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Distributed Multimedia Service Composition
with Statistical QoS Assurances

Xiaohui Gu,Member, IEEE,Klara Nahrstedt,Member, IEEE

Abstract— Service composition allows future multimedia
services to be automatically composed from atomic service
components based on user’s dynamic service requirements.
Previous work falls short for distributed multimedia service
composition in terms of scalability, flexibility and quality-
of-service (QoS) provisioning. In this paper, we present a
fully decentralized service composition framework, called
SpiderNet, to address the challenges. SpiderNet provides
statistical multi-constrained QoS assurances and load bal-
ancing for service composition. SpiderNet supports directed
acyclic graph composition topologies and exchangeable
composition orders. We have implemented a prototype of
SpiderNet and conducted experiments in both wide-area
networks and simulation testbed. Our experimental results
show the feasibility and efficiency of the SpiderNet service
composition framework.

Index Terms— Service Composition, Service Overlay
Network, Middleware, Quality-of-Service

I. I NTRODUCTION

Emerging advanced distributed multimedia services,
such as voice-over-IP conferencing [8] and ubiquitous
multimedia streaming, demands a scalable, robust, and
adaptive multimedia service infrastructure. The conven-
tional client-server system model has become inadequate
for next-generation multimedia service provisioning due
to its poor scalability, customizability, manageability, and
reliability. Thus, we propose acompositionalapproach to
multimedia service provisioning, which connects thou-
sands of media servers and proxies into a service-
oriented application-level overlay network called service
overlay network (SON). A fundamental problem in the
SON is to provide automatic service composition, which
can dynamically compose distributed multimedia service
components based on user’s service requirements.

Recently, several research projects (e.g., [12], [13],
[19], [7], [?]) have addressed the service composition
problem. However, most existing solutions present three
major limitations. First, they all adopt a centralized
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approach to service composition, which presents seri-
ous scalability problems. Second, they lack systematic
quality-of-service (QoS) management that are especially
important for multimedia applications. On the other
hand, existing QoS solutions (e.g., [4], [3], [17], [6],
[5]) are not readily applicable to service composition due
to its application-specific requirements such as function
constraints and service dependency relations. Third, pre-
vious work only supports linear composition topology
and fixed composition order, which greatly limits the
applicability and efficiency of service composition.

In this paper, we present a QoS-aware service compo-
sition framework called SpiderNet to address the above
challenges. SpiderNet provides a novelbounded com-
position probing(BCP) scheme to achieve QoS-aware
service composition in a scalable and efficient fashion.
The basic idea of BCP is to selectively examine a small
subset of candidate compositions according to user’s
service requirements. The BCP scheme executes a hop-
by-hop distributed composition protocol that has three
objectives. First, it discovers available service compo-
nents that match the user’s service function requirements
(e.g., transcoding, image scaling, caption embedding).
Second, it checks statistical QoS condition (e.g., mean
service time), resource availability, and inter-service de-
pendency/commutative relations to select qualified ser-
vice components. Third, it collects statistical QoS and
resource state information from selected candidate ser-
vice components. Finally, the best service composition
is selected based on the information collected by the
BCP, user’s QoS/resource requirements, and global load
balancing goal.

The SpiderNet service composition approach has three
unique features. First, it provides multi-constrained sta-
tistical QoS assurances [11] for the composed distributed
multimedia services. Second, SpiderNet achieves good
load balancing in the SON to improve overall resource
utilization. Third, SpiderNet supports directed acyclic
graph (DAG) composition topologies and exchangeable
composition orders. Thus, the composed services can
be more efficient with parallel execution of service
functions instead of strict pipelined chaining of service
functions. By exploring exchangeable composition or-
ders, SpiderNet can improve the QoS provisioning and
resource utilization in service composition. We have
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Fig. 1. SpiderNet system architecture.

conducted a detailed experimental evaluation about the
performance and scalability of the SpiderNet framework.
We have implemented a prototype of SpiderNet and
conducted extensive experiments by evaluating the pro-
totype on both large-scale simulation testbed and wide-
area network testbed PlanetLab [1]. The experimental
results show that SpiderNet can achieve near-optimal
QoS-aware service composition performance with low
overhead.

The rest of the paper is organized as follows. In Sec-
tion II, we present the SpiderNet system model. In Sec-
tion III, we present the distributed service composition
design in detail. In Section IV, we present experimental
results. Finally, the paper concludes in Section V.

II. SYSTEM MODEL

In this section, we first introduce the SpiderNet
three-tier system model illustrated by Figure 1. Then,
we formally define the QoS-aware service composition
problem. We summarize the notations in Table I for later
references.

A. Abstract Service Layer

The abstract service layer consists of user’s com-
posite service requirements (e.g., secure mobile video-
on-demand). The user can specify a composite service
request using a function graph (ξ) and a QoS requirement
vector (Qtarget). The function graph specifies required
service functions (Fi) and inter-service dependency and
commutative relations, which is illustrated by the top
tier in Figure 1. The dependency relation fromF1 to F2

means that the output ofF1 will be used as the input
by F2, which is denoted byF1 Ã F2. The commutative
relation betweenF1 to F2 means that the composition
order ofF1 andF2 can be exchanged without affecting

notation meaning
F service function
s service component
ξ function graph

Qtarget QoS requirements
λ ServFlow
` service link
e overlay link

Qin = [qin
1 , ..., qin

d ] static input QoS requirements
v overlay node

Qout = [qout
1 , ..., qout

d ] static output QoS properties
[r1, ..., rn] end-system resource availability

Qp = [qp
1 , ..., qp

m] dynamic QoS metrics
γ adaptation policy

γ(Qin) or γ(Qout) Qin or Qout after adaptation
Γ adaptation policy set
π adaptation condition hypercube

Rλ resource requirements ofλ
℘ overlay path
β probing budget
α probing quota
ψλ aggregate resource cost metric

〈Cqi ,Pqi〉 statistical requirement forqi

Mrk mean value ofrk

Mbw mean value of bw
bw available bandwidth

〈Cbw,Pbw〉 statistical bandwidth requirement
P probing message

〈Crk ,Prk 〉 statistical requirement ofrk

TABLE I

NOTATIONS.

the composite service’s function. We formally define the
function graph as follows,

Definition 2.1: A function graph is defined asξ =
(F,DR, PR), F = {Fi|1 ≤ i ≤ |F|}, DR =
{dri|dri , Fi Ã Fj |1 ≤ i ≤ |DR|}, PR = {pri|pri ,
Fi ∼ Fj |1 ≤ i ≤ |PR|}, where |F|, |DR|, and |PR|
represent the cardinalities of the setF , DR, and PR,
respectively.

We use Qtarget = [〈Cq1 ,Pq1〉, ..., 〈Cqm ,Pqm〉] to
define the user’s statistical QoS requirements for the
composed service, where〈Cqi ,Pqi〉 specifies the bound
Cqi and the satisfaction probability1 Pqi for the metricqi

that represents a QoS metric such as delay and loss rate.
Users can either directly specify the composite service
request using extensible markup language (XML) or use
visual specification tools [10].

B. Instantiated Service Layer

The instantiated service layer consists of distributed
multimedia services that are dynamically composed

1The satisfaction probability is defined as the probability when the
random variableqi is less or equal toCqi , assumingqi is minimum-
optimal.
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Fig. 2. Service composition model.

from existing service components. A multimedia service
component (si) is a self-contained multimedia applica-
tion unit providing a certain functionality (e.g., media
transocoding), which is illustrated by Figure 2 (a). Each
service component has several input and output ports for
receiving input messages and sending output messages,
respectively. Each input port is associated with a message
queue for asynchronous communication between service
components.

Each service component consists of four items, (1)
function namedescribing the service function provided
by the service component, (2)service coderepresent-
ing the service implementation, (3)static meta-data,
and (4) dynamic meta-data. The static meta-data of a
service componentsi consists of three parts: (1) the
location of si; (2) input quality requirements of the
service component such as media format, frame rate,
which is denoted byQin = [qin

1 , ..., qin
d ], and output

quality properties of the service component, denoted
by Qout = [qout

1 , ..., qout
d ]; and (3) adaptation policies

Γ = {γ1, ..., γl}, where γi is expressed by anif-
condition-then-actionconstruct. The dynamic meta-data
of a service component describe its fluctuating perfor-
mance conditions, such as recent service delay. We use
statistical QoS vectorQsi = [qsi

1 , ..., qsi
m] to characterize

the dynamic QoS metrics of the service component. Each
QoS metricqk, 1 ≤ k ≤ m is represented by a random
variable, whose histogram is constructed from a number
of recent sample values. Based on the histogram, we can
estimate the probability density function (p.d.f.) ofqk,
denoted byρqk

. We usePr(qk ≤ Cqk) to define the
satisfaction probability that the dynamic value ofqk is
no larger than the required upper boundCqk .

When we compose two service components, we need
to address two key issues, illustrated by Figure 2 (b).
First, we need to check the QoS consistencies between
two different service components since they can be
developed by different third-party service providers. The
QoS consistency includes two aspects. First, we check
whether Qin and Qout of the two composed service

components are consistent. Second, we check wether
the adaptation policies of the two service components
conflict with each other. The second issue is to derive
the dynamic QoS values of the composed service from
those of constituent service components and the network
connection between them. Because we use statistical
QoS metrics, the accumulation of QoS metrics means
convolution [16] between them2.

We describe a composite distributed multimedia ser-
vice using a DAG calledServFlow (λ), illustrated by
the middle tier in Figure 1. The nodes in the ServFlow
represent the service components and the links in the
ServFlow represent application-level connections called
service link. Each service link is mapped to an overlay
path by the overlay data routing layer. For example, in
Figure 1, the service link̀ i is mapped to the overlay
path ℘i = e1 → e2... → ek. We formally define the
ServFlow as follows,

Definition 2.2: A ServFlow is defined asλ = 〈S, L〉,
S = {sk|1 ≤ k ≤ |S|}, L = {`k|`k = si → sj , 1 ≤ k ≤
|L|}.
For example, the ServFlow shown in Figure 1 can
be described asλ = ({s1, s7, s9, s11}, {`1/℘1, `2/℘2,
`3/℘3, `4/℘4, `5/℘5}), where℘1 = e1, ℘2 = e2 → e3,
℘3 = e4, ℘4 = e5 → e6, and℘5 = e7. If an overlay node
contributes multimedia services on a ServFlowλ, it is
called aservice node. If an overlay node only performs
application-level data relaying onλ, it is called arelay
node.

To quantify the load balancing property of an instan-
tiated ServFlow, we define a resource cost aggregation
metric, denoted byψλ, which is the weighted sum of
ratios between resource requirements of the service com-
ponents/service links between resource availabilities on
the hosting overlay nodes/overlay paths. We useCsi

ri
and

Psi
ri

to represent the resource requirement threshold and
satisfaction probability of the service componentsi for
the i′th end-system resource type (e.g., CPU, memory,
disk storage), respectively. Similarly, we useC`i

bw and
P`i

bw to denote the required threshold and satisfaction
probability for the network bandwidth on the service link
`i, respectively.

The resource requirements of a service component
depend on its implementations and the current workload.
In contrast to the conventional data routing path, the
resource requirements along a ServFlow are no longer
uniform due to the non-uniform service functionalities on
the ServFlow. Different service components can have dif-
ferent resource requirements due to heterogeneous func-

2For simplicity, we assume that all QoS metrics are additive since
a multiplicative metric (e.g., loss rate) can be transformed into addi-
tive parameters using logarithmic function. We also assume that all
QoS metrics of different service components and network links are
independent.
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tions and implementations. The bandwidth requirements
also vary among different service links since the value-
added service instances can change the original media
content (e.g., image scaling, color filter, information
embedding). We useMvj

ri to denotemeanavailability
of i′th end-system resource type on the overlay node
vj .

We useM℘i

bw to denote themeanavailability of the
bandwidth on the overlay path℘i, which is defined as the
minimum mean available bandwidth among all overlay
links ei ∈ ℘. The mean values can be calculated from the
p.d.f.’s of the corresponding statistical metrics. Hence,
the resource cost aggregation metricψλ is defined as
follows,

ψλ =
∑

si/vj∈λ

n∑

k=1

wk

Csi
rk

Mvj
rk

+ wn+1

∑

`i/℘i∈λ

C`i

bw

M℘i

bw

(1)

n+1∑

k=1

wk = 1, 0 ≤ wk ≤ 1, 1 ≤ k ≤ n + 1

wk, 1 ≤ k ≤ n + 1 represents the importance of
different resource types3. We can customizeψλ by
assigning higher weights to more critical resource types.
The ServFlow with smaller resource cost aggregation
value has better load balancing property because the
resource availabilities exceed the resource requirements
by a larger margin.

C. Service Overlay Network Layer

The substrate tier of the SpiderNet system is a ser-
vice overlay network that consists of distributed overlay
nodes (vi) connected by application-level connections
called overlay links (ei). Each overlay node can pro-
vide one or more multimedia service components. The
overlay network topology can be formed by connecting
each overlay node with a number of other nodes called
neighbors via overlay links. Application-level data relay-
ing [2] is required between two overlay nodes that are
not directly connected. For example, in Figure 1, the data
sent byv1 to v4 needs to be relayed byv2. The QoS-
aware service composition is then performed on top of
the overlay data routing layer.

Each nodevi is associated with a statistical resource
availability vector [rvi

1 , ..., rvi
n ], wherervi

k is a random
variable describing the statistical availability for the
k′th end-system resource type (e.g. CPU, memory, disk
storage). We use a histogram to estimate the probability
density function (p.d.f.)ρr of the random variabler.
Thus, we do not need to make any assumption about
the distribution of the random variable. The histogram

3Some services are computationally intensive (e.g., image analysis),
which require low network bandwidth. However, some services require
high network bandwidth and low CPU (e.g., forwarding service).
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is constructed from a number of recent sample values.
For example, if the total sample size of the histogram
is Z and the number of sample values in the bin
[x− 4x

2 , x + 4x
2 ] is Y , then we haveρr(x) ≈ Y

Z . Each
nodevi also maintains statistical bandwidth availability
bw`j for its adjacent overlay links̀ j . For scalability,
each node maintains the above histogramslocally, which
are not disseminated to other overlay nodes.

D. Problem Description

We formulate QoS-aware service composition as a
two dimensional graph mapping problem illustrated by
Figure 3. In one dimension, we can derive different
composition patterns from the original function graph
by considering the commutative links. In the other di-
mension, we can map each service function into different
duplicated service components in the SON. These dupli-
cated service components provide the same functionality
but can have different QoS properties (e.g., service time)
and available resources on the local peer host (e.g., CPU,
memory). For example, in Figure 3, functionF1 can be
mapped to two duplicated service componentss1 and
s2. We can derive different ServFlows from the function
graph by considering the above two dimensions. Thus,
the QoS-aware service composition problem (QSC) is
to find the best mapping from the function graph to the
best qualified ServFlow that satisfies the user’s multi-
constrained QoS requirementsQreq and achieves best
load balancing in the current multimedia service overlay.
We formally define the QSC problem as follows,

Definition 2.3: QoS-aware service composition
(QSC) problem. Given a composite service request
Υ = 〈ξ, Qtarget〉 and a multimedia service overlay G
= (V, E), the QSC problem is to mapξ into the best
qualified ServFlowλ, such thatλ minimizesψλ subject
to the following constraints:

Pr(qλ
k ≤ Cqk) ≥ Pqk , ∀k, 1 ≤ k ≤ m (2)

Pr(rvj

k ≥ Csi
rk

) ≥ Psi
rk

, ∀k, 1 ≤ k ≤ n,∀si/vj ∈ λ (3)

Pr(bw℘i ≥ C`i

bw) ≥ P`i

bw,∀`i/℘j ∈ λ (4)
Theorem 2.1:QSC problem is NP-hard.

Readers are referred to [?] for the proof details.
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III. SYSTEM DESIGN

In this section, we present the bounded composition
probing protocol, concepts of probing budget and prob-
ing quota, per-hop probe processing algorithm, and op-
timal service composition selection. Finally, we discuss
several enhancements to the basic distributed service
composition scheme.

A. Bounded Composition Probing Protocol

SpiderNet executes a bounded composition probing
(BCP) protocol to perform distributed service compo-
sition. Given a service composition request, the source
node invokes the BCP protocol4, which includes four
major steps:

Step 1. Initialize the probe.The source first generates
a composition probing message, called probe. The probe
carries the information of function graph and the user’s
QoS/resource requirements. The probe can spawn new
probes in order to concurrently examine multiple next-
hop choices. To control the number of spawned probes,
the probe carries aprobing budget(β) that defines how
many probes we could use for a composition request.
We will introduce the probing budget in more detail in
Section III-B.

Step 2. Hop-by-hop probe processing.Each peer
processes a probe independently using only local in-
formation. The goal of hop-by-hop distributed probe
processing is to collect needed information and per-
form intelligent parallel searching of multiple candidate
ServFlows. We will describe this step in detail in Section
III-D.

Step 3. Optimal composition selection.The destina-
tion collects the probes for a request with certain timeout
period. It then selects the best qualified ServFlow based
on the resource and QoS states collected by the probes.
We will discuss this step in detail in Section III-E.

Step 4. Setup service session.Finally, the destina-
tion sends an acknowledge message along the reversed
selected ServFlow to confirm resource allocations and
initialize service components at each intermediate peer.
Then the application sender starts to send application
data stream along the selected ServFlow. If no qualified
ServFlow is found, the destination returns a failure mes-
sage to the source directly. Figure 4 shows the pseudo-
code of distributed service composition algorithm.

B. Probing Budget

We introduce the concept ofprobing budget that
allows us to precisely control the number of probes
used for each composition request. The probing budget

4The BCP initiator can also be the destination or a third-party
overlay node.

Input: request〈ξ, Qtarget〉, probing budgetβ;
Output: best qualified ServFlowλ.

1 The source node generates a probeP
2 Initialize P with ξ, β, Qtarget

3 Derive first-hop servicess1, ..., sk

4 Spawn k probes fromP
5 Send new probes to next hop
6 Per-hop probe processing at an intermediate nodevi

7 if vi is a relay node
8 Derive next data routing hopvk

9 UpdateP with its local info. of e(vi, vk)
10 ForwardP to vk

11 if vi is a service node providingsi

12 Check Resource/QoS conformance
13 if ServFlow is qualified
14 Perform soft resource allocation
15 Derive next-hop service functions usingξ
16 Check QoS consistency
17 Spawn new probes
18 Updates new probes with local info. ofsi

19 Send new probes to next-hop
20 elseDrop the received probe P
21 The sink node selects the best ServFlow

Fig. 4. Distributed service composition algorithm.

represents the trade-off between the probing overhead
and composition optimality. Larger probing budget al-
lows us to examine more candidate ServFlows, which
allows us to find a better qualified ServFlow. Different
from previous work, SpiderNet can provide an adap-
tive composition solution with tunable performance by
properly adjusting the probing budget. For example,
we can use larger probing budget for the request with
(1) higher priority, (2) stricter QoS constraints, or (3)
more complex function graph. We can also adaptively
adjust the probing budget based on user feedbacks and
historical information.

C. Probing Quota

Although the probing budget could control the total
probing overhead, it cannot guarantee the fair sharing
of the probing budget among different service functions.
If there are many candidate service components for a
service function, dividingβ0 amongall candidate service
components can quickly use up the probing budget. To
address the problem, we associate aprobing quota(αi)
with each service functionFi to limit the number of
probes used forFi. In the basic distributed service com-
position algorithm, we assume that all service functions
are equally important. We will describe the differenti-
ated probing quota allocation in Section III-F. Let us
assume that we are given a function graphξ includes
k branch pathsτ1, ..., τk, each of which includesLi

service functions withZi (Zi ≥ 1, 1 ≤ i ≤ k) alternative
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permutations (i.e., composition patterns). If each service
function is associated with the same probing quotaα,
the total probes generated on the branch path withLi

service functions andZi permutations isZi ·αLi . Thus,
we can deriveα based on the following inequalities:

Zi · αLi ≤ β0/k, 1 ≤ i ≤ k. (5)

For example, in Figure 3, the function graph includes two
branch paths. The first branch has two permutations that
can generate2α4 probes if BCP usesα probes for each
function. The second branch can generateα4 probes.
According to Equation 5, we have2α4 ≤ β0

2 andα4 ≤
β0
2 . Thus, the upper-bound ofα is b 4

√
β0
4 c.

D. Per-hop Probe Processing

We now describe the details of the per-hop probe
processing steps that mainly includes six steps:

(a) Resource/QoS check and soft resource allo-
cation. When a service node receives a probe, it first
check whether the QoS and resource values of the probed
ServFlow already violate the user’s requirements. If the
accumulated QoS and resource values already violate
the user’s requirements, the probe is dropped imme-
diately. Otherwise, the peer will temporarily allocate
required resources to the expected application session.
However, the resource allocation issoft since it will be
cancelled after certain timeout period if the peer does
not receive a confirmation message. The purpose of this
soft resource allocation is to avoid conflicted resource
admission caused by concurrent probe processing. Thus,
we can guarantee that probed available resources are still
available at the end of the probing process.

(b) Derive next-hop service functions.Next, the
service node derives the next-hop service functions ac-
cording to the dependency and commutative relations in
the function graph. All the functions dependent on the
current function are considered as next-hop functions.
For each next-hop functionFk derived above, if there is
a exchange link betweenFk andFl, Fl is also a possible
next-hop function. The probing budget is proportionally
distributed among next-hop functions according to their
probing quotas. To avoid incorrect loops in the compo-
sition probing, we modify the functions graphs in the
new probes destined to the two exchangeable service
functionsFk andFl. In the probe forFk, we modify its
function graph by replacingFk ∼ Fl with Fk Ã Fl. In
the probe forFl, we modify its function graph by first
replacingFk ∼ Fl with Fl Ã Fk, and then lettingFk

inherit all the relations ofFl. More details can be found
in [?].

Step 2.3: Discover candidate service components.
The service node discovers candidate service compo-
nents for all next-hop functions derived above. For scal-

ability, we implement a decentralized service discovery
based on the distributed hash table (DHT) system [15].
Readers are referred to [9] for detailed description.

Step 2.4: Check QoS consistency.Based on the
service discovery results, the service node then performs
QoS consistency check between the current service
component and next-hop candidate service components.
The QoS consistency check includes two aspects: (1)
the consistencies between output QoS parametersQout

of the current service component and input QoS pa-
rametersQout of the next-hop service component; and
(2) the compatibility between the adaptation policies
of two connected service components. Unlike the IP-
layer network where all routers provide a uniform data
forwarding service, the node in the multimedia service
overlay can provide different multimedia services, which
makes it necessary to perform QoS consistency check
between two connected service components. We first
check the parametric consistency based on the following
definitions,

Definition 3.1: Parametric consistency relation
(Qout

sa
¹ Qin

sb
). Given two service componentssa

and sb, Qout
sa

¹ Qin
sb

if and only if ∀i, 1 ≤ i ≤ d,
∃j, 1 ≤ j ≤ d, (1) qout

aj
= qin

bi
, if qin

bi
is a single value,

and (2)qout
aj

⊆ qin
bi

, if qin
bi

is a range value.
In addition, we also check whether the adaptation

policies of the two service components are compatible
with each other. Generally, we can express an adaptation
policy using anif-condition-then-actionconstruct. For
example, a video tracking service can have the following
adaptation policy,if CPU is below 40% and bandwidth
is below 100kbps, then use RGB8color. We say two
adaptation policies are compatible if their actions will
not cause any parametric in-consistency. For example,
an adaptation policy of a service component specifies
that the service component changes output media format
from MPEGII to JPEG when the available CPU is lower
than 40%. If the component’s successor specifies that
the required input media format must be MPEGII, then
the adaptation policy will potentially cause parametric
in-consistency between the two service components. We
use hyper-cubeπ to model adaptation conditions, where
each condition attribute (e.g., CPU and bandwidth in the
visual tracking example) represents one dimension of the
hyper-cube. We check the compatibility of two adapta-
tion policies based on the relations of their condition
hypercubes (e.g., equal, disjoint, overlapping), which is
formally defined as follows,

Definition 3.2: Adaptation Rule Set Compatibility
Relation (Γsa

./ Γsb
). We useγ(SQin) and γ(SQout)

to represent the newSQin andSQout after the service
component is changed by its adaptation policyγ. Given
two adaptation policy setsΓsa

= {γa1 , ..., γaA
} and

Γsb
= {γb1 , ..., γbB

} , we define that two adaptation
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policy sets are compatible, denoted byΓsa ./ Γsb
, if

and only if ∀γai ∈ Γsa , ∀γbj ∈ Γsb
, (1) πa = πb

⇒ γai(SQout
sa

) ¹ γbj (SQin
sb

); (2) πa ∩ πb = ∅ ⇒
γai(SQout

sa
) ¹ SQin

sb
∧ SQout

sa
¹ γbj (SQin

sb
); (3) πa ∩

πb 6= ∅ ∧ πa * πb ∧ πb * πa ⇒ γai(SQout
sa

) ¹ SQin
sb∧ SQout

sa
¹ γbj (SQin

sb
) ∧ γai(SQout

sa
) ¹ γbj (SQin

sb
) ,

(4) πa ⊂ πb ⇒ γai(SQout
sa

) ¹ γbj (SQin
sb

) ∧ SQout
sa

¹
γbi(SQin

sb
); (5) πb ⊂ πa ⇒ γai(SQout

sa
) ¹ SQin

sb
∧

γai(SQout
sa

) ¹ γbj (SQin
sb

).
Based on the above two definitions, we define the inter-
component QoS consistency relation as follows,

Definition 3.3: Inter-component QoS consistency
(sa ⇔ sb). Given two service componentssa and sb,
their static meta-data items(SQin

sa
, SQout

sa
, Γsa) and

(SQin
sb

, SQout
sb

,Γsb
). We define thatsa is QoS consistent

with sb (sa ⇔ sb), if and only if (1) SQout
sa

¹ SQin
sb

and (2)Γa ./ Γb.
In SpiderNet, static meta-data items are described us-

ing the XML-based markup language HQML [10]. Spi-
derNet check the QoS consistency between two service
components using the HQML syntactic and semantic
parsers [10] according to the above Inter-component QoS
consistency definitions. The computation complexity of
the parametric consistency check isO(d), where d is
the dimension of the vectorsQin and Qout. If the
adaptation condition requires a K-dimensional space,
then we can decide the relation of two condition hy-
percubes inO(K2). Thus, the computation complexity
of checking the compatibility of two adaptation policy
sets isO(ABdK2), whereA defines the size of rule set
of sa, B defines the size of rule set ofsb. The compu-
tation complexity of the complete inter-component QoS
consistency check algorithm isO(ABdK2).

Step 2.5: Select next-hop service components.Due
to the probing budget and probing quota constraints,
the service nodevi may not be able to probe all the
qualified next-hop service components. Thus,vi selects
a subset of most promising next-hop candidate service
components to probe. Suppose we findK qualified
candidate service components for the next-hop function
Fk. Let βk denote the available probing budget forFk

decided by step 2.2. Letαk define the probing quota
for Fk. Thus, the number of probes that can be used
by Fk is I = min(βk, αk). If I ≥ K, then the service
node spawnsK new probes from the received probe
to examine allK candidate service components. Each
new probe has a probing budgetbβk

K c. However, ifI〈K,
then we do not have enough probing budget to probe
all the K candidate service components. In this case,vi

selectsI most promising next-hop service components
from the K candidates based on the local available
information. To meet our multi-constrained QoS and
resource management goals,vi selects best next-hop
service components based on a combined metric that

comprehensively considers all local states information
such as the network delays retrieved from the overlay
data routing layer and average service delays of the
candidate service component retrieved from the static
meta-data. Finally,vi spawns a new probe for each
selected next-hop service component. Each new probe
has a probing budgetbβk

I c.
Step 2.6: Update probe with statistical local states.

In the last step, the service nodevi sets the content
of each new probePnew based on the content of the
received probeP and its local statistical information.
First, vi updates the p.d.f.’s of the accumulated QoS val-
uesQλ of the probed ServFlowλ using the convolution
between its old values recorded inP and Qsi of the
current service componentsi as follows,

ρλ
qi

(u) =
∫ ∞

−∞
ρλ

qi
(x) · ρq

si
i

(u− x)dx, 1 ≤ i ≤ m (6)

Second,vi updates the resource requirements of the
probed ServFlowλ with the CPU resource require-
ment ofsi (Csi

cpu,Psi
cpu) and the bandwidth requirement

(C`k

bw,P`k

bw) for the service link`k betweensi and the
selected next-hop service instance inPnew. Third, vi

calculates the mean resource availability valueMrk
and

the resource satisfaction probabilityPr(rk ≥ Csi
rk

) for
the end-system resourcerk as follows,

Mrk
=

∫ +∞

−∞
xρrk

(x)dx, 1 ≤ k ≤ n (7)

Pr(rk ≥ Csi
rk

) =
∫ +∞

Csi
rk

ρrk
(x)dx, 1 ≤ k ≤ n (8)

Fourth,vi derives the first overlay linkek to the selected
next-hop service instance according to the local overlay
data routing table. Then,vi updates the values ofQλ

using the convolution between oldQλ values andQek ,

ρλ
qi

(u) =
∫ ∞

−∞
ρλ

qi
(x) · ρq

ek
i

(u− x)dx, 1 ≤ i ≤ m (9)

vi then updates average available bandwidth on the
overlay path℘i to the next-hop as follows,

M℘i

bw = min[M℘i

bw,

∫ +∞

−∞
xρbwek (x)dx] (10)

The bandwidth satisfaction probabilityPr′bw =
Pr(bw℘i

≥ C`i

bw) is updated as follows,

Pr′bw = Prbw ·
∫ +∞

C`i
bw

ρbwek (x)dx (11)

We have presented the per-hop probe processing al-
gorithm at a service node. In contrast, the per-hop probe
processing at a relay node is much simpler since it does
not provide any service components but only performs
application-level data forwarding in the overlay network.
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Fig. 5. Merge branch paths into DAG ServFlows.

The relay node does not spawn new probes. It only
updates the content of the received probeP with the
local statistical information about the overlay linkek

towards the next-hop service node specified inP .

E. Optimal Service Composition Selection

At the destination node, SpiderNet selects the best
qualified ServFlow based on the information collected
by the received probes. If the function graph has a linear
path structure, each probe records a complete service
composition. However, if the function graph has a di-
rected acyclic graph (DAG) structure, each probe only
collects the information for one composition branch.
For example, in Figure 5, each probe traverses either
the branch pathF1 → F2 → F4 → F5 or F1 →
F3 → F4 → F5. Hence, we need to first merge the
examined branch paths into complete DAG ServFlows.
We briefly describe the merging algorithm as follows.
First, we classify all the received branch paths intoY
sets according to their provisioned service functions. All
branch paths within one set should include the same
set of service functions. For example, in Figure 5, we
classify the four received branch paths into two sets.
Second, we merge everyY combinable branch paths, one
from each of theY sets, into a complete DAG ServFlow.
Two branch paths are combinable if and only if their
common service functions are performed by the same
service component. For example, in Figure 5, we can
derive two candidate DAG ServFlows from the received
four branch paths.

When we merge two branch paths, we need to cal-
culate the statistical resource and QoS values of the
DAG ServFlow from its constituent branch paths. The
mean values of resource availabilities (i.e.,Msi

rk
, M`j

bw)
of the DAG ServFlow are the union of its constituent
branch paths. The statistical QoS valuesQλ of the DAG
ServFlow is defined as the bottleneck value between the
two branch paths. If the non-linear ServFlow includes
more than two branch paths, the statistical QoS values
are calculated recursively between every two branch
paths.

Using the aggregated statistical resource and QoS
states, SpiderNet first selects all qualified ServFlows

according the user’s QoS requirements (i.e., Equation 2
in Section II) and resource requirements (i.e., Equation
3 in Section II). Then, SpiderNet sorts all the qualified
ServFlows in the increasing order of the resource cost
aggregation metricψλ (i.e., Equation 1 in Section II).
The qualified ServFlow with the smallestψλ value is
regarded as the best qualified ServFlow.

F. Enhanced Distributed Service Composition

We can improve the above basic distributed service
composition solution in three aspects: (1) caching, (2)
pruning, and (3) differentiated probing quota allocation,
which are described as follows,

Caching composition probing results.Each overlay
node can cache the qualified ServFlows found by recent
composition probing operations. When a nodevi re-
ceives a composite service request with the same abstract
function, it can avoid invoking the composition probing
to find a new ServFlow if the cached ServFlow can
satisfy the user’s QoS constraints. Each cached ServFlow
is only kept for a short period of time to assure the
validity and optimality of the cached ServFlow. More-
over, before we use the cached ServFlow, we can send a
single composition probe5 along the cached ServFlow to
validate whether it is still qualified. Thus, we can greatly
reduce the composition probing overhead by eliminating
unnecessary composition probing operations.

Pruning unqualified candidate ServFlows.We now
describe how to reduce the probing overhead by prun-
ing the searching branches along unqualified candidate
ServFlows. When an overlay node receives a probe, it
compares the current accumulated QoS and resource
metric values with the user required QoS and resource
constraints. If the satisfaction probabilities of the accu-
mulated QoS metrics or the resource metrics already
violate the user’s requirements, the probe is dropped
immediately6. Specifically, the overlay node drops a
probe if: (1) Pr(qλ

k ≤ Cqk) < Pqk ,∀k, 1 ≤ k ≤ m;
or (2) Pr(rvj

k ≥ Csi
rk

) < Psi
rk

; or (3) Pr(bw℘i ≥ C`i

bw) <

P`i

bw. Thus, we can greatly reduce the probing overhead
by cutting off probe forwarding and spawning along
those unqualified searching branches. If all probes are
dropped during BCP, the probing source will automati-
cally timeout and assume no qualified ServFlow can be
found to satisfy the user’s composite service request.

Differentiated probing quota allocation. In section
III-B, we have described the uniform probing quota allo-
cation scheme, which assumes that all service functions

5If the ServFlow hask branch paths, then we need k composition
probes to examine the ServFlow.

6Because the composition probing follows the function constraints
specified by the function graph and QoS constraints are minimum
optimal, the satisfaction probabilities will not be increased by further
accumulations.



9

and branch paths are equally important. We now describe
a differentiated probing quota allocation scheme, which
considers the differences among service functions and
branch paths in the function graph. First, we decide the
probing quota ratios among different service functions.
Suppose the function graphξ includesL service func-
tions,{F1, ..., FL}. We useνi ·α, 1 ≤ i ≤ L, to represent
the probing quota allocated to the service functionFi,
where νi is the probing quota weight associated with
the service functionFi. We can decide the value ofνi

based on different policies. For example, we can assign
a higher weight to the service function that has more
candidate service instances since it needs more probes to
search different alternatives. Suppose a service function
Fi can be mapped toσi different service instances.

We can calculateνi as νi = σi/
L∑

j=1

σj . If all service

functions have the same number of duplicated service
instances, we can assign largerνi to more critical service
functions. We can achieve more efficient consumption of
the probing budgetβ0 by partitioningβ0 differentially
among various service functions.

Second, we need to decide to how to share the probing
budget among different branch paths in the non-linear
ServFlow composition. We use$i · β0, 1 ≤ i ≤ B, to
represent the probing budget allocated to the branch path
τi, where$i represents the weight assigned to the branch
pathτi. Suppose the function graphξ includesB branch
pathsτ1, ..., τB , B ≥ 1. Each branch pathτi includesLi

service functions{Fi1 , ..., FiLi
} with Zi permutations.

The number of probes spawned on each branch path

is Zi ·
Li∏

k=1

νik
αLi , which should be no larger than its

probing budget share$i · β0. Thus, we can solveα and

$i, 1 ≤ i ≤ B based on one equation
B∑

i=1

$i = 1 and

B inequalities:Zi ·
Li∏

k=1

νik
αLi ≤ $i · β0, 1 ≤ i ≤ B.

Then, we can decide the probing quota allocated to each
service function byνi · α.

To implement the above differentiated probing quota
allocation in the distributed service composition, we
replace theuniform probing budget partitionscheme,
presented in Section III-D, with aproportional probing
budget partitionscheme, which is described as follows.
When a service nodevi receives a probe whose probing
budget isβ and there areT next-hop service functions
F1,...,FT , vi proportionally dividesβ amongT next-hop
service functions as follows. Suppose there areki branch
paths that are rooted at the service functionFi, which are
denoted byτi1 ,..., τiki

. Then, the probing budget allo-

cated toFi is decided byβi = b(
ki∑

j=1

$ij /
T∑

i=1

ki∑
j=1

$ij ) ·
βc, which means that the proportion of the probing

budget allocated toFi is decided by the ratio between
weight sum of all branch paths rooted atFi and the
weight sum of all branch paths rooted at all next-hop
service functionsF1,..., FT . We now prove that the
above proportional probing budget partition scheme can
guarantee that each branch pathτi receives its share of
probing budget$i · β0.

Theorem 3.1:Suppose the function graphξ includes
B branch pathsτ1, ..., τB , B > 1. The proportional
probing budget partition scheme can guarantee that each
branch pathτi is allocated with$i · β0 probing budget,
1 ≤ i ≤ B.

Readers are referred to [?] for the proof details.

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of Spi-
derNet using both large-scale simulations and prototype
running in wide-area network testbed PlanetLab [1].

A. Prototype Implementation and Evaluation

The SpiderNet prototype software is a multi-threaded
running system written in about 13K lines of java code.
There are 6 major modules: (1)service lookup agentis
responsible for discovering the list of service instances,
which is implemented on top of the Pastry software
[15]; (2) ServFlow generatormodule executes the BCP
protocol for QoS-aware service composition; (3)session
managermaintains session information for current active
sessions; (4)data transmissionmodule is responsible
for sending, receiving, and forwarding application data;
(5) overlay topology managermaintains the neighbor
set; (6) monitoring module is responsible for monitor-
ing the network/service states of neighbors. As proof-
of-concept, we also implemented a set of multimedia
service components to populate our P2P service overlay.
Each service component provide one of the following
six functions: (1) embedding weather forecast ticker;
(2) embedding stock ticker; (3) up-scaling video frames;
(4) down-scaling video frames; (5) extracting sub-image;
and (6) re-quantification of video frames.

Our experiments use 102 Planetlab hosts that are
distributed across U.S. and Europe. The average replica-
tion degree of each multimedia service is about 15. We
implement a customizable video streaming application
on top of the SpiderNet service composition system.
The customizable video streaming application allows
the user to perform wide-area video streaming with
desired transformations and enriched content. Figure 6
shows the screen shot of the customized video streaming
application. Our experiments on the PlanetLab indicate
that current SpiderNet prototype can setup a composite
service session within several seconds, which is accept-
able for long-lived streaming applications that usually
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Fig. 6. Customizable video streaming using SpiderNet.

lasts tens of minutes or several hours. The above service
setup time can be reduced with further implementation
improvement.

B. Simulation Results

In our simulation experiments, we first use the degree-
based Internet topology generator Inet-3.0 [18] to gener-
ate a power-law graph with 3200 nodes to represent the
Internet topology. We then randomly select a number
of nodes as overlay nodes and connect them into a
SON. The average node degree is10% · |V |. Once
the node degrees are chosen, the nodes are connected
into a topologically-aware overlay network using the
Short-Long algorithm presented in [14]. To simulate
the dynamic QoS values, we generate the dynamic
QoS values using either uniform distribution function
or normal distribution function. The histogram for each
random variable includes 30 sample values and 10 bins.
We choose the mean and deviation values based on real-
world Internet service level agreement (SLA) contracts
and the profiling results of fully implemented multimedia
services. We simulate the IP-layer and overlay-layer data
routing using the shortest path routing algorithm.

Each overlay node provides two service components.
Each service component performs a service function
that is randomly selected fromb |V |5 c service functions.
Thus, the average service duplication ratio is2·|V |

|V |/5 =
10, which conforms to our assumption that a service
function can be mapped to a limited number of service
instances. The function graphξ of the request is ran-
domly selected from 200 pre-defined templates, which
include two to five service functions with one or two
branches. The statistical resource and QoS requirements
are uniformly distributed. The service session time is
uniformly distributed within certain range. A QoS-aware
service composition is said to be successful, if and
only if the composed ServFlow (1) satisfies the func-
tion graph requirements, (2) satisfies the user’s resource
requirements (e.g., CPU, network bandwidth) , and (3)
satisfies the user’s QoS requirements (e.g., delay, data
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loss rate). The composition success rate is calculated by
SuccessNumber
RequestNumber .

For comparison, we also implement three other com-
mon approaches:optimal, random, andstaticalgorithms.
The optimal algorithm uses unbounded network flood-
ing, which exhaustively searches all candidate ServFlows
to find the best qualified ServFlow. The random algo-
rithm randomly selects a functionally qualified service
component for each function node in the function graph.
The static algorithm uses pre-defined service component
for each service function in the function graph. Both
random and static algorithms do not consider the user’s
QoS and resource requirements.

Figure 7 show the composition success rate achieved
by different algorithms on the three different multimedia
service overlays. The results illustrate that SpiderNet
can consistently achieve near-optimal performance (i.e.,
> 95% of the optimal performance) on the three different
service overlays. Compared to the random and static
algorithms, SpiderNet can achieve as much as 300%
better performance than the random algorithm and400%
better performance than the static algorithm. Moreover,
SpiderNet presents much better scaling property than
the random and static algorithms. When we increase
the service overlay size from 200 nodes to 500 nodes,
SpiderNet can achieve as much as130% performance
improvements by efficiently utilizing added resources
while the random and static algorithm can achieve at
most 50% improvements. The improvements from 500
nodes to 1000 nodes are not too much since the sys-
tem resources of 500 nodes already meet the resource
requirements of the workload. Figure 8 illustrates the
overhead comparison between the optimal algorithm and
the SpiderNet algorithm in the above experiment. The
probing overhead is measured by the total number of
probing messages generated per time unit. The results
show that SpiderNet has much lower overhead than
the optimal algorithm. The overhead increasing rate of
the SpiderNet algorithm is also slower than that of the
optimal algorithm as we increase the size of SON. More
simulation results can be found in [?].
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V. CONCLUSION

In this paper, we have presented SpiderNet, a fully
decentralized QoS-aware multimedia service composi-
tion framework. SpiderNet integrates statistical QoS
provisioning and automatic load balancing into the dis-
tributed service composition operation. Moreover, Spi-
derNet achievesexpressiveservice composition by sup-
porting directed acyclic graph composition topologies
and exchangeable composition orders. Our prototype im-
plementation demonstrated the feasibility and efficiency
of the SpiderNet framework. In the future, We intend to
investigate the probing budget tuning scheme to realize
self-adaptive QoS-aware service composition. We also
plan to extend the SpiderNet framework to support more
composition relationships such as conditional branch,
exclusive or, and conditional loop.
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