact that pagg is transmitted only once during any time intervgl, j = 1,...,m,(z) guaran-
teesthaf,(A) € {0,1}. If F,(X) = Lthen eithed " 15 ") A(v;,p,,1) = Lot Z?‘ij{‘f’”p“ 20 M), 41p, 1) =
1. Each case guarantees thigt= 1 which implies the statement of the lemma. O

Theorem 3. There exists an integral solution of linear program (15)-(19) of value at Ié@sﬁ’* and such
a solution can be found in polynomial time.

12



Proof. We first show that there exists an integral feasible solution) of the linear program (15)-(19) with
additional property that at most one pagés transmitted during any time intervaj,, j = 1,...,m,(z)
suchthad .y F(A) > > ey Fp(A) and that such a solution can be found in polynomial time.

We construct integral assignme(rit) of pages into time slots iteratively starting with fractional assign-
ment and graph. On every step we keep only edges with fractional weightdVe find a cycle in a
current graphG or any maximal path it7 is acyclic. This cycle or a path can be represented as a union of
two matchings\/; and M, sinceG is bipartite. We modify edge weights by addiatp weight of edges in
M, and subtract from weight of edges id/. Let \(¢) be new weight function. The functiaf,(A(e)) is
a convex function ot since it is a quadratic polynomial with nonnegative main coefficient. Therefore it is
maximized on endpoints of the interval from whelis chosen. We chose the largest or smal&ghichever
maximizesF,(A(e)) and makes one of the weights Md; U M integral O or 1). The detailed description
of pipage rounding and its applications is contained in [1].

By repeating this procedure at mg#t| times we get an integral feasible assignmentof pages into
intervals such that at most one pagés transmitted during any time intervd),,, j = 1,...,m,(z). The
(z,9) is a corresponding solution of LP (15)-(19).

Combining Lemmata 5.1 and 5.2 we obtain that expected value of the solitighis at Ieast%LP*.

To find such a solution deterministically we can as usual discretize the probability space for random variable
z and chose the outcome with best value. Details of this procedure are omitted. O
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7 Appendix

Proof of Lemma 2.2.

Lemma 7.1. We can assume that,,» andy,; are integral multiples o§ = 1/(T + n)2. This at most adds
1 to the response time of each request.

Proof. Given an arbitrary LP solution, we simply round down the valueg,pfo the closest multiple of
and modifyz, accordingly. We also transmit 7" < 1/n units of each page at time7" +n + 1 to ensure
that each request remains completely satisfied.

Observe that each,, is reduced by at most As the response time for a request for pags timet
is> <, (t' —t)x(p,t,t'), the rounding adds at most- T'- § < 1 to the response time of each requesl

Bad example:

We give an example of an LP solution for which every tentative schedule that is local has a backlog of
Q(y/n) at some time. This will imply that algorithmic techniques based on local tentative schedules are
unlikely to yield an approximation guarantee better tRgR/n).

We construct a half integral solution to the LP as follows: Eebe the Hadamard matrix of order
and.J be the matrix of orden with all entries equal td. Consider the matridl = 1(H + J). The matrix
Ais a{0, 1} matrix where each rowl; (expect for the one will all 1’s contains contains exact}2 1's.

It is well known that for any vector € {—1,+1}", there is row with discrepancy at leagh/2 (See for
example, Page 17, [5]). That is, for each veata {—1,+1}", |A;x| >= /n/2 for somel < i < n.

We view theseA; as subsets of1,...,n}. We also assume thatis a multiple of4. Letn; denote the
number ofl’s in 4;. LetS; = n; +...+n;, and letSy; = 0. The LP schedule is constructed as follows: The
schedule transmits 1/2 unit of each pagelinduring the intervalS;_1, S;—1 + n;/2], and again during the
interval (S;—1 + n;/2, S;]. Forj € A;, we call its (half unit) transmission time durifd;_1, Si—1 + n;/2]
its oddslot and its transmission during;—1 + n;/2, S;] its evenslot.

Note that one consequence of having a local tentative schedule is that if a page is transmitted in its odd
slot at some time, then the next transmission of this page must be no later than next odd slot for this page.
We first consider strictly local schedules where each page in transmitted in the tentative schedule only during
the odd slots or only during the even slots. This associates a veetdr-1, +1}" where is the®” entry is
—1if pagei is transmitted during odd slots andli®therwise. As the number of pages transmitted by the
tentative schedule during;_1, S;] is exactlyn,, it is easy to see thatl;z| is exactly equal to the backlog
at time S;_1 + n;/2 or S;, which implies the desired claim for strict tentative schedules. If the tentative
schedule is not strict, the tentative schedule will end up transmitting a higher cumulative amount of pages
than transmitted by the LP. By repeating the above instancé 8mes, it is easy to see that this will create
a backlog of at least.
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