
RC23484 (W0501-026) January 7, 2005
Computer Science

IBM Research Report

Reinventing Team Spaces for a Collaborative Development
Environment

Susanne Hupfer, Li-Te Cheng, Steven Ross, John Patterson
IBM Research Division

One Rogers Street
Cambridge, MA 02142

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

 1

Reinventing Team Spaces for a Collaborative Development
Environment

Susanne Hupfer, Li-Te Cheng, Steven Ross, John Patterson
IBM Research

Collaborative User Experience Group
1 Rogers St., Cambridge, MA

{Susanne_Hupfer, Li-Te_Cheng, Steven_Ross, John_Patterson}@us.ibm.com

INTRODUCTION
Software development is a collaborative endeavor. From
open source projects to corporate products, programmers
engage in conversations with colleagues around the world
about the complex software they are designing, building,
testing, and fixing. Besides face-to-face interaction,
developers use an assortment of collaborative tools inside
and outside their integrated development environments
(IDEs). These include formal tools accessible from the IDE,
such as source code management and bug tracking systems,
and also ad hoc ones available outside the IDE, such as
email, instant messaging, and threaded conversation tools
[10,19]. Non-collocated software teams, especially, face
collaboration challenges. Indeed, as software teams become
increasingly distributed, there is an increasing need for
tools to support both structured and unstructured
communication and coordination of work [11].

Booch and Brown postulate that a rich collaborative
development environment (CDE) arises from the collection
of many apparently simple collaborative components that
support coordination, collaboration, and community
building – the "Three C's" of CDEs [2]. Moreover, they
assert that IDEs equipped with team-centric features are
superior to those merely enhanced with collaborative
support. We have been building a prototype CDE known as
Jazz, an IBM Research project that embeds collaborative
capabilities into an application development environment
(i.e. by extending the Eclipse Java IDE) to enable small
teams of software developers to work together more
effectively. [4,5,7]. Other companies are also interested in
team-enhanced development environments [14,21].

Jazz is based on an “open office” approach to development:
A small team works in close proximity at their
workstations, with a shared space available for
collaborating at whiteboards, sharing materials, or having
meetings [4,5]. Communication is vital: Teammates shout
out questions or information, or call colleagues over to
consult. Team awareness is also key: Even while focused
on their own work, developers have a peripheral sense of
the work, activities, and discussions around them. Our goal
with Jazz is to elevate the team to a first-class object in the
development environment, and to facilitate people
awareness (who’s present and what they’re doing),

resource awareness (who’s working on code that I depend
on), communication, and coordination among the team
members. Jazz provides the means to initiate chats, VOIP
calls, or screen-sharing sessions with teammates. Another
feature that we have begun to explore is a type of
asynchronous team space: Conversation transcripts may be
saved to the team's space, and other events and artifacts
(e.g. code check-ins, check-outs, build results, documents)
may be posted. We also envision members contributing to
asynchronous team-wide conversations in the space.

SPACES FOR SOFTWARE DEVELOPMENT

The Good of Team Spaces
In the realm of collocated software development teams,
there is little doubt that physical conversation spaces are
useful – to have meetings, review design, APIs, or code,
negotiate, resolve conflicts, disseminate information, share
materials, or even converse informally [6,16]. Sawyer and
Guinan have studied software development and reported the
positive impact that team-level social processes have on
product quality and team performance [18], and proponents
of agile development affirm that "the most efficient and
effective method of conveying information to and within a
development team is face-to-face conversation" [1].

As teams become increasingly distributed and chances for
face-to-face discussion diminish, they turn to virtual team
spaces for some of their communication needs. Spaces may
incorporate tools such as shared text editors, chat utilities,
discussion forums, wikis, whiteboards, and document
repositories [3,9,13,17,19,20]. Booch and Brown call for “a
virtual space in which all the stakeholders of a project –
even if distributed by time or distance – may negotiate,
brainstorm, discuss, share knowledge, and generally labor
together to carry out some task, most often to create an
executable deliverable and its supporting artifacts” [2].

The Bad of Team Spaces
Despite the benefits of team spaces as a communication and
collaboration tool, they have disadvantages:

Not contextual. Programmers’ main work environment is
the IDE, not a web browser or email client. Team spaces
are external to the main environment and lack links to the
work context, artifacts, and team activities. Moreover,

 2

programmers use version control systems to manage their
code, so linking code artifacts to discussions is further
complicated by versioning issues.

Not easy to monitor. Individuals may belong to multiple
spaces and need to leave their work environment to check
each one periodically. There is no automatic way to keep
up-to-date, and spaces may stay “out of sight, out of mind.”

Not necessarily relevant or interesting. Team spaces may
collect many discussions and artifacts, not all of which are
significant to each team member, and disinterest in the
space or information overload may result.

Not easy to search. Content is captured in individual team
spaces and not available for cross-project search. Also,
defunct workspaces are not generally visited or searched,
and members may disperse, so knowledge is lost.

Not easy to share. Information is isolated in team spaces,
accessible only to members. To share information, outsiders
may be let in, but that may be too extreme; access control
may be desirable to protect sensitive information.

The Potential of Team Spaces
Recognizing both the great potential of team spaces to
support distributed software teams, and also their
drawbacks, we are focusing our research on “reinventing”
them. Our goal is that these improved spaces provide:

• Information that’s contextual, relevant, interesting, &
timely for individual members

• Easy monitoring of what’s new in multiple spaces

• Sense of the team’s current activities and progress &
sense of team cohesion

• Search capability across spaces (even retired ones)

• Means for multiple teams to share information, and for
letting outsiders in on some information

We intend to improve team spaces by:

Making spaces contextual. Jazz illustrated the value of
contextual collaboration: Users collaborate without leaving
their core work environment [12]. One example consists of
discussions anchored around code: Users can highlight
code, right-click, and start a chat with teammates. From the
chat UI, participants see the code snippet and can click on a
hyperlink that opens the pertinent code in their IDE.
Participants can opt to save a chat transcript, which will
appear as an annotation to the code in the IDE. Other team
members will see the annotation, and can revisit and even
continue the conversation later. Similarly, one can imagine
a requirements analyst initiating a chat from a requirement
in a requirements document, or a developer starting a chat
from an API in an API specification [6]; all participants are
automatically informed of the context of the conversation.
Contextual collaboration can enhance teamwork by
establishing a persistent, shared context and facilitating
capture and retrieval of collaborative artifacts.

We contend that the discussion taking place in a team space
should also be contextual – grounded in the team’s work
artifacts. One should be able to select part of an artifact and
post a comment or query to the space. Teammates
automatically see what artifact the post refers to, and can
click to examine it in the IDE. Discussions should be
available from the space, and also from the artifacts around
which they revolve.

Making spaces activity-centric. There is an emerging
view that software is increasingly being developed not by
static teams suggested by corporate organizational
structures, but rather by self-organizing or dynamic teams
that assemble based on the expertise needed for projects
[1,15]. Accordingly, we contend that spaces should shift
their conventional focus on teams to a focus on what
participants are trying to accomplish together, i.e. a shared
activity [8]. A shared space should come into existence
when there's a substantive activity to perform. The
semantics of the activity can inform the semantics of the
shared space, e.g. the space can provide information about
the activity lifecycle, sub-activities and their assigned team
members, who is working on what sub-activity, and the
progress being made. When the work is done, the space can
be retired into a content repository based on the work that
was accomplished, rather than the team being supported.

Making spaces subscribable and searchable. We plan to
augment our reinvented spaces with a subscription
mechanism (possibly RSS-based), so that users will be
delivered “feeds” containing only the relevant items from
their spaces. Each user can read these personalized feeds
using a form of feed aggregator. Once spaces are activity-
aware and have knowledge of which sub-activities are
important to each member, it also becomes possible to
make inferences about what information is important for
each, and the system should be able to make automatic
“subscription recommendations.” Once we introduce the
notion of feeds, we can envision a team publishing or
exporting some of the items in their space. Then it becomes
possible for other teams or individuals to subscribe to a
particular team's output and keep up with the information
deemed appropriate for external consumption.

The flip side of getting too much information is not being
able to retrieve the right data. Thus, we claim that it's also
important to have a powerful cross-space search capability.

CONCLUSION
Our group has carried out some studies of software
development team dynamics that will help inform our work
on improving team spaces [6]. We anticipate that there will
be interesting UI and visualization challenges for our
improved team spaces. We expect that the new team
spaces will be useful not only for developers, but also for
other user groups (e.g. analysts, QE teams, even users
outside software development).

 3

REFERENCES
1. Agile Alliance. Manifesto for Agile Software

Development, 2001, http://www.agilemanifesto.org.

2. Booch, G. and Brown, A. Collaborative Development
Environments. Advances in Computers, 59, Academic
Press, Aug. 2003.

3. Bugzilla, http://www.bugzilla.org.

4. Cheng, L., de Souza, C., Hupfer, S., Patterson, J., and
Ross, S. Building Collaboration into IDEs. ACM
Queue, 1, 9 (2003-2004), 40-50.

5. Cheng, L., Hupfer, S., Ross, S., and Patterson, J. Jazzing
Up Eclipse with Collaborative Tools. In Proc. of 2003
OOPSLA Workshop on Eclipse Technology eXchange.
ACM Press (2003), 45-49.

6. De Souza, C., Redmiles, C., Cheng, L., Millen, D.,
Patterson, J. Sometimes You Need to See Through
Walls: A Field Study of Application Programming
Interfaces. In Proc. of 2004 ACM Conference on
Computer-Supported Cooperative Work. ACM Press
(2004), 63-71.

7. Eclipse.org, http://www.eclipse.org.

8. Geyer, W., Vogel, J., Cheng, L., and Muller, M.
Supporting Activity-centric Collaboration through Peer-
to-Peer Shared Objects. In Proc. of 2003 ACM
SIGGROUP Conference on Supporting Group Work.
ACM Press (2003), 115-124.

9. Groove Networks, http://www.groove.net.

10.Gutwin, C., Penner, R., and Schneider, K. Group
Awareness in Distributed Software Development. In
Proc. of 2004 ACM Conference on Computer-Supported
Cooperative Work. ACM Press (2004), 72-81.

11.Herbsleb, J., and Grinter, R. Architectures,
Coordination, and Distance: Conway’s Law and
Beyond. IEEE Software, 16, 5 (1999), 63-70.

12.Hupfer, S., Cheng, L., Ross, S., and Patterson, J.
Introducing Collaboration into an Application
Development Environment. In Proc. of 2004 ACM
Conference on Computer-Supported Cooperative Work.
ACM Press (2004), 21-24.

13.IBM Lotus Team Workplace (QuickPlace),
http://www.lotus.com/quickplace.

14.Java Studio Enterprise 7,
http://www.sun.com/software/products/jsenterprise/.

15.Malone, T. The Future of Work: How the New Order of
Business Will Shape Your Organization, Your
Management Style and Your Life. Harvard Business
School Press, 2004.

16.Rising, L., and Janoff, N. The Scrum Software
Development Process for Small Teams. IEEE Software,
17, 4 (2000), 26-32.

17.Roseman, M. and Greenberg, S. TeamRooms: Network
Places for Collaboration. In Proc. of ACM 1996
Conference on Computer Supported Cooperative Work.
ACM Press (1996), 325-333.

18.Sawyer, S. and Guinan, P. Software Development:
Processes and Performance. IBM Systems Journal, 37, 4
(1998), 552-569.

19.SourceForge.net, http://sourceforge.net.

20.TWiki, http://www.twiki.org.

21.Visual Studio 2005 Team System,
http://lab.msdn.microsoft.com/vs2005/teamsystem/.

