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Abstract

Twenty years ago Kay (1984) proposed an iterative filtering algorithm (IFA) for jointly estimating the

frequencies of multiple complex sinusoids from noisy observations. It is based on the fact that the noiseless

signal is an autoregressive (AR) process, so the frequency estimationproblem can be reformulated as the

problem of estimating the AR coefficients. By iterating the cycle of AR coefficient estimation and AR

filtering, IFA provides a computationally simple procedure yet capable of accurate frequency estimation

especially at low signal-to-noise ratio (SNR). However, the convergence of IFA has not been established

beyond simulation and a very special case of a single frequency and infinite sample size. This paper provides

a statistical analysis of the algorithm and makes several important contributions: (a) It shows that the poles

of the AR filter must be reduced via an extra shrinkage parameter in order toaccommodate poor initial values

and avoid being trapped into false solutions. (b) It shows that the AR estimates in each iteration must be bias-

corrected in order to produce a more accurate frequency estimator; a closed-form expression is provided for

bias correction. (c) It shows that for a sufficiently large sample size, theresulting algorithm, called new IFA,

or NIFA, converges to the desired fixed point which constitutes a consistent frequency estimator. Numerical

examples, including a real data example in radar applications, are providedto demonstrate the findings.

It is shown in particular that the shrinkage parameter not only controls the estimation accuracy but also

determines the requirements of initial values. It is also shown that the proposed bias-correction method

considerably improves the estimation accuracy, especially for high SNR.

Abbreviated Title.Multiple Frequency Estimation

Keywords.Adaptive filter; Convergence; Contractive mapping; Doppler; Fixed point; Frequency estimation;

Mixed spectrum; Signal processing; Sinusoid.



1. INTRODUCTION

As an alternative to the Gaussian maximum likelihood method, the iterative filtering algorithm (IFA) was

proposed by Kay (1984) for estimating the frequencies of multiple complex sinusoids from noisy observa-

tions

yt := xt + εt , xt :=
p

∑
k=1

βke
i(ωkt+φk) (t = 1, . . . ,n), (1)

wherep≥1 is a known integer,βk > 0,ωk := 2π fk ∈ (−π,π)\{0}, andφk ∈ (−π,π] are unknown constants,

and {εt} is a zero-mean complex-valued white noise process with unknown varianceσ2. IFA is based

on the fact that the noiseless signal{xt} is a special autoregressive (AR) process of orderp satisfying

xt +∑p
k=1akxt−k = 0, where theak uniquely determine, and are determined by, the frequenciesωk such that

1+
p

∑
k=1

akz
−k =

p

∏
k=1

(1−eiωkz−1), (2)

so the frequency estimation problem can be reformulated as the problem of estimating

a := [a1, . . . ,ap]
T .

To estimate the AR parametera, IFA iterates a cycle of estimation and filtering: It starts with an initial

estimatêa := [â1, . . . , âp]
T obtained from{yt} and uses it to construct an AR filter which is applied to{yt}

to produce

ỹt = −
p

∑
k=1

âkỹt−k +yt (t = 1, . . . ,n), (3)

whereỹ−1 := ỹ0 := 0. Then it re-estimates the AR parameter from the filtered time series{ỹt} and uses the

new estimate to filter the original data{yt} in the same way as (3) to produce a new filtered time series. This

cycle is repeated until a stopping criterion is satisfied. Li and Kedem (1994) generalized the basic idea of IFA

by including other parametric filters and by regarding the cycle of estimation and filtering as a fixed-point

iteration. The resulting procedure is called parametric filtering. IFA is simple computationally yet capable of
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Figure 1: Contour plot of the Gaussian likelihood, as a function of thenormalized frequenciesf1 and f2, for two

complex sinusoids in complex Gaussian white noise (n = 100 and SNR= 0 dB). Dashed lines indicate the location of

the true frequencies (f1 = 0.2 andf2 = 0.23); dotted diagonal line shows the boundaryf1 = f2.

providing accurate frequency estimates. However, the convergence of IFA has not been established beyond

simulation and a very special case of a single frequency and infinite sample size.

The Gaussian maximum likelihood method (also known as nonlinear least squares) has been applied to

the problem of frequency estimation (Walker 1971; Rife and Boorstyn 1976; Abatzoglou 1985; Rice and

Rosenblatt 1988; Stoica, Moses, Friedlander, and Söderstr̈om 1989; Stoica and Nehorai 1989; Van Hamme

1991; Starer and Nehorai 1992; White 1993; Shaw 1995). Although it produces a statistically efficient esti-

mator that attains the Cramér-Rao lower bound (CRLB) when{εt} is Gaussian, the surface of the Gaussian

likelihood function comprises numerous local extrema, as shown in Fig. 1, sothat an initial value of pre-

cisionO(n−1) is usually required in order for standard optimization algorithms, such as Newton’s method,

to converge to the desired solution. Since then-point discrete Fourier transform (DFT) only produces an
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Figure 2: Trajectory of the frequency estimates produced by IFA for the same data as used in Fig. 1. Open circles

represent initial values; solid points represent final estimates after 15 iterations; intermediate estimates appear as lines

that link the open circles with the solids points.

estimator of accuracyO(n−1), interpolation techniques have been proposed to obtain improved initial values

from DFT, but convergence with such initial values is still not guaranteedmathematically. IFA suffers from

the same initial value problem, as shown in Fig. 2.

In this paper, we provide a rigorous statistical analysis of IFA in the case of p = 2 and make several

important contributions:

(a) It is shown that the poles of the AR filter must be reduced via an extra shrinkage parameter in order

to accommodate poor initial values and avoid being trapped into spurious solutions.

(b) It is shown that the AR estimates in each iteration must be bias-corrected inorder to produce a more

accurate frequency estimator; a simple closed-form expression is derived for bias correction.

(c) It is shown that with probability tending to unity as the sample size grows, theresulting algorithm,
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which we call thenewIFA, or NIFA, converges to the desired fixed-point which constitutes a consis-

tent frequency estimator.

Numerical examples are provided to illustrate these findings. The results canbe regarded as an extension of

the earlier work of Li and Kedem (1994), Li and Song (2001; 2002),and Song and Li (1997; 2000). Unlike

the algorithms discussed there, the algorithm in this paper estimates the frequencies jointly as a multivariate

problem rather than sequentially as a sequence of univariate problems (one frequency at a time). The benefit

of the joint estimation approach is the relaxation of the frequency separationrequirement (Kay 1984).

It is worth pointing out that by cascading the AR fitting with the AR filtering a notchfilter can be

obtained. It can be implemented as an adaptive filter for tracking time-varyingfrequencies. This is an

advantage of the present approach that the DFT approach does not have. The results in this paper remain

valid for the steady-state performance of the notch filtering algorithm.

2. NEW ITERATIVE FILTERING ALGORITHM (NIFA)

Let us assume in the remainder of the paper that{yt} is given by (1) withp = 2 andω1 < ω2. Under this

assumption, it is easy to show from (2) thata = [a1,a2]
T takes the form

a1 := −
(

eiω1 +eiω2
)

, a2 := ei(ω1+ω2). (4)

For any admissible variableααα := [α1,α2]
T , which will be defined later, let{yt(ααα)} denote the filtered time

series given by

yt(ααα) = −
2

∑
k=1

αkηkyt−k(ααα)+yt (t = 1, . . . ,n) (5)

with y−1(ααα) := y0(ααα) := 0, whereη ∈ (0,1) is the shrinkage parameter that contracts the poles of the filter

towards the origin and thus stabilizes the filter.

Given the filtered data{yt(ααα)}, we estimatea by the method of least squares (LS), i.e., by seekingâ(ααα)
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that minimizes‖y(ααα)+Y(ααα)Dâ(α)‖2, where

Y(ααα) :=

















y2(ααα) y1(ααα)

...
...

yn−1(ααα) yn−2(ααα)

















, y(ααα) :=

















y3(ααα)

...

yn(ααα)

















, D := diag(η ,η2).

This gives rise to an AR estimator

â(ααα) := −D−1{YH(ααα)Y(ααα)}−1YH(ααα)y(ααα), (6)

where superscriptH stands for Hermitian transpose. Note that the role ofD is to compensate for the shrink-

age parameterη .

Unlike the true AR parametera, the AR estimator̂a(ααα) does not necessarily correspond to a polynomial

of the form (2) which has unit roots. To impose this constraint on each root of the polynomial ofâ(ααα),

one can simply reset its modulus to unity while retaining its angle, thus projecting it on the unit circle. The

resulting AR estimator is denoted byψψψ(â(ααα)), whereψψψ(·) represents the unit-root (UR) projector. The UR

projection not only stabilizes the AR filter but also eliminates the redundancy in the AR reparameterization

of the frequency estimation problem: it reduces the number of free parameters from four (the real and

imaginary parts of the AR coefficients) to two (the angles of the roots), whichis identical to the number of

unknown frequencies. As in regression problems, using the minimal numberof free parameters is helpful in

reducing the statistical variability of the estimation, especially when the sample sizeis small or the signal-

to-noise ratio (SNR) is low.

With the AR estimatorψψψ(â(ααα)) so defined, one can apply the general procedure of parametric filtering

proposed by Li and Kedem (1994) and seek a fixed point of the mappingααα 7→ ψψψ(â(ααα)) by the so-called

fixed-point iteration

αααm = ψψψ(â(αααm−1)) (m= 1,2, . . .). (7)

This algorithm can be decomposed into repeated cycles of AR filtering, LS estimation, and UR projection.

5



The IFA of Kay (1984) can be regarded as a special case of (7) withη = 1, although, strictly speaking,

it employs Burg’s estimator rather than the LS estimator and it does not impose theUR constraint. Fig. 2

shows that withη = 1 the iteration in (7) may converge to spurious fixed points if the initial values are not

near the desired solution. This problem can be overcome, as will be seen later, by choosingη < 1.

A careful analysis shows that in the case ofη < 1 the mappinĝa(ααα) contains a bias term ata that can

be expressed asb := [b1,b2]
T where

bk :=
(1−η)ik(eiω2 −eiω1)k sin2−k(ω2−ω1)

ηk{1−cos(ω2−ω1)}
(k = 1,2). (8)

By subtracting it fromâ(ααα), a new mappingααα 7→ ψψψ(â(ααα)−b) is formed. Theorem 1 in the next section

establishes that with probability tending to unity, the new mapping is contractive ina neighborhood ofa and

therefore has a unique fixed point that can be obtained as the limiting value ofthe fixed-point iterationαααm :=

ψψψ(â(αααm−1)−b) under fairly mild initial conditions. However, this procedure is not yet practical because the

bias given by (8) depends on the true frequencies. One way of making itpractical is to substituteb with an

estimatêb obtained from an initial estimate ofa (or equivalently, of the frequencies). Theorem 2 establishes

that the convergence assertions in Theorem 1 remain valid for the resultingmappingααα 7→ ψψψ(â(ααα)− b̂) as

long as the initial estimate ofa is sufficiently accurate.

Alternatively, the bias can be re-estimated in each iteration using the estimate ofa from the previous

iteration. This gives rise to our final NIFA algorithm

αααm := ψψψ(â(αααm−1)−b(αααm−1)) (m= 1,2, . . .), (9)

whereb(ααα) := [b1(ααα),b2(ααα)]T is defined in the same way asb by (8) except thatω1 andω2 are replaced

by λ1 andλ2 which are the angles of the roots of 1+ α1z−1 + α2z−2 satisfyingλ1 ≤ λ2. Let â := [â1, â2]
T

be the limiting value of{αααm} in (9) asm→ ∞. Then, the final NIFA frequency estimator is given by

ω̂ωω := [ω̂1, ω̂2]
T , whereω̂1 = 2π f̂1 andω̂2 = 2π f̂2 are defined as the angles of the roots of 1+ â1z−1 + â2z−2

satisfyingω̂1 ≤ ω̂2. Similarly, one can define the intermediate frequency estimatesω̂ωωm (m= 0,1,2, . . .) in
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Figure 3:Trajectory of the frequency estimates produced by NIFA in (9) with different values ofη and 15 iterations

for the same data as used in Figs. 1–2. Left,η = 0.92; right,η = 0.96.

terms of the roots of the polynomial associated withαααm. By definition,ω̂ωωm → ω̂ωω asm→ ∞.

Fig. 3 shows the trajectory of the frequency estimates{ω̂ωωm} produced by NIFA in (9) withη = 0.92

andη = 0.96 for the same data as used in Fig. 2. Fig. 4 shows the corresponding AR estimates{αααm} for

η = 0.96. As can be seen, the spurious fixed points in Fig. 2 no longer exist in Fig. 3 where all initial

values lead to a single fixed point even if they are far away from the true frequencies. This implies that the

initial requirement of NIFA, withη < 1, is much less stringent than that of IFA whereη = 1. Note that in

generalη should not be made too close to unity either, otherwise (e.g.,η = 0.99, not shown), the problem

of spurious fixed points may appear again, just like whenη = 1 in IFA.

The shrinkage parameterη plays a vital role not only in determining the requirement of initial values,

but also in determining the accuracy of the final estimator. Fig. 3 shows that the fixed point of NIFA with

the largerη = 0.96 is much closer to the true frequencies than that with the smallerη = 0.92 where the

estimates are pushed towards a single value in the vicinity of1
2( f1 + f2).
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Figure 4:Trajectory of the AR estimatesαααm := [α1m,α2m]T which correspond to the frequency estimates in the right

panel of Fig. 3.

These results indicate that while accommodating poor initial values requires a smaller shrinkage parame-

ter, producing an accurate final estimate demands a larger shrinkage parameter. In practice, the conflicting

requirements on the shrinkage parameter can be satisfied by employing a sequence of increasing values

0 < η1 < η2 < · · · < ηq < 1, where the estimate produced by NIFA withη = ηl afterml iterations can be

used as the initial value for NIFA withη = ηl+1 (l = 1, . . . ,q−1). In this way, one can start with a poor

initial value and still ends up with an accurate final estimate.

Table 1: Choice of Shrinkage Parameter

n 25 50 100 200 400

η1 0.830 0.900 0.960 0.970 0.980

η2 0.835 0.975 0.985 0.995 0.998

With two values ofη given by Table 1 for each sample size, Fig. 5 shows the mean-square error (MSE)
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Figure 5:Reciprocal MSE of the estimator forf1 by NIFA in (9). Lines without circle represent the CRLB underthe

assumption of complex Gaussian white noise. Results are based on 1,000 Monte Carlo runs. The true frequencies are

f1 = 0.2 andf2 = 0.23 (the phases areφ1 = 0 andφ2 = π/2). The simulated noise is complex Gaussian.

of the estimatorf̂1 by NIFA and the corresponding CRLB for various sample sizes and SNRs. (Similar

results, not shown, are obtained forf̂2.) In all cases, the LS estimator ofa from the unfiltered data, also

known as Prony’s estimator, is employed to initialize NIFA. The algorithm stops after 15 iterations: 6 with

η1 followed by 9 withη2.

As can be seen from Fig. 5, the accuracy of the NIFA estimator is very close to the CRLB, except for

the case ofn = 25 where the frequency separation is less than 1/n. Since Prony’s estimator is bias and

inconsistent (Li and Kedem 1994), the results in Fig. 5 suggest that NIFA with a proper choice ofη is able

to accommodate poor initial values of accuracyO(1) and still manages to converge to a final estimate which

is nearly optimal.

The benefit of the bias-correction (BC) technique in (9) as compared to (7) can be appreciated by ex-

amining the results displayed in Figs. 6 and 7. Fig. 6 shows that whereas bothalgorithms converge from all
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Figure 6:Frequency estimates produced by NIFA from different initial values with and without using the BC tech-

nique. Left, NIFA without BC in (9); right, NIFA with BC in (7), both withη =0.975 and for the same time series of

lengthn = 50 and SNR= 10 dB. Green lines represent estimates forf1 and red lines forf2. Dashed lines represent

the true frequencies.

initial values, the final estimates by NIFA with BC have a smaller bias than NIFA without BC. Fig. 7 further

shows that the bias of NIFA without BC is more than 15 dB larger than that of NIFA with BC. Although the

variance is approximately the same for both and is very close to the CRLB for all SNRs, the bias of NIFA

without BC dominates the variance and becomes greater than the CRLB as the SNR increases beyond 2 dB.

As a result, at SNR = 10 dB, the MSE, which equals the sum of variance andsquared bias, of NIFA without

BC exceeds the CRLB by approximately 12 dB as compared to 2 dB for NIFA with BC.

3. MAIN THEOREMS

Eq. (4) defines a one-to-one mapping fromωωω := [ω1,ω2]
T to a = [a1,a2]

T which will be denoted byωωω 7→

φφφ(ωωω) := a. Let Λ denote the set ofλλλ := [λ1,λ2]
T with −π < λ1 < λ2 ≤ π and letA denote the set of
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frequencies are employed as initial values. Shrinkage parameters in Table 1 forn = 50 are used. Results are based on

1,000 Monte Carlo runs, each of sample sizen = 50. True frequencies and phases are the same as in Fig. 5.

ααα := [α1,α2]
T such thatααα = φφφ(λλλ ) for someλλλ ∈ Λ, i.e.,A := φφφ(Λ). Let Aδ denote a closed subset ofA

such thatAδ := {ααα ∈A: ‖ααα −a‖ ≤ κδ ε}, whereκ > 0 andε ∈ (1, 3
2) are constants andδ := 1−η ∈ (0,1)

depends onn such thatδ → 0 asn→ ∞.

Theorem 1 LetAδ be the neighborhood ofa defined above and assume that n(1−δ )n = O(1) and nδ ε →∞

as n→ ∞. Then, with probability tending to unity, the mappingααα 7→ψψψ(â(ααα)−b) is contractive inAδ , with

a contraction factor of the formOP(δ ε−1), and therefore has a unique fixed pointâ ∈Aδ . Furthermore, with

probability tending to unity, the sequenceαααm := ψψψ(â(αααm−1)−b) (m= 1,2, . . .) converges tôa as m→ ∞

for any initial valueααα0 ∈ Aδ .
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The required accuracy forααα0 in Theorem 1 can be expressed asO(δ ε). Sincenδ ε → ∞, it means that

the initial accuracy can be lower thanO(n−1). This is in contrast with the Gaussian maximum likelihood

method which requires that the initial accuracy be higher thanO(n−1).

Note that the requirementn(1−δ )n = O(1) impliesnδ → ∞, soδ cannot approach zero faster thann−1.

The requirementnδ ε → ∞ further asserts thatδ should not approach zero faster thann−1/ε . Both require-

ments explain why in our numerical examplesη cannot be too close to unity in order to avoid converging to

spurious fixed points when initial values are poor.

Theorem 2 Assume that the conditions in Theorem 1 are satisfied. In addition, assumethat there exists an

initial estimatorω̂ωω0 such that‖ω̂ωω0−ωωω‖ = OP(δ ε−1). Let b̂ be defined in the same way asb by (8) usingω̂ωω0

instead ofωωω. Then, the assertions in Theorem 1 remain valid for the mappingααα 7→ ψψψ(â(ααα)− b̂) and the

sequenceαααm := ψψψ(â(αααm−1)− b̂) (m= 1,2, . . .).

The condition‖ω̂ωω0−ωωω‖ = OP(δ ε−1) can be easily satisfied by a wide range of initial estimators readily

available in practice. For example, it is satisfied by any initial estimatorω̂ωω0 such that‖ω̂ωω0−ωωω‖ = OP(δ γ)

for someγ > ε − 1. In particular, it is satisfied by all
√

n-consistent estimators such as those produced

by Pisarenko’s method (Pisarenko 1973; Sakai 1984) or the singular-value-decomposition-based methods

(Stoica and S̈oderstr̈om 1991).

Theorem 3 Assume that the conditions in Theorem 1 are satisfied. Then the assertionsin Theorem 1 remain

valid for the mappingααα 7→ψψψ(â(ααα)−b(ααα)) and the sequence{αααm} defined by(9).

Theorem 4 Assume that the conditions in Theorem 1 are satisfied. Letω̂ωω be the frequency estimator corre-

sponding to the fixed pointâ of the mappingααα 7→ ψψψ(â(ααα)−b(ααα)) in Aδ . Then, for any constantβ ≤ 3/2

such that n−1δ−β = O(1) as n→ ∞, δ−β (ω̂ωω −ωωω) is uniformly tight, i.e.,δ−β (ω̂ωω −ωωω) = OP(1). In other

words,ω̂ωω is at leastδ−β -consistent for estimatingωωω.
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If η is chosen such thatδ = 1−η = O(n−ν) for some 0< ν < ε−1 < 1, thennδ ε = O(n1−νε) → ∞,

so the conditions in Theorem 1 are satisfied. With this choice, according to Theorem 4, the NIFA estimator

ω̂ωω is at leastnνβ -consistent for anyβ ≤ min(ν−1,3/2), as it satisfiesn−1δ−β = O(n−1+νβ ) = O(1). The

required accuracy of initial values can be expressed asO(n−νε).

Now consider the special case whereν = 2/3 andβ = ν−1 = 3/2. In this case, Theorem 4 implies that

ω̂ωω is at leastn-consistent. By settingε = 1+, the initial requirement becomes nearlyO(n−2/3). This means

that it suffices to use a slightly better thann2/3-consistent estimator as the initial value in order to obtain

the n-consistent final estimator̂ωωω. Such initial values can be produced by NIFA itself, with the choice of

ν = (4/9)+. Indeed, with this choice, Theorem 4 guarantees a better thann2/3 rate of consistency by taking

β = 3/2 so thatνβ = (2/3)+. To obtain this estimator, the initial values are required to be slightly more

accurate thanO(n−4/9), which can be satisfied by all
√

n-consistent estimators.

As can be seen, by applying NIFA twice, once with a smallerη and once with a largeη , one is able

to improve the accuracy of the frequency estimator fromO(n−4/9) to O(n−1) or better. The convergence of

NIFA in both cases are guaranteed by Theorem 4.

Note that one can determine the number of iterations needed to achieve the final accuracy ensured by

Theorem 4 from the contraction factor, denoted byθn, of the mapping. Indeed, since afterm iterations one

can write‖αααm− â‖ ≤ θ m
n ‖ααα0− â‖, and sinceααα0− â = OP(δ ε) andθn = OP(δ ε−1), it follows that

‖αααm− â‖ = OP
(

δ m(ε−1)+ε).

Therefore, in order to make this quantity the same order of magnitude as the final estimation error of the

form OP(δ β ), it suffices thatm≥ (β −1)/(ε −1). With β = 3/2 in particular, it becomes

m≥ 1
2(ε −1)−1.

This expression suggests, with no surprise, that the number of iterations depends on the accuracy of initial

values: More iterations are needed when the initial values are poor so thatε has to be near unity, but for
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good initial values,ε can be made near 3/2, so a few iterations are enough to bring them sufficiently close

to the final estimator.

Finally we note that Theorem 4 does not exclude the possibility of a higher rate of consistency, which

is what “at least” means. In fact, by subtracting a more accurate bias term, which now depends on the

amplitude as well as the frequency of the sinusoids and needs to be estimated iteratively as before, one can

remove the conditionn−1δ−β = O(1), so thatν in the above discussion can take on values such as 1−. This,

coupled withβ = 3/2, gives rise to a rate of consistency which is arbitrarily close to the optimal raten3/2.

4. EXAMPLE AND DISCUSSION

4.1 Real Data Example

The dataset in this example is the “Sea Clutter + Target Data File” #283, taken from a large database of high-

resolution radar measurements collected in November 1993 with the McMaster IPIX Radar overlooking the

Atlantic Ocean from a cliff-top in Dartmouth, Nova Scotia, Canada (see http://soma.ece.mcmaster.ca/ipix).

The dataset is about 2 minutes long and has a weak target in one of its rangebins. The target is a spherical

block of styrofoam wrapped with wire mesh. It has a diameter of one meter. The objective of this exercise is

to estimate the Doppler frequency of the target from the radar data. For a target of p scatterers moving at a

constant speed within the observation time window, the radar data (after preprocessing) can be modeled by

(1), where the real and imaginary parts represent the in-phase and quadrature components and the noise is

attributed to the backscatters from the ocean surface (sea clutters) (Lewis, Kretschmer, and Shelton 1986).

Fig. 8 shows the frequency estimation results for two 128-point (128 milliseconds long) segments of the

radar data from the 10th range bin (2685 meters). As can be seen, for Segment 1 (left panel) where the signal

is strong, the frequency estimates coincide and appear at the spectral peak of the target; for Segment 2 (right

panel) where the signal is weak, the frequency estimates split, with one locked at the spectral peak of the

14



0 10 20 30 40 50 60 70 80 90 100 110 120 130

−
3

−
2

−
1

0
1

2
3

TIME (MILLISECONDS)

R
E

A
L 

P
A

R
T

0 10 20 30 40 50 60 70 80 90 100 110 120 130

−
3

−
2

−
1

0
1

2
3

TIME (MILLISECONDS)

IM
A

G
IN

A
R

Y
 P

A
R

T

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5

−
20

−
10

0
10

20
30

DOPPLER (METERS/SECOND)

P
E

R
IO

D
O

G
R

A
M

 (
D

B
)

0 10 20 30 40 50 60 70 80 90 100 110 120 130

−
3

−
2

−
1

0
1

2
3

TIME (MILLISECONDS)

R
E

A
L 

P
A

R
T

0 10 20 30 40 50 60 70 80 90 100 110 120 130

−
3

−
2

−
1

0
1

2
3

TIME (MILLISECONDS)

IM
A

G
IN

A
R

Y
 P

A
R

T

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5

−
20

−
10

0
10

20
30

DOPPLER (METERS/SECOND)

P
E

R
IO

D
O

G
R

A
M

 (
D

B
)

Figure 8:Frequency Estimates and Periodograms for Two 128-Point Segments of Radar Data. Left panel, Segment 1

(strong signal); Right panel, Segment 2 (weak signal). Top,real part of the data; Middle, imaginary part of the data;

Bottom, frequency estimates superimposed on the periodogram: dots, periodogram ordinates; solid line, interpolated

periodogram; dotted line, initial values of NIFA; dash-dotted line, final frequency estimates produced by NIFA after

20 iterations (5 withη = 0.9 followed by 15 withη = 0.95).

target (dash-dotted line on the left) and the other locked at the largest spectral peak of the noise (dash-dotted

line on the right). According to the estimation, in Segment 1 the target is moving towards the radar at an

estimated speed of 0.17 meters per second, whereas in Segment 2 the targetis moving away from the radar

at an estimated speed of 0.31 meters per second.

4.2 Automatic Selection of Shrinkage Parameter

In practice, the shrinkage parameterη must be fully specified in advance. Although one may treatη as a

tuning parameter and experiment with different values until a satisfactory result is obtained, one may also
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wish to automate this process based solely on the data. A simple way of doing so isto regard the frequency

estimates from NIFA as functions ofη , regress the observations on the complex sinusoids with the estimated

frequencies in place of the true frequencies, and then minimize the resulting mean-squared error (MSE) as

a univariate function ofη .

Fig. 9 shows 100 independent realizations of the regression MSE as a function ofη where the frequency

estimates are obtained from NIFA with Prony’s estimator as the initial value. As can be seen, the MSE

starts from large values whenη is far from unity, decreases asη moves towards unity, reaches its minimum

whenη enters the interval between 0.98 and 0.99 (approximately), and, in some cases, begins to rise when

η further increases. The minimum values are very close to the ideal MSE values (MSE0) obtained using

the true frequencies, resulting in a near zero excess MSE defined as thedifference between the MSE curve

and the MSE0 (which is a constant). Note that the best values ofη appear to lie within a relatively large

interval, indicating that the frequency estimates are not overly sensitive to the choice ofη once it is in the

correct neighborhood.

4.3 Generalization

The proposed method can be extended easily to the general case ofp ≥ 1. Indeed, forp ≥ 1, the filtered

data{yt(ααα)} can be obtained from

yt(ααα) := −
p

∑
k=1

αkηkyt−k(ααα)+yt (t = 1, . . . ,n) (10)

with y1−p(ααα) = · · ·= y0(ααα) = 0 andααα := [α1, . . . ,αp]
T . Given{yt(ααα)}, the AR parametera := [a1, . . . ,ap]

T

is estimated by the LS method that seeksâ(ααα) to minimize‖y(ααα)+Y(ααα)Dâ(α)‖2, where

Y(ααα) :=

















yp(ααα) · · · y1(ααα)

...
...

yn−1(ααα) · · · yn−p(ααα)

















, y(ααα) :=

















yp+1(ααα)

...

yn(ααα)

















, D := diag(η , . . . ,η p).

This gives rise to the LS mapping of the form (6).
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Figure 9: Mean-Squared Error of Complex Sinusoidal Regression with Estimated Frequencies as a Function ofη

From 100 Independent Monte Carlo Trials. For each trial, theMSE of complex sinusoidal regression using the true

frequencies (denoted by MSE0) is subtracted for easy comparison. Prony’s estimator is used to initialize NIFA. Model

parameters are the same as in Fig. 3.

To analyze this mapping, we first need to express{yt(ααα)} in terms of{yt}. To this end, letλλλ :=

[λ1, · · · ,λp]
T := φφφ−1(ααα) andζζζ := [ζ1, · · · ,ζp]

T := [eiλ1, · · · ,eiλp]T , wherea = φφφ(ωωω) is the one-to-one map-

ping defined by (2). Then, the transfer function of the filter in (10) can be expressed as

H(z) :=
∞

∑
j=0

h j(λλλ )z− j =

(

1+
p

∑
k=1

αkηkz−k
)−1

=

{ p

∏
k=1

(

1−ζkηz−1)
}−1

.

whereh0(λλλ ) = 1 and for j ≥ 1, by the Cauchy integral theorem and the residue theorem,

h j(λλλ ) =
1

2π i

∮

|z|=1
H(z)zj−1dz=

p

∑
k=1

Res{H(z)zj−1}z=ζkη

=
p

∑
k=1

lim
z→ζkη

(z−ζkη)H(z)zj−1 = η j
p

∑
k=1

ζ j+p−1
k

∏k6=k′(ζk−ζk′)
,
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where∏k6=k′(ζk−ζk′) is defined as 1 whenp = 1. Given this expression, (10) can be rewritten as

yt(ααα) =
t−1

∑
j=0

h j(λλλ )yt− j . (11)

In the expression ofh j(λλλ ), the decaying factorη j does not depend onp. This suggests that the rate of

convergence of the NIFA frequency estimator in the case ofp≥ 1 would be the same as in the case ofp= 2.

Moreover, some algebra shows that the general entry of the Hermitian matrixYH(ααα)Y(ααα) is given by

r̂ jk(ααα) := ∑n− j
t=p− j+1y∗t (ααα)yt+ j−k(ααα) (1≤ k ≤ j ≤ p). With the explicit expression (11), we can apply the

same techniques developed for the case ofp = 2 to evaluate the exact order of magnitudes of ˆr jk(ααα) as well

as other terms. Forp = 1, this leads to

â1(α) = − ∑n−1
t=1 y∗t (α)yt+1(α)

η ∑n−1
t=1 |yt(α)|2

, b1 = −(1−η)eiω1

η
,

where

yt(α) = −αη yt−1(α)+yt =
t−1

∑
j=1

h j(λ )yt− j ,

with y0(α) := 0, h j(λ ) := (ηζ ) j , andζ := eiλ := −α .

A major mathematical challenge in the general case ofp > 2 is the inversion of thep-by-p matrix

YH(ααα)Y(ααα), which makes direct evaluation of the elements inâ(ααα) computationally very complicated.

Although the lack of simple inversion formula currently prevents us from identifying the general leading

bias term, the basic ideas and mathematical arguments used in our analysis for the case ofp= 2 would carry

over to the general case ofp > 2.

In this paper, the bias in the LS mapping is corrected by subtracting the leadingterm of the bias in an

asymptotic expansion. An alternative method of bias correction was proposed by Li and Kedem (1994).

Instead of subtracting the bias, which depends on the unknown frequencies, the method of Li and Kedem

(1994) relies on reparameterization of the filter so that the autocovariances of the filtered noise satisfy a set

of equations called the parameterization property. The method was successfully applied to an AR filter for
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estimating the frequencies of real sinusoids. The earlier work of Li and Song (2001; 2003) and Song and

Li (1997; 2000) was devoted to analyzing the resulting estimators. Unfortunately, for complex sinusoids

and the AR filter in (10), this method does not lead to a useful solution because of a fundamental difference

between real and complex sinusoids, which motivates us to use the bias subtraction method discussed in the

present article.

More specifically, let{h j(ααα)}∞
j=0 be a linear filter such that∑ |h j(ααα)| < ∞. Applying this filter to{yt}

in (1) yields the filtered process

yt(ααα) :=
∞

∑
j=0

h j(ααα)yt− j = xt(ααα)+ εt(ααα),

where xt(ααα) and εt(ααα) are the filtered signal and the filtered noise, respectively. It is not difficult to

show thatxt(ααα) remains a sum ofp complex sinusoids with the same frequencies as those ofxt and

hence satisfies the same AR equation asxt does. LetRε(ααα) denote thep-by-p autocovariance matrix of

{εt(ααα)} with the ( j,k)th entry rε
j−k(ααα) := E{εt+ j−k(ααα)ε∗

t (ααα)} ( j,k = 0,1, . . . , p− 1), and letrε(ααα) :=

[rε
−1(ααα), . . . , rε

−p+1(ααα)]T . Then, the parameterization property can be written as

ααα = −R−1
ε (ααα)rε(ααα). (12)

As shown by Li and Kedem (1994), any filter satisfying (12) will lead to anasymptotically unbiased fre-

quency estimator as the fixed point of the LS mapping{YH(ααα)Y(ααα)}−1YH(ααα)y(ααα). Unfortunately, the AR

filter (10) cannot be reparameterized to satisfy (12). To see this, letθk := θk(ααα,η) be any reparameterization

so that (10) becomesyt(ααα) = −∑p
k=1 θk yt−k(ααα)+ yt . Then, it is easy to see that the filtered noise{εt(ααα)}

with the new parameters is an AR(p) process with{θk} as the AR coefficients. For this AR process, the

Yule-Walker equations take the formRε(ααα)θθθ = −rε(ααα), whereθθθ := θθθ(ααα,η) := [θ1(ααα,η), . . . ,θp(ααα,η)]T .

Therefore, the only way to make this filter satisfy (12) is to chooseθθθ = ααα, which corresponds to the AR

filter (10) with shrinkage parameterη = 1. This means that forη < 1, the AR filter (10) cannot be repara-

meterized to satisfy (12).
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A closer look reveals that the reason why the reparameterization method works for real sinusoids is

that xt := ∑p
k=1Ak cos(ωkt + φk) satisfies asymmetricAR equation∑2p

j=0a jxt− j = 0, wherea2p− j = a j for

j = 0,1, . . . , p− 1 anda0 = 1. As a result, the AR filter can be constrained by the symmetry. On the

contrast, for complex sinusoids, the corresponding AR equation is not symmetric, so the AR filter cannot be

constrained. A real sinusoid equals the sum of two complex sinusoids whichare conjugate pairs. Therefore,

it is not surprising that the complex sinusoid model is more general than the real sinusoid model in the

sense that estimation methods developed under the complex sinusoid model aredirectly applicable to the

real sinusoid model, but not vise versa.

5. CONCLUDING REMARKS

In this article, we have presented a new iterative filtering algorithm (NIFA) for joint estimation of the fre-

quencies of multiple complex sinusoids from noisy observations. The algorithm is based on the idea of

repeating the cycle of least-squares (LS) estimation and autoregressive(AR) filtering to form a fixed-point

iteration. The AR filter is endowed with a bandwidth shrinkage parameter whichis shown to control not

only the accuracy of the final frequency estimates but also the accuracyrequired for the initial values. With

a proper choice of the shrinkage parameter, which can be an increasingsequence, the algorithm achieves

nearly global convergence with satisfactory estimation accuracy, and thereby provides a more practical al-

ternative to the Gaussian maximum likelihood method which has stringent requirements on initial values.

In our statistical analysis, it is shown that the mapping formed by the compositionof LS estimation and

AR filtering contains a bias, for which an explicit asymptotic expression is derived in the case of one and

two sinusoids, that can be corrected to produce more accurate frequency estimates. It is shown that the

bias-corrected iteration converges to the desired fixed-point which forms a consistent frequency estimator.

Derivation of a closed-form expression for the bias in the general case of more than two sinusoids remains

an open problem for future research.
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APPENDIX I: PROOFS

For anyααα := [α1,α2]
T ∈Aδ , letλλλ := [λ1,λ2]

T :=φφφ−1(ααα) andζζζ := [ζ1,ζ2]
T := [eiλ1,eiλ2]T . Becauseφφφ−1(ααα)

is continuously differentiable in a neighborhood ofa, andφφφ(λλλ ) in a neighborhood ofωωω, there exist constants

c1 > 0 andc2 > 0 such thatααα ∈ Aδ implies‖λλλ −ωωω‖ ≤ c1δ ε and‖λλλ −ωωω‖ ≤ c2δ ε impliesααα ∈ Aδ .

A key technique in the proof of Theorems 1–3 is to apply the well-known fixed-point theorem (Stoer

and Bulirsch 2001) to the corresponding random mappings. For example,to establish Theorem 1, it suffices

to show that with probability tending to unity asn→ ∞,

(a) ‖ψψψ(â(ααα)−b)−ψψψ(â(ααα ′)−b)‖ ≤ θn‖ααα −ααα ′‖ for anyααα,ααα ′ ∈Aδ , whereθn ∈ (0,1) is the contraction

factor which may depend onn but not onααα or ααα ′, and

(b) ‖ψψψ(â(a)−b)−a‖ ≤ (1−θn)κδ ε .

Sinceâ(ααα) = OP(1) uniformly inααα ∈Aδ , and sincêa(ααα) has distinct roots with probability tending to unity

asn→ ∞, which can be proved by using (13), (14), together with the fact thatααα ∈ Aδ implies‖λλλ −ωωω‖ =

O(δ ε), it follows from Lemma 2(c) that there existsκn = OP(1) such that

‖ψψψ(â(ααα)−b)−ψψψ(â(ααα ′)−b)‖ ≤ κn‖â(ααα)− â(ααα ′)‖.

Therefore, one can establish (a) by proving

‖â(ααα)− â(ααα ′)‖ ≤ cn‖ααα −ααα ′‖ (13)

for somecn = OP(1), because it leads to (a) withθn := cnκn = OP(cn) = OP(1), so thatθn ∈ (0,1) with

probability tending to unity asn→ ∞. Similarly, one can establish (b) by proving

â(a)−b−a = OP(δ ε), (14)

as it leads to‖ψψψ(â(a)−b)− a‖ ≤ dn := κn‖â(a)−b− a‖, whereδ−εdn = OP(1) → 0, so thatdn ≤ (1−

θn)κδ ε with probability tending to unity asn→ ∞.
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Before proving the theorems, we first provide some useful propositionswhich constitute the basis of the

proof. The proof of the propositions is outlined in the appendix.

Givenααα ∈ Aδ , it follows from (5) that

yt(ααα) =
t−1

∑
l=0

hl (λλλ )yt−l ,

where

hl (λλλ ) := η l Gl (λλλ )/G0(λλλ ), Gl (λλλ ) := ζ l+1
2 −ζ l+1

1 .

Fork = 0,1,2, let

Vk,n(ααα) := |G0(λλλ )|2 Φk,n(ααα), (15)

Uk,n(ααα) := G0(λλλ )Ψk,n(ααα), (16)

where

Φk,n(ααα) :=
n−2

∑
t=1

yt,t+k(ααα), Ψk,n(ααα) :=
n−2

∑
t=1

ỹt,t+k(ααα), (17)

y j,l (ααα) := y j(ααα)y∗l (ααα), ỹ j,l (ααα) := y j(ααα)y∗l . (18)

The asterisk∗ denotes complex conjugate. Let the lag-k sample autocorrelation coefficient of{yt(ααα)} be

defined as

ρk,n(ααα) := Φk,n(ααα)/Φ0,n(ααα) = Vk,n(ααα)/V0,n(ααα). (19)
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Moreover, define

Ωn(ααα) := {1−|ρ1,n(ααα)|2}Φ0,n(ααα), (20)

P1,n(ααα) := Ψ∗
1,n(ααα)−ρ1,n(ααα)Ψ∗

2,n(ααα), (21)

P2,n(ααα) := Ψ∗
2,n(ααα)−ρ∗

1,n(ααα)Ψ∗
1,n(ααα), (22)

Q1,n(ααα) := α2η y∗n−2,n−1(ααα)+η−1{y∗n−1,n(ααα)−y∗1,2(ααα)}, (23)

Q2,n(ααα) := ρ∗
1,n(ααα){α2yn−2,n−1(ααα)+η−2[y∗n−1,n(ααα)−y∗1,2(ααα)]}

−η−2ρ∗
2,n(ααα){yn−1,n−1(ααα)−y1,1(ααα)}, (24)

R1,n(ααα) := −Q1,n(ααα)

Ωn(ααα)
− α1{yn−1,n−1(ααα)−y1,1(ααα)}

Ωn(ααα)+yn−1,n−1(ααα)−y1,1(ααα)

+
{η−1P1,n(ααα)+Q1,n(ααα)}{yn−1,n−1(ααα)−y1,1(ααα)}

Ωn(ααα){Ωn(ααα)+yn−1,n−1(ααα)−y1,1(ααα)} , (25)

R2,n(ααα) :=
Q2,n(ααα)

Ωn(ααα)
− α2{yn−1,n−1(ααα)−y1,1(ααα)}

Ωn(ααα)+yn−1,n−1(ααα)−y1,1(ααα)

+
{η−2P2,n(ααα)−Q2,n(ααα)}{yn−1,n−1(ααα)−y1,1(ααα)}

Ωn(ααα){Ωn(ααα)+yn−1,n−1(ααα)−y1,1(ααα)} . (26)

With this notation, our propositions can be stated as follows.

Proposition 1 Let Pj,n(ααα) and Rj,n(ααα) ( j = 1,2) be defined by(21), (22), (25), and (26). Let Ωn(ααα) be

defined by(20). Then,

â(ααα) = ααα −Ω−1
n (ααα)D−1pn(ααα)+ rn(ααα),

wherepn(ααα) := [P1,n(ααα),P2,n(ααα)]T andrn(ααα) := [R1,n(ααα),R2,n(ααα)]T .

Proposition 2 Let Vk,n (k = 0,1,2) be defined by(15). If n(1−δ )n = O(1) and nδ ε → ∞ as n→ ∞, then

Vk,n(ααα) = Ck (n−2)δ−2 +OP(δ−3)+OP(nδ−3/2)

+ [OP(nδ ε−4), OP(nδ ε−4)] (λλλ −ωωω),

Vk,n(ααα)−Vk,n(ααα ′) = [OP(nδ ε−4), OP(nδ ε−4)] (λλλ −λλλ ′),
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uniformly inααα,ααα ′ ∈ Aδ , whereααα ′ := φφφ(λλλ ′), Ck := ∑2
j=1Cjk, and Cjk := β 2

j e−ikω j ( j = 1,2).

Proposition 3 Let Uk,n(ααα) (k = 0,1,2) be defined by(16). Then, under the conditions of Proposition 2,

Uk,n(ααα) = (C2,k−1−C1,k−1)(n−2)δ−1 +OP(nδ−1/2)+OP(δ−2)

+(n−2)δ−2 [−iC1,k−1 +OP(δ ε−1), iC2,k−1 +OP(δ ε−1)] (λλλ −ωωω),

Uk,n(ααα)−Uk,n(ααα ′)

= (n−2)δ−2 [−iC1,k−1 +OP(δ ε−1), iC2,k−1 +OP(δ ε−1)] (λλλ −λλλ ′),

uniformly inααα,ααα ′ ∈ Aδ .

Proposition 4 Let ρk,n(ααα) (k = 0,1,2) be defined by(19). Then, under the conditions of Proposition 2,

ρk,n(ααα) = CkC
−1
0 {1+OP(n−1δ−1)+OP(δ 1/2)}+[OP(δ ε−2), OP(δ ε−2)] (λλλ −ωωω),

ρk,n(ααα)−ρk,n(ααα ′) = [OP(δ ε−2), OP(δ ε−2)] (λλλ −λλλ ′),

uniformly inααα,ααα ′ ∈ Aδ .

Now let us begin with the proof of the theorems.

A. Proof of Theorem 1

Recall that Theorem 1 can be proved by establishing (13) and (14). Consider (14) first. It follows from

Proposition 1 that

â(a)−b−a = −b−D−1Ω−1
n (a)pn(a)+ rn(a). (27)

Some algebra shows that

Ω−1
n (a)P1,n(a) =

G0(ωωω){U∗
1,n(a)−ρ1,n(a)U∗

2,n(a)}
{1−|ρ1,n(a)|2}V0,n(a)

.
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From Proposition 3, we obtain

U∗
k,n(a) = (C∗

2,k−1−C∗
1,k−1)(n−2)δ−1{1+OP(n−1δ−1)+OP(δ 1/2)}.

This, coupled with Proposition 4, implies

U∗
1,n(a)−ρ1,n(a)U∗

2,n(a)

= (n−2)δ−1C−1
0

{ 1

∑
k=0

(−1)kCk(C
∗
2k−C∗

1k)+OP(n−1δ−1)+OP(δ 1/2)

}

.

Again by Proposition 4, we obtain

1−|ρ1,n(a)|2 = (1−|C1|2C−2
0 ){1+OP(n−1δ−1)+OP(δ 1/2)}.

This, combined with an application of Proposition 2, leads to

(1−|ρ1,n(a)|2)V0,n(a) = (C2
0 −|C1|2)C−1

0 (n−2)δ−2{1+OP(n−1δ−1)+OP(δ 1/2)}.

Moreover, direct computation shows that

G0(ωωω)δ ∑1
k=0(−1)kCk(C∗

2k−C∗
1k)

C2
0 −|C1|2

= −b1η .

Combining these expressions leads to

Ω−1
n (a)P1,n(a) = −b1η +OP(n−1)+OP(δ 3/2). (28)

Similar calculations show that

Ω−1
n (a)P2,n(a) =

G0(ωωω){U∗
2,n(a)−ρ∗

1,n(a)U∗
1,n(a)}

{1−|ρ1,n(a)|2}V0,n(a)
,

and

G0(ωωω)δ {C0(C∗
2,1−C∗

1,1)−C∗
1(C

∗
2,0−C∗

1,0)}
C2

0 −|C1|2
= −b2η2.

Therefore, we obtain

Ω−1
n (a)P2,n(a) = −b2η2 +OP(n−1)+OP(δ 3/2). (29)

25



Finally, it can be shown that bothR1,n(a) andR2,n(a) are of smaller order thanOP(n−1)+OP(δ 3/2). Under

the conditions of Theorem 1,OP(n−1) = OP(δ ε) andOP(δ 3/2) = OP(δ ε). Therefore, the proof of(14) is

complete by plugging these expressions together with (28) and (29) into (27).

To show (13), we note from Proposition 1 that for anyααα,ααα ′ ∈ Aδ ,

â(ααα)− â(ααα ′) = (ααα −ααα ′)+D−1{Ω−1
n (ααα ′)pn(ααα ′)−Ω−1

n (ααα)pn(ααα)}+ rn(ααα)− rn(ααα ′). (30)

To evaluate the second term, let

V0,n(ααα) = {1−|ρ1,n(ααα)|2}V0,n(ααα),

∆U∗
j,n(ααα ′,ααα) = U∗

j,n(ααα ′)−U∗
j,n(ααα) ( j = 1,2),

∆G0(λλλ ′,λλλ ) = G0(λλλ ′)−G0(λλλ ),

∆ρ∗
1,n(ααα,ααα ′) = ρ∗

1,n(ααα)−ρ∗
1,n(ααα ′),

∆V0,n(ααα,ααα ′) = V0,n(ααα)−V0,n(ααα ′).

Then, it follows from (21) and (20) that

Ω−1
n (ααα ′)P1,n(ααα ′)−Ω−1

n (ααα)P1,n(ααα) =
4

∑
k=1

Ak(ααα,ααα ′),

where

A1(ααα,ααα ′) :=
G0(λλλ ′){∆U∗

1,n(ααα ′,ααα)−ρ1,n(ααα ′)∆U∗
2,n(ααα ′,ααα)}

V0,n(ααα ′)
,

A2(ααα,ααα ′) :=
∆G0(λλλ ′,λλλ ){U∗

1,n(ααα)−ρ1,n(ααα)U∗
2,n(ααα)}

V0,n(ααα ′)
,

A3(ααα,ααα ′) :=
G0(λλλ ′)∆ρ1,n(ααα,ααα ′)U∗

2,n(ααα)

V0,n(ααα ′)
,

A4(ααα,ααα ′) :=
G0(λλλ ){U∗

1,n(ααα)−ρ1,n(ααα)U∗
2,n(ααα)}∆V0,n(ααα,ααα ′)

V0,n(ααα)V0,n(ααα ′)
.

According to Proposition 3,

G0(λλλ ′)∆U∗
k,n(ααα

′,ααα)

= (n−2)δ−2 [−C∗
1,k−1 +OP(δ ε−1), C∗

2,k−1 +OP(δ ε−1)]G0(λλλ ′) i (λλλ −λλλ ′).
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It follows from Lemma 2 and the Taylor series expansion ofe−iλ ′
j at ω j that

G0(λλλ ′) i (λλλ −λλλ ′) =









1 e−iω1

−1 −e−iω2









(ααα −ααα ′)+O(‖ααα −ααα ′‖2).

By noting the definition ofCk andCjk, we obtain

G0(λλλ ′)∆U∗
1,n(ααα ′,ααα) = (n−2)δ−2[C0(1+OP(δ ε−1)), C1(1+OP(δ ε−1))] (ααα ′−ααα),

G0(λλλ ′)∆U∗
2,n(ααα ′,ααα) = (n−2)δ−2[C∗

1(1+OP(δ ε−1)), C0(1+OP(δ ε−1))] (ααα ′−ααα).

Moreover, it follows from Proposition 4 that

ρk,n(ααα) = CkC
−1
0 {1+OP(n−1δ−1)+OP(δ 1/2)+OP(δ 2ε−2)}.

Therefore,

G0(λλλ ′)ρ1,n(ααα ′)∆U∗
2,n(ααα ′,ααα)

= (n−2)δ−2 [|C1|2C−1
0 (1+OP(δ ε−1)), C1(1+OP(δ ε−1))] (ααα ′−ααα).

Combining these expressions leads to

G0(λλλ ′) [∆U∗
1,n(ααα ′,ααα)−ρ1,n(ααα ′)∆U∗

2,n(ααα ′,ααα)]

= (n−2)δ−2[(|C1|2−C2
0)C−1

0 (1+OP(δ ε−1)), OP(δ ε−1)] (ααα −ααα ′).

Furthermore, it follows from Proposition 2 and Proposition 4 that

V0,n(ααα ′) = (n−2)δ−2(C2
0 −|C1|2)C−1

0 {1+OP(n−1δ−1)+OP(δ 1/2)}.

Combining these results yields

A1(ααα,ααα ′) = [−(1+OP(δ ε−1)), OP(δ ε−1)] (ααα −ααα ′).

Again, by Proposition 2, Proposition 4, and Lemma 2,

U∗
1,n(ααα)−ρ1,n(ααα)U∗

2,n(ααα) = OP(nδ−1),
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∆ρ1,n(ααα,ααα ′) = [OP(δ ε−2), OP(δ ε−2)] (ααα −ααα ′).

Using the Taylor expansion and Lemma 2, we can show that

∆G0(λλλ ′,λλλ ) = O(1)(ααα −ααα ′).

Therefore, we obtain

A2(ααα,ααα ′) = [OP(δ ), OP(δ )] (ααα −ααα ′),

A3(ααα,ααα ′) = [OP(δ ε−1), OP(δ ε−1)] (ααα −ααα ′).

Similarly, by expressing∆V0,n(ααα,ααα ′) in terms ofV0,n(ααα)−V0,n(ααα ′) and∆ρ1,n(ααα,ααα ′), one can show that

A4(ααα,ααα ′) = [OP(δ ε−1), OP(δ ε−1)] (ααα −ααα ′).

Combining these expressions for theAk’s leads to

Ω−1
n (ααα ′)P1,n(ααα ′)−Ω−1

n (ααα)P1,n(ααα) = [−(1+OP(δ ε−1)), OP(δ ε−1)] (ααα −ααα ′). (31)

Using the same technique, we write

Ω−1
n (ααα ′)P2,n(ααα ′)−Ω−1

n (ααα)P2,n(ααα) =
4

∑
k=1

Bk(ααα,ααα ′),

where

B1(ααα,ααα ′) :=
G0(λλλ ′){∆U∗

2,n(ααα ′,ααα)−ρ∗
1,n(ααα ′)∆U∗

1,n(ααα ′,ααα)}
V0,n(ααα ′)

,

B2(ααα,ααα ′) :=
∆G0(λλλ ′,λλλ ){U∗

2,n(ααα)−ρ∗
1,n(ααα)U∗

1,n(ααα)}
V0,n(ααα ′)

,

B3(ααα,ααα ′) :=
G0(λλλ ′)∆ρ∗

1,n(ααα ′,ααα)U∗
1,n(ααα)

V0,n(ααα ′)
,

B4(ααα,ααα ′) :=
G0(λλλ ){U∗

2,n(ααα)−ρ∗
1,n(ααα)U∗

1,n(ααα)}∆V0,n(ααα,ααα ′)

V0,n(ααα)V0,n(ααα ′)
.

Since

G0(λλλ ′)ρ∗
1,n(ααα ′)∆U∗

1,n(ααα ′,ααα)

= (n−2)δ−2[C∗
1(1+OP(δ ε−1)), |C1|2C−1

0 (1+OP(δ ε−1))] (ααα ′−ααα),
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we obtain

G0(λλλ ′) [∆U∗
2,n(ααα ′,ααα)−ρ∗

1,n(ααα ′)∆U∗
1,n(ααα ′,ααα)]

= (n−2)δ−2 [OP(δ ε−1), (|C1|2−C2
0)C−1

0

(

1+OP(δ ε−1))] (ααα −ααα ′).

This leads to

B1(ααα,ααα ′) = [OP(δ ε−1), −(1+OP(δ ε−1))] (ααα −ααα ′).

Similarly, one can show thatBk(ααα,ααα ′), for k = 2,3,4, has the same asymptotic expression asAk(ααα,ααα ′).

Combining these results yields

Ω−1
n (ααα ′)P2,n(ααα ′)−Ω−1

n (ααα)P2,n(ααα) = [OP(δ ε−1), −(1+OP(δ ε−1))] (ααα −ααα ′). (32)

Finally, by a similar argument, it can be shown that

rn(ααα)− rn(ααα ′) = OP(δ ε−1)(ααα −ααα ′).

Combining this expression with (30)–(32) proves (13) withcn = OP(δ ε−1) → 0 asn→ ∞. �

B. Proof of Theorem 2

In the proof of of Theorem 1, we have established (13) and (14). Now, for anyααα andααα ′ ∈ Aδ , Eq. (13)

implies ‖{â(ααα)− b̂}−{â(ααα ′)− b̂}‖ ≤ cn‖ααα −ααα ′‖. It remains to show that the counterpart of (14), i.e.,

â(ααα)− b̂−a = OP(δ ε). Sinceâ(a)− b̂−a = {â(a)−b−a}+b− b̂, we obtain

‖â(a)− b̂−a‖ ≤ ‖â(a)−b−a‖+‖b̂−b‖.

Eq. (14) ensures‖â(a)− b− a‖ = OP(δ ε). By using the Taylor expansion and the continuous mapping

theorem, we obtain‖b̂− b‖ = OP(δ )‖ω̂ωω0 −ωωω‖. Combining these expressions with the assumption that

‖ω̂ωω0−ωωω‖ = OP(δ ε−1) completes the proof. �
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C. Proof of Theorem 3

Recall that we have established (13) and (14) under the same conditions.It follows from (13) that

‖{â(ααα)−b(ααα)}−{â(ααα ′)−b(ααα ′)}‖ ≤ cn‖ααα −ααα ′‖+‖b(ααα)−b(ααα ′)‖,

wherecn = OP(δ ε−1). Using the Taylor expansion and the continuous mapping theorem, we obtain

‖b(ααα)−b(ααα ′)‖ = O(δ )‖ααα −ααα ′‖.

Thus, the counterpart of (13) is proved withc′n := cn +O(δ ) = OP(δ ε−1). The counterpart of (14) follows

immediately from (14) and the observation thatb(a) = b. �

D. Proof of Theorem 4

Sinceâ is the fixed point ofψψψ(â(ααα)−b(ααα)) in Aδ , we have

â−a = ψψψ(â(â)−b(â))−ψψψ(â(a)−b(a))+ψψψ(â(a)−b(a))−a.

Theorem 3 ensures that

ψψψ(â(â)−b(â))−ψψψ(â(a)−b(a)) = OP(1)(â−a).

Therefore,

â−a = {1+OP(1)}−1{ψψψ(â(a)−b(a))−a}.

By Lemma 2(c), we have

ψψψ(â(a)−b(a))−a = OP(1){â(a)−b(a)−a}.

Combining (27)–(29) with the fact thatb(a) = b yields that

â(a)−b(a)−a = [OP(n−1)+OP(δ 3/2), OP(n−1)+OP(δ 3/2)].
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Therefore, under the conditions of Theorem 4,

δ−β (â−a) = [OP(n−1δ−β )+OP(δ 3/2−β ), OP(n−1δ−β )+OP(δ 3/2−β )]

= [OP(1),OP(1)].

An application of the Taylor expansion and the continuous mapping theorem toφφφ−1 completes the proof.�

APPENDIX II: PROOF OF PROPOSITIONS

A. Proof of Proposition 1

It follows from the equationy∗t+1(ααα)+α∗
1ηy∗t (ααα)+α∗

2η2y∗t−1(ααα) = y∗t+1 that

Φ1,n(ααα)+α∗
1ηΦ0,n(ααα)+α∗

2η2Φ−1,n(ααα) = Ψ1,n(ααα).

By noting thaty0(ααα) = y−1(ααα) = 0, we have

Φ−1,n(ααα) = Φ∗
1,n(ααα)−y∗n−2,n−1(ααα).

Thus

ρ1,n(ααα) = −α∗
1η −α∗

2η2ρ∗
1,n(ααα)+

Ψ1,n(ααα)

Φ0,n(ααα)
+α∗

2η2y∗n−2,n−1(ααα)

Φ0,n(ααα)
. (A.1)

Similarly, becausey∗t+2(ααα)+α∗
1ηy∗t+1(ααα)+α∗

2η2y∗t (ααα) = y∗t+2, we have

Φ2,n(ααα)+α∗
1ηΦ1,n(ααα)+α∗

2η2Φ0,n(ααα) = Ψ2,n(ααα).

Hence

ρ2,n(ααα)+α∗
1ηρ1,n(ααα)+α∗

2η2 =
Ψ2,n(ααα)

Φ0,n(ααα)
.

This yields

ρ∗
2,n(ααα) = −α1ηρ∗

1,n(ααα)−α2η2 +
Ψ∗

2,n(ααα)

Φ0,n(ααα)
. (A.2)
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Combining (A.1) and (A.2) gives

ρ1,n(ααα)ρ∗
2,n(ααα) = −α1η |ρ1,n(ααα)|2−α2η2ρ1,n(ααα)+ρ1,n(ααα)

Ψ∗
2,n(ααα)

Φ0,n(ααα)
.

This, coupled with (A.1), leads to

ρ∗
1,n(ααα)−ρ1,n(ααα)ρ∗

2,n(ααα)

= −α1η{1−|ρ1,n(ααα)|2}+
Ψ∗

1,n(ααα)

Φ0,n(ααα)
−ρ1,n(ααα)

Ψ∗
2,n(ααα)

Φ0,n(ααα)
+α2η2y∗n−2,n−1(ααα)

Φ0,n(ααα)
. (A.3)

Similarly,

ρ∗
2,n(ααα)−{ρ∗

1,n(ααα)}2

= −α2η2{1−|ρ1,n(ααα)|2}+
P2,n(ααα)

Φ0,n(ααα)
−

α2η2ρ∗
1,n(ααα)yn−2,n−1(ααα)

Φ0,n(ααα)
. (A.4)

Now, to evaluatêa(ααα) := [â1(ααα), â2(ααα)]T , we first note that

â1(ααα) = η−1det{YH(ααα)Y(ααα)}−1{[ρ1,n(ααα)ρ∗
2,n(ααα)−ρ∗

1,n(ααα)]Φ0,n(ααα)

+y∗1,2(ααα)−y∗n−1,n(ααα)} (A.5)

Direct calculation shows that

det{YH(ααα)Y(ααα)} = Ωn(ααα)Φ0,n(ααα)+{yn−1,n−1(ααα)−y1,1(ααα)}Φ0,n(ααα). (A.6)

Substituting (A.3) and (A.6) in (A.5) gives

â1(ααα) =
α1Ωn(ααα)−η−1P1,n(ααα)−α2ηy∗n−2,n−1(ααα)−η−1{y∗n−1,n(ααα)−y∗1,2(ααα)}

Ωn(ααα)+yn−1,n−1(ααα)−y1,1(ααα)
.

This expression can be further simplified as

â1(ααα) = α1−
P1,n(ααα)

ηΩn(ααα)
+R1,n(ααα). (A.7)

Similarly, we obtain

â2(ααα) =
{(ρ∗

1,n(ααα))2−ρ∗
2,n(ααα)}Φ0,n(ααα)−ρ∗

2,n(ααα){yn−1,n−1(ααα)−y1,1(ααα)}
η2{Ωn(ααα)+yn−1,n−1(ααα)−y1,1(ααα)}

+
ρ∗

1,n(ααα){y∗n−1,n(ααα)−y∗1,2(ααα)}
η2{Ωn(ααα)+yn−1,n−1(ααα)−y1,1(ααα)} .
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Using (A.4), one can show that

â2(ααα) = α2−
η−2P2,n(ααα)−Q2,n(ααα)

Ωn(ααα)
− α2{yn−1,n−1(ααα)−y1,1(ααα)}

Ωn(ααα)+yn−1,n−1(ααα)−y1,1(ααα)

+
{η−2P2,n(ααα)−Q2,n(ααα)}{yn−1,n−1(ααα)−y1,1(ααα)}

Ωn(ααα){Ωn(ααα)+yn−1,n−1(ααα)−y1,1(ααα)} .

This expression can be further simplified as

â2(ααα) = α2−
P2,n(ααα)

η2Ωn(ααα)
+R2,n(ααα). (A.8)

Collecting (A.7) and (A.8) proves the assertion. �

B. Proof of Proposition 2

Let us introduce the following notation:

xt(ααα) :=
t−1

∑
l=0

hl (λλλ )xt−l , (B.1)

εt(ααα) :=
t−1

∑
l=0

hl (λλλ )εt−l , (B.2)

vt(λλλ ) :=
t−1

∑
l=0

η l Gl (λλλ )εt−l , (B.3)

ut, j(λλλ ) := r jz
t
j

t−1

∑
l=0

η l Gl (λλλ )z−l
j ( j = 1,2). (B.4)

wherezj := eiω j , andr j := β jeiφ j ( j = 1,2). Sinceyt(ααα) := ∑t−1
l=0hl (λλλ )yt−l , we haveyt(ααα) = xt(ααα)+ εt(ααα).

Thus

Vk,n(ααα) = |G0(λλλ )|2Φk,n(ααα) :=
4

∑
j=1

Tj(λλλ ), (B.5)
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where

T1(λλλ ) := |G0(λλλ )|2
n−2

∑
t=1

xt(ααα)x∗t+k(ααα),

T2(λλλ ) := |G0(λλλ )|2
n−2

∑
t=1

εt(ααα)x∗t+k(ααα),

T3(λλλ ) := |G0(λλλ )|2
n−2

∑
t=1

xt(ααα)ε∗
t+k(ααα),

T4(λλλ ) := |G0(λλλ )|2
n−2

∑
t=1

εt(ααα)ε∗
t+k(ααα).

The goal of the proof is to establish the following expressions:

T1(λλλ ) = Ck(n−2)δ−2{1+O(n−1δ−1)+O(δ )}

+[O(δ−4)+O(nδ−2), O(δ−4)+O(nδ−2)] (λλλ −ωωω)

+O(δ−4‖λλλ −ωωω‖2)+O(δ−5‖λλλ −ωωω‖3)+O(δ−6‖λλλ −ωωω‖4),

T2(λλλ ) = OP(nδ−3/2)

+ [OP(nδ−5/2), OP(nδ−5/2)] (λλλ −ωωω)

+OP(nδ−7/2‖λλλ −ωωω‖2)+OP(nδ−9/2‖λλλ −ωωω‖3)+OP(nδ−11/2‖λλλ −ωωω‖4),

T3(λλλ ) = same expression asT2(λλλ ),

T4(λλλ ) = OP(nδ−1)

+ [OP(nδ−2), OP(nδ−2)] (λλλ −ωωω)

+OP(nδ−3‖λλλ −ωωω‖2)+OP(nδ−4‖λλλ −ωωω‖3)+OP(nδ−5‖λλλ −ωωω‖4).

As can be seen, the assertion in Proposition 2 follows immediately from these expressions.

To simplify the evaluation of these expressions as functions ofλλλ , let us introduce some additional

notation. For j = 1,2, the first and second partial derivatives of a functionf with respect toλ j will be

denoted byD j f andD2
j f , respectively. The mixed partial derivatives will be denoted byD2

21 f andD2
12 f .

The gradient (Jacobian) row vector evaluated atωωω will be denoted byJ( f (ωωω)) := [D1( f (ωωω)),D2( f (ωωω))].
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The Hessian matrix of the second derivatives atλ̃λλ will be denoted byH( f (λ̃λλ )). By a slight abuse of notation,

any intermediate point between two given vectors will be denoted byλ̃λλ , which may vary not only at different

expressions, but also within the same expression (e.g., it may vary from thereal part to the imaginary part

of a complex-valued function). For any complex numberz and real numberr > 0, let gt(z, r) := (z−

r tzt+1)/(1−zr), wheret is any positive integer. Letzjl := zjz∗l andφ jl := φ j −φl .

First, let us derive the expression forT1(λλλ ). It follows from (B.1) and (B.4) that

xt(α) = G−1
0 (λλλ )

2

∑
j=1

ut, j(λλλ ).

Thus

T1(λλλ ) =
n−2

∑
t=1

{ut,1(λλλ )u∗t+k,1(λλλ )+ut,2(λλλ )u∗t+k,1(λλλ )

+ut,1(λλλ )u∗t+k,2(λλλ )+ut,2(λλλ )u∗t+k,2(λλλ )}.

For j = 1,2, we have the following Taylor expansion atωωω:

ut, j(λλλ ) = ut, j(ωωω)+J(ut, j(ωωω))(λλλ −ωωω)+ 1
2(λλλ −ωωω)TH(ut, j(λ̃λλ ))(λλλ −ωωω).

SinceD2
jk(Gl (λ̃λλ )) = 0 for j 6= k andD2

j (Gl (λ̃λλ )) = (−1) j+1(l +1)2ei(l+1)λ̃ j , we have

‖H(Gl (λ̃λλ ))‖ = O((l +1)2),

where‖H(Gl (λ̃λλ ))‖ denotes the matrix norm induced by the vector norm and the bigO term is uniform in

λ̃λλ . It follows from (B.4) that

‖H(ut, j(λ̃λλ ))‖ ≤ β j

t−1

∑
l=0

η l‖H(Gl (λ̃λλ ))‖ = O

( ∞

∑
l=0

η l (l +1)2
)

= O(δ−3).

Thus

ut, j(λλλ ) = ut, j(ωωω)+J(ut, j(ωωω))(λλλ −ωωω)+O(δ−3‖λλλ −ωωω‖2). (B.6)
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Using this expression, we obtain

ut, j(λλλ )u∗t+k, j(λλλ )

= ut, j(ωωω)u∗t+k, j(ωωω)+{ut, j(ωωω)J∗(ut+k, j(ωωω))+u∗t+k, j(ωωω)J(ut, j(ωωω))}(λλλ −ωωω)

+J(ut, j(ωωω))(λλλ −ωωω)J∗(ut+k, j(ωωω))(λλλ −ωωω)+O
(

ut, j(ωωω)δ−3‖λλλ −ωωω‖2)

+O
(

u∗t+k, j(ωωω)δ−3‖λλλ −ωωω‖2)+O
(

J(ut, j(ωωω))(λλλ −ωωω)δ−3‖λλλ −ωωω‖2)

+O
(

J∗(ut+k, j(ωωω))(λλλ −ωωω)δ−3‖λλλ −ωωω‖2)+O
(

δ−6‖λλλ −ωωω‖4).

Direct computation shows that

ut, j(ωωω) = r jz
t+1
j {−gt(z1 j ,η)+gt(z2 j ,η)}. (B.7)

This, coupled with the fact thatg∗t (z, r) = gt(z∗, r) andz∗jl = zl j , implies

ut, j(ωωω)u∗t+k, j(ωωω) = Cjk{gt(z2 j ,η)g∗t+k(zj2,η)−gt(z1 j ,η)g∗t+k(zj2,η)

−gt(z2 j ,η)g∗t+k(zj1,η)+gt(z1 j ,η)g∗t+k(zj1,η)}.

By noting thatzj j = 1, we obtain

2

∑
j=1

ut, j(ωωω)u∗t+k, j(ωωω)

= Ck gt(1,η)gt+k(1,η)+C1k gt(z21,η)g∗t+k(z12,η)+C2k gt(z12,η)g∗t+k(z21,η)

−
2

∑
j=1

Cjk{gt(z1 j ,η)g∗t+k(zj2,η)+gt(z2 j ,η)g∗t+k(zj1,η)}.

Note thatnδ ε → ∞ impliesnδ → ∞. Note also that the leading term of∑n−2
t=1 Ck gt(1,η)gt+k(1,η) takes the

form Ck(n−2)δ−2. Therefore,

n−2

∑
t=1

2

∑
j=1

ut, j(ωωω)u∗t+k, j(ωωω) = Ck(n−2)δ−2{1+O(n−1δ−1)+O(δ )}. (B.8)

Using the same argument, one can show that

D∗
j ′(ut+k, j(ωωω)) = (−1) j ′+1ir ∗j z

∗
j ′z

−(t+k)
j

t+k−1

∑
l=0

(l +1)η l zl
j j ′ ( j ′ = 1,2). (B.9)
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Thus,

ut, j(ωωω)D∗
j ′(ut+k, j(ωωω)) = (−1) j ′+1iβ 2

j zj j ′z
−k
j

2

∑
m=1

(−1)mgt(zm j,η)
t+k−1

∑
l=0

(l +1)η l zl
j j ′ ,

u∗t+k, j(ωωω)D j ′(ut, j(ωωω)) = (−1) j ′ iβ 2
j zj ′ jz

−k
j

2

∑
m=1

(−1)mg∗t+k(zm j,η)
t−1

∑
l=0

(l +1)η l zl
j ′ j .

In the case ofj = j ′, we obtain

ut, j(ωωω)D∗
j (ut+k, j(ωωω))+u∗t+k, j(ωωω)D j(ut, j(ωωω))

= (−1) j iC jk

{ 2

∑
m=1

(−1)mg∗t+k(zm j,η)
t−1

∑
l=0

(l +1)η l

−
2

∑
m=1

(−1)mgt(zm j,η)
t+k−1

∑
l=0

(l +1)η l
}

= (−1) j iC jk

{ 2

∑
m=1

(−1)m[g∗t+k(zm j,η)−gt(zm j,η)]
t−1

∑
l=0

(l +1)η l

−
2

∑
m=1

(−1)mgt(zm j,η)
t+k−1

∑
l=t

(l +1)η l
}

.

Direct calculation shows that

g∗t+k(zm j,η)−gt(zm j,η)

=
(z∗m j−zm j)+η t{zt

m j(zm j−η)−ηkz−(t+k)
m j (z∗m j−η)}

|1−ηzm j|2
.

Form= j, we haveg∗t+k(zj j ,η)−gt(zj j ,η) = η t(1−ηk)δ−1, which, coupled with the formula

t−1

∑
l=0

(l +1)η l = (1−η t −δ tη t)δ−2,

leads to

{g∗t+k(zj j ,η)−gt(zj j ,η)}
t−1

∑
l=0

(l +1)η l = η t(1−ηk)(1−η t −δ tη t)δ−3.

Form 6= j, {g∗t+k(zm j,η)−gt(zm j,η)}∑t−1
l=0(l +1)η l = O(δ−2) uniformly in t. Thus

n−2

∑
t=1

2

∑
m=1

(−1)m{g∗t+k(zm j,η)−gt(zm j,η)}
t−1

∑
l=0

(l +1)η l = O(δ−4)+O(nδ−2).
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A similar argument with an application of the formula

t+k−1

∑
l=t

(l +1)η l = η t{(1−ηk)(1+δ t)−δkηk}δ−2

shows that

n−2

∑
t=1

2

∑
m=1

(−1)mgt(zm j,η)
t+k−1

∑
l=t

(l +1)η l = O(δ−4).

Combining these results leads to

n−2

∑
t=1

{ut, j(ωωω)D∗
j (ut+k, j(ωωω))+u∗t+k, j(ωωω)D j(ut, j(ωωω))} = O(δ−4)+O(nδ−2).

For j 6= j ′, the order of magnitude of the term

n−2

∑
t=1

{ut, j(ωωω)D∗
j ′(ut+k, j(ωωω))+u∗t+k, j(ωωω)D j ′(ut, j(ωωω))}

does not exceed the order ofO(nδ−2). Thus

n−2

∑
t=1

{

ut, j(ωωω)J∗(ut+k, j(ωωω))+u∗t+k, j(ωωω)J(ut, j(ωωω))
}

= [O(δ−4)+O(nδ−2), O(δ−4)+O(nδ−2)].

Finally, it follows from (B.7) and (B.9) thatut, j(ωωω) = O(δ−1) andD∗
j ′(ut+k, j(ωωω)) = O(δ−2) uniformly in t.

Combining these results with (B.8) yields

n−2

∑
t=1

ut, j(λλλ )u∗t+k, j(λλλ )

= Ck(n−2)δ−2{1+O(n−1δ−1)+O(δ )}

+[O(δ−4)+O(nδ−2), O(δ−4)+O(nδ−2)] (λλλ −ωωω)

+O(δ−4‖λλλ −ωωω‖2)+O(δ−5‖λλλ −ωωω‖3)+O(δ−6‖λλλ −ωωω‖4).

To evaluate∑n−2
t=1 ut, j(λλλ )u∗t+k,s(λλλ ) in T1(λλλ ) for j 6= s, it suffices to identify the magnitude ofut, j(ωωω)u∗t+k,s(ωωω)

andut, j(ωωω)D∗
j ′(ut+k,s(ωωω))+u∗t+k,s(ωωω)D j ′(ut, j(ωωω)) in view of the above analysis. It follows from (B.7) and
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(B.9) that

ut, j(ωωω)u∗t+k,s(ωωω) = r j r
∗
szt+1

js z−k
s

2

∑
m=1

(−1)mgt(zm j,η)
2

∑
m=1

(−1)mg∗t+k(zms,η),

ut, j(ωωω)D∗
j ′(ut+k,s(ωωω)) = (−1) j ′+1ir j r

∗
sz∗j ′zjz

t
jsz

−k
s

2

∑
m=1

(−1)mgt(zm j,η)
t+k−1

∑
l=0

(l +1)η l zl
s j′ .

Thus

n−2

∑
t=1

ut, j(ωωω)u∗t+k,s(ωωω) = O(δ−2),
n−2

∑
t=1

ut, j(ωωω)D∗
j ′(ut+k,s(ωωω)) = O(δ−3).

Similarly, we obtain

n−2

∑
t=1

u∗t+k,s(ωωω)D j ′(ut, j(ωωω)) = O(δ−3).

Combining all these results yields the final expression forT1(λλλ ).

For the other terms in (B.5), we only outline the proof forT2(λλλ ) andT4(λλλ ). The proof forT3(λλλ ) is the

same as that forT2(λλλ ) because of the symmetry.

It follows from (B.2) and (B.3) thatεt(α) = G−1
0 (λλλ )vt(λλλ ). This, coupled with the expression ofxt(ααα),

implies

T2(λλλ ) =
n−2

∑
t=1

vt(λλλ )
2

∑
j=1

u∗t+k, j(λλλ ).

The Taylor series expansion ofvt(λλλ ) atωωω takes the form

vt(λλλ ) = vt(ωωω)+J(vt(ωωω))(λλλ −ωωω)+ 1
2(λλλ −ωωω)TH(vt(λ̃λλ ))(λλλ −ωωω). (B.10)

It follows from (B.10), (B.6), and Lemma 1 that

vt(λλλ )u∗t+k, j(λλλ )

= vt(ωωω)u∗t+k, j(ωωω)+{vt(ωωω)J∗(ut+k, j(ωωω))+u∗t+k, j(ωωω)J(vt(ωωω))}(λλλ −ωωω)

+J(vt(ωωω))(λλλ −ωωω)J∗(ut+k, j(ωωω))(λλλ −ωωω)+OP
(

vt(ωωω)δ−3‖λλλ −ωωω‖2)

+OP
(

u∗t+k, j(ωωω)δ−5/2‖λλλ −ωωω‖2)+OP
(

J(vt(ωωω))(λλλ −ωωω)δ−3‖λλλ −ωωω‖2)

+OP
(

J∗(ut+k, j(ωωω))(λλλ −ωωω)δ−5/2‖λλλ −ωωω‖2)+OP(δ−11/2‖λλλ −ωωω‖4).
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Thus, from (B.7) and Lemma 1, we have

T2(ωωω) =
n−2

∑
t=1

2

∑
j=1

vt(ωωω)u∗t+k, j(ωωω) = OP(nδ−3/2).

Moreover, it follows again from Lemma 1, (B.7), and (B.9) that

D j ′(T2(ωωω)) =
n−2

∑
t=1

2

∑
j=1

{vt(ωωω)D j ′(u
∗
t+k, j(ωωω))+u∗t+k, j(ωωω)D j ′(vt(ωωω))}

= OP(nδ−5/2) ( j ′ = 1,2).

Combining these results leads to the final expression forT2(λλλ ).

Finally, we note thatT4(λλλ ) = ∑n−2
t=1 vt(λλλ )v∗t+k(λλλ ). By Lemma 1 and (B.10), we have

vt(λλλ )v∗t+k(λλλ )

= vt(ωωω)v∗t+k(ωωω)+{vt(ωωω)J∗(vt+k(ωωω))+v∗t+k(ωωω)J(vt(ωωω))}(λλλ −ωωω)

+J(vt(ωωω))(λλλ −ωωω)J∗(vt+k(ωωω))(λλλ −ωωω)+OP
(

vt(ωωω)δ−5/2‖λλλ −ωωω‖2)

+OP
(

v∗t+k(ωωω)δ−5/2‖λλλ −ωωω‖2)+OP
(

J(vt(ωωω))(λλλ −ωωω)δ−5/2‖λλλ −ωωω‖2)

+OP
(

J∗(vt+k(ωωω))(λλλ −ωωω)δ−5/2‖λλλ −ωωω‖2)+OP(δ−5‖λλλ −ωωω‖4).

Carrying out the same analysis as above leads to the final expression forT4(λλλ ). The proof of Proposition 2

is complete. �

C. Proof of Proposition 3

It follows from (16), (B.2), and (B.3) that

Uk,n(ααα) =
4

∑
j=1

Sj(λλλ ),
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where

S1(λλλ ) :=
n−2

∑
t=1

2

∑
j=1

ut, j(λλλ )x∗t+k, (C.1)

S2(λλλ ) :=
n−2

∑
t=1

vt(λλλ )x∗t+k, (C.2)

S3(λλλ ) :=
n−2

∑
t=1

2

∑
j=1

ut, j(λλλ )ε∗
t+k, (C.3)

S4(λλλ ) :=
n−2

∑
t=1

vt(λλλ )ε∗
t+k. (C.4)

Therefore, to prove Proposition 3, it suffices to derive the following expressions:

S1(λλλ ) = (C2,k−1−C1,k−1)(n−2)δ−1 +O(δ−2)+O(n)

+ [−iC1,k−1(n−2)δ−2 +O(δ−3)+O(n),

iC2,k−1(n−2)δ−2 +O(δ−3)+O(n)] (λλλ −ωωω)

+O(nδ−3‖λλλ −ωωω‖2),

S2(λλλ ) = OP(nδ−1/2)+ [OP(nδ−3/2), OP(nδ−3/2)] (λλλ −ωωω)

+OP(nδ−5/2‖λλλ −ωωω‖2),

S3(λλλ ) = OP(n1/2δ−1)+ [OP(n1/2δ−2), OP(n1/2δ−2)] (λλλ −ωωω)

+OP(n1/2δ−3‖λλλ −ωωω‖2),

S4(λλλ ) = OP(nδ−1/2)+ [OP(nδ−3/2), OP(nδ−3/2)] (λλλ −ωωω)

+OP(nδ−5/2‖λλλ −ωωω‖2).

Now let us derive these expressions one by one.

First, to evaluateS1(λλλ ), we obtain using (B.6) that

S1(λλλ ) = S1(ωωω)+
n−2

∑
t=1

2

∑
j=1

x∗t+kJ(ut, j(ωωω))(λλλ −ωωω)+O(nδ−3‖λλλ −ωωω‖2). (C.5)
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Direct computation shows that

2

∑
j=1

ut, j(ωωω)x∗t+k =
2

∑
j=1

Cj,k−1

2

∑
m=1

(−1)mgt(zm j,η)

+ ∑
j 6=l

r j r
∗
l zt

jl zjz
−k
l

2

∑
m=1

(−1)mgt(zm j,η).

Since

2

∑
j=1

Cj,k−1

2

∑
m=1

(−1)mgt(zm j,η)

= (C2,k−1−C1,k−1)gt(1,η)+C1,k−1gt(z21,η)−C2,k−1gt(z12,η),

we obtain

n−2

∑
t=1

2

∑
j=1

Cj,k−1

2

∑
m=1

(−1)mgt(zm j,η)

= (C2,k−1−C1,k−1)(n−2)δ−1 +O(δ−2)+O(n).

The remaining terms inS1(ωωω) is of smaller order thanO(δ−2). Thus,

S1(ωωω) = (C2,k−1−C1,k−1)(n−2)δ−1 +O(δ−2)+O(n).

To evaluate the second term in (C.5), we apply the formula

D j ′(ut, j(ωωω)) = (−1) j ′ ir jzj ′z
t
j

t−1

∑
l=0

(l +1)η l zl
j ′ j

and obtain

x∗t+kD j ′(ut, j(ωωω)) = (−1) j ′ i
2

∑
m=1

r j r
∗
mzj ′z

t
jmz−k

m

t−1

∑
l=0

(l +1)η l zl
j ′ j .

This leads to

x∗t+k

2

∑
j=1

D1(ut, j(ωωω)) = −i(C1,k−1 + r1r∗2z1zt
12z

−k
2 )(1−η t −δ tη t)δ−2

− i
(

C2,kz1 + r∗1r2zt
21z

−(k−1)
1

) t−1

∑
l=0

(l +1)η l zl
12,

x∗t+k

2

∑
j=1

D2(ut, j(ωωω)) = i(C2,k−1 + r∗1r2z2zt
21z

−k
1 )(1−η t −δ tη t)δ−2

+ i
(

C1,kz2 + r1r∗2zt
12z

−(k−1)
2

) t−1

∑
l=0

(l +1)η l zl
21,
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hence

n−2

∑
t=1

x∗t+k

2

∑
j=1

D1(ut, j(ωωω)) = −iC1,k−1(n−2)δ−2 +O(δ−3)+O(n)

n−2

∑
t=1

x∗t+k

2

∑
j=1

D2(ut, j(ωωω)) = iC2,k−1(n−2)δ−2 +O(δ−3)+O(n).

Substituting these results in (C.5) yields the final expression forS1(λλλ ).

Next, considerS2(λλλ ), which has the following Taylor expansion:

S2(λλλ ) = S2(ωωω)+J(S2(ωωω))(λλλ −ωωω)+ 1
2(λλλ −ωωω)TH(S2(λ̃λλ ))(λλλ −ωωω). (C.6)

Using the Cauchy-Schwarz inequality, we obtain

|S2(ωωω)|2 ≤
n−2

∑
t=1

|vt(ωωω)|2
n−2

∑
t=1

|xt+k|2.

By Lemma 1,vt(ωωω) = OP(δ−1/2) uniformly in t. Thus

n−2

∑
t=1

|vt(ωωω)|2 = OP(nδ−1).

This together with the observation that∑n−2
t=1 |xt+k|2 = O(n) yields

Sk,2(ωωω) = OP(nδ−1/2).

To evaluate the second term in (C.6), we note that

J(S2(ωωω)) =
n−2

∑
t=1

x∗t+kJ(vt(ωωω)).

Moreover, by Lemma 1,D j(vt(ωωω)) = OP(δ−3/2) ( j = 1,2) uniformly in t. This, coupled with an application

of the Cauchy-Schwarz inequality, gives

J(S2(ωωω)) = OP(nδ−3/2).

A similar argument leads to

(λλλ −ωωω)TH(S2(λ̃λλ ))(λλλ −ωωω) = OP(nδ−5/2‖λλλ −ωωω‖2).
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Substituting these expressions in (C.6) gives rise to the final expression for S2(λλλ ).

Similarly, the Taylor expansion ofS3(λλλ ) atωωω takes the form

S3(λλλ ) = S3(ωωω)+J(S3(ωωω))(λλλ −ωωω)+ 1
2(λλλ −ωωω)TH(S3(λ̃λλ ))(λλλ −ωωω). (C.7)

The first term in this expansion can be rewritten as

S3(ωωω) =
2

∑
j=1

n−2

∑
t=1

ε∗
t+kut, j(ωωω).

Since{εt} is a zero-mean white noise process, it follows from (B.7) that

E

∣

∣

∣

∣

n−2

∑
t=1

ε∗
t+kut, j(ωωω)

∣

∣

∣

∣

2

= σ2β 2
j

n−2

∑
t=1

∣

∣

∣

∣

2

∑
m=1

(−1)mgt(zm j,η)

∣

∣

∣

∣

2

= O(nδ−2).

Using this result and Chebyshev’s inequality, one can show that

n−2

∑
t=1

ε∗
t+kut, j(ωωω) = OP(n1/2δ−1).

Thus,

S3(ωωω) = OP(n1/2δ−1).

To evaluate the second term in (C.7), we first observe that

D j ′(S3(ωωω)) =
2

∑
j=1

n−2

∑
t=1

ε∗
t+kD j ′(ut, j(ωωω)) ( j ′ = 1,2).

Using a similar argument together with the expression ofD j ′(ut, j(ωωω)), we obtain

E

∣

∣

∣

∣

n−2

∑
t=1

ε∗
t+kD j ′(ut, j(ωωω))

∣

∣

∣

∣

2

= σ2β 2
j

n−2

∑
t=1

( t−1

∑
l=0

(l +1)η l
)2

= σ2β 2
j

n−2

∑
t=1

(1−η t −δ tη t)2δ−4

= O(nδ−4).

An application of Chebyshev’s inequality gives

J(S3(ωωω)) = OP(n1/2δ−2).
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Combining these results with an application of Lemma 1 to the third term in (C.7) yields the final expression

for S3(λλλ ).

Finally, the expression forS4(λλλ ) can be derived by the same method that led to the expression forS2(λλλ ),

together with the observation that∑n−2
t=1 |εt+k|2 = OP(n). This completes the proof. �

D. Proof of Proposition 4

The first part of Proposition 4 follows from Proposition 2 and the identity(χ +ε)−1 = χ−1−ε[χ(χ +ε)]−1.

To prove the second part of Proposition 4, we expressρk,n(ααα)−ρk,n(ααα ′) as

ρk,n(ααα)−ρk,n(ααα ′) =
Vk,n(ααα)−Vk,n(ααα ′)

V0,n(ααα)
− {V0,n(ααα)−V0,n(ααα ′)}Vk,n(ααα ′)

V0,n(ααα)V0,n(ααα ′)
.

An application of Proposition 2 completes the proof. �

E. Some Technical Lemmas

Lemma 1 Let vt be defined by (B.3). Then, uniformly in both t andλλλ , we have vt(λλλ ) = OP(δ−1/2) and

D jvt(λλλ ) = OP(δ−3/2) for j = 1,2. Furthermore, uniformly in t,λλλ , andλ̃λλ , we have(λλλ −ωωω)TH(vt(λ̃λλ ))(λλλ −

ωωω) = OP(δ−5/2‖λλλ −ωωω‖2).

Proof. We provide a proof only for the second assertion because a similar argument can be used to prove

the first one. To show the second assertion, we observe that

H(vt(λ̃λλ )) =
t−1

∑
l=0

η l εt−1H(Gl (λ̃λλ ))

Since{εt} is a zero-mean white noise process with varianceσ2, we obtain

E{|(λλλ −ωωω)TH(vt(λ̃λλ ))(λλλ −ωωω)|2}

= σ2
t−1

∑
l=0

η2l |(λλλ −ωωω)TH(G j(λ̃λλ ))(λλλ −ωωω)|2

= O

( t−1

∑
l=0

η2l (l +1)4‖λλλ −ωωω‖4
)

,
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where the last equality follows from the fact that‖H(Gl (λ̃λλ ))‖ = O((l +1)2) uniformly in λ̃λλ . Since

t−1

∑
l=0

η2l (l +1)4 ≤
∞

∑
l=0

η2l (l +1)4 = O(δ−5)

uniformly in t, an application of Chebyshev’s inequality completes the proof. �

Let C
2 denote the two-dimensional complex space. For anyααα := [α1,α2]

T ∈ C
2, let ζ1 := ρ1eiλ1 and

ζ2 := ρ2eiλ2 be the roots of the quadratic polynomial

1+α1z−1 +α2z−2 = (1−ζ1z−1)(1−ζ2z−1)

whereρ1 ≥ 0, ρ2 ≥ 0, and−π < λ1 ≤ λ2 ≤ π. This equation defines a one-to-one mapping betweenααα and

ζζζ := [ζ1,ζ2]
T which we denote byααα =ξξξ (ζζζ ). In the special case whereααα ∈A so thatζζζ = µµµ(λλλ ) := [eiλ1,eiλ2]T

consists of unit roots, the mapping reduces toααα = ξξξ (µµµ(λλλ )) = φφφ(λλλ ). Note that the roots are distinct if and

only if |α2
1 −4α2| > 0. Note also that the UR projectionψψψ(ααα) := [ψ1(ααα),ψ2(ααα)]T can be expressed as

ψ1(ααα) = −(ζ1/|ζ1|+ζ2/|ζ2|), ψ2(ααα) = ζ1ζ2/|ζ1ζ2|

for anyααα ∈ C
2 such thatα2 = ζ1ζ2 6= 0.

Lemma 2 Let B be a closed and bounded domain inC
2 such that|α2

1 −4α2| ≥ c1 for all ααα ∈ B, where

c1 > 0 is a constant. LetD be a subset ofB such that|α2| ≥ c2 for all ααα ∈ D, where c2 > 0 is a constant.

Then, the following assertions are true.

(a) There exist constantsκ1 > 0 and κ2 > 0 such thatκ1‖ζζζ −ζζζ ′‖ ≤ ‖ααα −ααα ′‖ ≤ κ2‖ζζζ −ζζζ ′‖ for all

ααα,ααα ′ ∈ B, whereζζζ := ξξξ−1(ααα) andζζζ ′ := ξξξ−1(ααα ′).

(b) For all ααα,ααα ′ ∈ A∩B, so thatζζζ = µµµ(λλλ ) andζζζ ′ = µµµ(λλλ ′) are unit roots, one can write

κ1‖λλλ −λλλ ′‖ ≤ ‖ααα −ααα ′‖ ≤ κ2‖λλλ −λλλ ′‖, ααα −ααα ′ =
∂φφφ(λλλ ′)

∂λλλ T (λλλ −λλλ ′)+O(‖λλλ −λλλ ′‖2),

whereκ1 andκ2 are the same constants as in part (a).
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(c) There exists a constantκ3 > 0 such that‖ψψψ(ααα)−ψψψ(ααα ′)‖ ≤ κ3‖ααα −ααα ′‖ for all ααα,ααα ′ ∈ D.

Proof. Sinceα1 = −(ζ1 +ζ2) andα2 = ζ1ζ2, it is easy to show that

ααα −ααα ′ = Z(ζζζ −ζζζ ′)

where

Z :=









−1 −1

ζ2 ζ ′
1









.

Since‖Z‖ is bounded above by some constantκ2 > 0, we obtain‖ααα −ααα ′‖≤ κ2‖ζζζ −ζζζ ′‖. On the other hand,

since the roots can be expressed as

ζ j = 1
2

{

−α1 + |∆|1/2ρei( j−1)π)
}

( j = 1,2),

where∆ := α2
1 −4α2 andρ := (∆/|∆|)1/2, it follows that

2(ζ j −ζ ′
j) = −(α1−α ′

1)+
(

|∆|1/2−|∆′|1/2)ρei( j−1)π +(ρ −ρ ′)|∆′|1/2ei( j−1)π . (E.1)

Note that

|∆|1/2−|∆′|1/2 =
|∆|2−|∆′|2

(|∆|1/2 + |∆′|1/2)(|∆|+ |∆′|) .

and

|∆|2 = |α1|4−4α2
1α∗

2 −4α∗2
1 α2 +16|α2|2.

It is easy to show that

|α1|4−|α ′
1|4 = (α1−α ′

1)(α1 +α ′
1)α∗2

1 +(α1−α ′
1)

∗(α1 +α ′
1)

∗α1α ′
1.

Therefore we can write|α1|4− |α ′
1|4 = O(‖ααα −ααα ′‖). By applying a similar argument to the other terms,

we obtain|∆|2−|∆′|2 = O(‖ααα −ααα ′‖). Combining this result with the assumption that|∆| ≥ c and|∆′| ≥ c

yields

|∆|1/2−|∆′|1/2 = O(‖ααα −ααα ′‖).
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Similarly, we can show that

ρ −ρ ′ = O(‖ααα −ααα ′‖).

Substituting these results in (E.1) yields‖ζζζ −ζζζ ′‖ = O(‖ααα −ααα‖), which proves part (a). Part (c) can be

shown similarly by first establishing that‖ψψψ(ααα)−ψψψ(ααα ′)‖ = O(‖ζζζ −ζζζ ′‖) and then applying the assertion

in part (a) that‖ζζζ −ζζζ ′‖ = O(‖ααα −ααα ′‖).

For part (b), one can show that whenζζζ = µµµ(λλλ ) andζζζ ′ = µµµ(λλλ ′), there is a Taylor series expansion

ζζζ −ζζζ ′ =
∂µµµ(λ̃λλ )

∂λλλ T (λλλ −λλλ ′) = diag
{

ieiλ̃1, ieiλ̃2

}

(λλλ −λλλ ′),

which implies‖ζζζ −ζζζ ′‖= ‖λλλ −λλλ ′‖. By using a similar argument forααα =φφφ(λλλ ), one can establish the second

expression in part (b). The proof is thus complete. �
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