
RC23485 (W0501-029) January 10, 2005
Computer Science

IBM Research Report

Weaving a Social Fabric into Existing Software

Li-Te Cheng, John Patterson, Steven L. Rohall, Susanne Hupfer, Steven Ross
IBM Research Division

One Rogers Street
Cambridge, MA 02142

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Weaving a Social Fabric into Existing Software
Li-Te Cheng, John Patterson, Steven L. Rohall, Susanne Hupfer, Steven Ross

IBM Research
Collaborative User Experience Group

Cambridge, Massachusetts

{li-te_cheng,john_patterson,steven_rohall,susanne_hupfer,steven_ross}@us.ibm.com

ABSTRACT

Contextual collaboration is a promising approach to embedding
new collaborative features into existing applications. However,
incorporating such new features may be too difficult for
applications without extensible frameworks or too complex for
legacy, custom, and mission-critical applications. We present
Aspect-Oriented Retrofitting as a lightweight approach to
embedding contextual collaboration in this class of applications,
describe guidelines for designing retrofitting aspects, and walk
through two examples.

Categories and Subject Descriptors

D.2.13 [Software Engineering]: Reusable Software – reuse
models; H.5.3 [Information Interfaces and Presentation]: Group
and Organization Interfaces – Computer-supported cooperative
work, collaborative computing

General Terms

Design, Human Factors, Languages, Theory.

Keywords

Computer supported cooperative work, groupware, aspect
oriented programming, application retrofitting, software reuse.

1. INTRODUCTION
Software features that enable users to communicate and
collaborate with others are becoming more prevalent.
Applications such as email are built entirely around such
“collaborative features,” but some applications that have
traditionally lacked collaborative features have begun to
incorporate them as well. Examples include games, programming
environments with built-in software configuration management,
and various office productivity applications.

This approach is known as “contextual collaboration,” because it
embeds collaboration into the context in which users work.
Collaborative features manifest themselves as components within
the running application and use the details of the context to enrich
the collaboration. Contextual collaboration lets users work
together without leaving their core applications.

Some applications – such as those with extensible frameworks
that allow incorporation of new components at runtime -- are
amenable to contextual collaboration. Others may require a
developer to extend objects provided by an application
programming interface and then rebuild. Another group of
applications is even less amenable to contextual collaboration,
requiring the developer to change the core codebase and rebuild
the system. This group includes legacy systems, in-house/custom-
built software, and mission critical applications. For these
applications, it may be too expensive, complex, time-consuming,
and risky to add a few new collaborative features.

We contend that contextual collaboration should be possible in
any existing software application, not just those with extensible
frameworks. A “retrofitting” approach is needed for non-
extensible applications or software too onerous to change directly.
In this paper, we present the use of Aspect-Oriented Programming
(AOP) [13] as a means of retrofitting contextual collaboration,
with minimal impact, on the host application. We first elaborate
the motivation for contextual collaboration. We then examine
various retrofitting strategies before describing why AOP lends
itself well to retrofitting. Next, we present design considerations
from contextual collaboration that aspect-oriented retrofitting
should take into account. We then explain two examples
illustrating these design considerations and conclude by
discussing the consequences of our approach and how AOP can
be further extended to support contextual collaboration.

2. CONTEXTUAL COLLABORATION
In this section we elaborate the notion of contextual collaboration.
We provide a definition and describe the concept’s key benefits
and motivators [11].

2.1 Definition
People who want to collaborate with one another may use
general-purpose collaborative systems incorporating a set of
multi-user tools (e.g. shared editors, chat utilities, whiteboards),
or they may use the specialized, single-user tools of their trade
(e.g. spreadsheets, CAD, IDEs) and co-opt existing
communication tools such as email. In the former approach,
collaborators need to “go there” – to the team room or workplace
– to work together on shared artifacts. In the latter approach,
people “stay here” in their conventional tools -- leaving them in
order to do limited, ad hoc collaboration -- and the artifacts end
up scattered among participants’ email inboxes, file systems, and
other tools.

Contextual collaboration is a promising third approach that
brings the collaboration “into context”. Users are not forced to
leave their core applications to launch collaborative tools or to
visit a distinct collaboration platform; instead, collaborative

capabilities are simply available as components that extend
standard applications [9]. People continue to use their customary
applications, in order to collaborate with their colleagues about
the project at hand.

2.2 Benefits
Perhaps the most significant benefit of contextual collaboration is
that it can reduce friction [4]. By embedding collaboration
seamlessly into core applications, users are spared the time and
effort of context switching to other tools whenever they need to
work together and can stay focused on the task at hand.. One
example of contextual collaboration is the “Live Names” feature
in IBM Lotus Workplace. Names appearing anywhere in this
system (e.g. in an email) can serve as a launch point for
collaboration, such as indicating online status, and initiating a
chat [24].

A second benefit is that context can be used to enhance

collaborative work. For example, consider the ad hoc
collaboration that happens when workers communicate through
email or chat applications about a document they are constructing
together. If the conversation represents a particularly useful
exchange of information, a participant is likely to archive the
email or save a chat transcript. But consider what happens when
one later wants to retrieve the discussion. Was it in email or in a
chat? Who saved it, and where? Even if transcripts and emails
can be located and examined, the work they reference may not be
obvious, because the discussions are completely decoupled from
the work artifacts. Churchill et al.’s tool allows text-based chats
to be “anchored into” the documents that are the basis of the work
[7]. These contextual chats are accessible to participants from
icons appearing in the document’s text -- allowing users to easily
locate and revisit discussions.

Contextual collaboration can also better inform collaborative

work. Consider what happens when a user initiates an anchored
chat: All participants immediately know what work is being
discussed; there is no need to tell them where to navigate or to
paste in relevant text. If co-workers are using core applications
that have been outfitted with contextual collaboration, those
applications will have knowledge about each user’s current
actions – such as editing a certain file, debugging code, or
chatting with co-workers – and can furnish that information.
Better awareness of colleagues’ context can forestall duplication
of effort, inform whether to interrupt someone or not, and so on.

2.3 Motivators
Grudin offers two challenges for developers of collaborative
applications that are strong motivators for retrofitting contextual
collaboration into software [10].

The first is “unobtrusive accessibility”, i.e. not designing for
infrequently used features. Grudin advocates adding collaborative
features to an already successful application rather than building a
new one. Retrofitting fits well in this case. The collaborative
features being retrofitted into the application are secondary to the
original, heavily used features, and should appear and operate
under the host application’s design principles and avoid
overshadowing the primary features.

The second challenge is “managing acceptance”, i.e. winning user
adoption. Retrofitting an accepted application with collaborative
features sidesteps the problem, since the user is already largely

familiar with only seemingly minor changes, rather than a brand
new application that may require nontrivial retraining and
reconfiguration.

3. RETROFITTING COLLABORATION
Contextual collaboration provides compelling opportunities to
retrofit new collaborative features into existing applications. In
this section, we discuss the challenge of retrofitting and describe
past approaches.

3.1 The Retrofitting Challenge
The problem of retrofitting a set of collaborative features into an
existing application is related to the general problem of software
customization. Mørch breaks this problem into three levels:
customization, integration, and extension [19]. Customization
involves configuring the application through user-defined
settings. Integration involves incorporating new functionality
within the application’s capabilities without accessing the
underlying source code (e.g. macros). Extension allows radical
changes in the application, completely unanticipated by the
application’s designers, through the introduction of new code.
We consider retrofitting contextual collaboration as extensions to
an existing application.

A lesson that we can apply to retrofitting from customization and
integration is that we should minimize the impact of changes on
the application. This lesson ties with Grudin’s challenges (section
2.3): new collaborative features should play by the application’s
rules, and not place overhead on users. However, in the case of
the software process of retrofitting, the “users” include the
developers responsible for maintaining the application.

Therefore, the challenge of retrofitting contextual collaboration is
to produce an extension to the host application that minimizes any
changes to the original codebase and its build process. The
extension -- consisting of new code implementing collaborative
features -- should strive to operate within the host application’s
design principles.

3.2 Past Approaches
There have been examples of retrofitting collaborative features
into existing systems from the literature of Computer Supported
Cooperative Work (CSCW). These examples can be grouped at
three levels – the application level, the programming environment
level, and the operating system level. A set of desirable
characteristics for retrofitting can be drawn from each of these
levels.

3.2.1 Application Level
Retrofitting at the application level enables the developer to
leverage any extensibility offered by the application’s
architecture. The chief benefit is that any collaborative features
that are introduced will exist gracefully within the application.
Ideally, the framework for extension would focus on the
application-specific issues and insulate the developer from low-
level details outside the application.

Examples include using APIs intended for third-parties to hook in
new components (e.g. Churchill et al. use Microsoft ActiveX
application interfaces to anchor chats inside Word [7]), or
creating a proxy service to intercept and change the application’s
protocols for communication and presentation. However, the

original application architects cannot be expected to foresee every
future contingency, and the available application programming
interfaces and standard protocols may be limited or nonexistent.

3.2.2 Programming Environment Level
Retrofitting can also be considered at the programming
environment level: one may be able to exploit the runtime
characteristics of the environment used to create the application.
Some programming language environments are flexible and offer
options for programs to modify themselves at runtime and
dynamically load new modules, without requiring recompilation.
The main benefit here is the potential to significantly customize
the application’s behavior beyond the original design.

Programming language environments may be flexible, and offer
options for programs to modify themselves at runtime and
dynamically load new modules. Other environments offer some
flexibility in manipulating the language’s runtime libraries for UIs
and event handling, without rebuilding the entire application. For
example, through a custom class loader, Flexible JAMM replaces
Java’s single-user interface components with collaborative
equivalents at runtime [3].

A problem with this approach is that not all programming
environments have the needed flexibility. The application being
retrofitted may be coded in a restrictive environment, or have
requirements for strict control over runtime configuration that
may deny modification access to runtime libraries. Also, if well-
defined APIs are not available, it may be difficult to customize or
introduce new behaviors. For example, while it might be easy to
replace the default label widget with a new one by replacing the
widget library at runtime, specifying that only one particular label
use the customized widget might not be possible this way.

3.2.3 Operating System Level
The final level to consider involves diving into the operating
system to trap event calls, capture screen pixels, and hook into the
boundary between the application and operating system services.
A significant advantage of this option is the ability to treat the
application like a “black box”. This is especially useful for old
applications whose documentation and source code may be lost.
Another consequence of this “application independence” is that
techniques used to retrofit one application may work for another.
Many application-sharing systems take this approach (e.g.
Microsoft NetMeeting [17]), enabling them to share entire
desktop applications.

There are some drawbacks to the operating system level approach.
While the application becomes a “black box,” the developer must
now focus on the operating system’s intricacies. The deep
semantics and application’s data structures are also obscured; only
events and visible UI elements are discernable. Moreover, there
may be interference from events from other services running in
the operating system.

3.2.4 Three Desirable Characteristics for

Retrofitting
Each level highlights a diverse array of examples and suggests
desirable characteristics to help retrofitting. The application level
spotlights access to the application’s deep semantics through
clearly defined programming interfaces. The programming level
points out the flexibility afforded by modifying runtime

configurations. The operating system level showcases the
richness of trapping events.

4. ASPECT-ORIENTED RETROFITTING
Aspect-Oriented Programming [13], or AOP for short, is a
desirable approach for retrofitting. We refer to our use of AOP
for retrofitting as Aspect-Oriented Retrofitting. We first provide
some background about AOP and how it supports effective
retrofitting. Then we identify issues and related work.

4.1 Aspect-Oriented Programming
Object-oriented programming languages help modularize software
functionality into classes and methods. AOP is a methodology
that extends object-oriented programming languages by providing
constructs to help express concerns that span several classes and
methods, which are difficult to express in an object-oriented
hierarchical class/method framework [13].

A major benefit of this approach is the separation and
modularization of secondary, supporting functionality (expressed
as aspects), from the application’s core objects. The aspects use a
join point model to bind aspects to objects in the application at
some level of granularity. With the aspects peeled away, the core
objects are purely focused on core logic, not secondary logic.

Our discussion of AOP for retrofitting focuses largely on our
experiences with AspectJ [1], a popular AOP extension to the
Java programming language. However, the constructs we discuss
may translate to other implementations.

4.2 Aspects Trap Event and Application Flow
The first characteristic of AOP that helps retrofitting is the join
point model. Join points can specify points of runtime execution
of a program. Join points can refer to a variety of operations
depending on the AOP implementation, such as method calls,
calls to constructors, attribute assignment, etc. Actions can be
defined in an aspect to execute before, in place of, during, or after
specific join points or groups of join points.

Thus a retrofitting aspect can express join points to trap key
events in the flow of an application. Actions can then be defined
to introduce collaborative features at appropriate points in the
application.

4.3 Aspects Expose Deep Semantics and Are

Part of the Application
The join points and actions expressed in aspects can be defined to
capture valuable details from the running application, such as
returned objects, exceptions, method parameters, and the calling
object for a method. The aspect’s actions can even invoke
methods from captured objects. Unlike an external application
restricted to monitoring events at the operating system level,
aspects can expose the everyday constructs used internally by an
application. Thus, a retrofitting aspect can capture details needed
to provide the context for contextual collaboration, and access the
internal API exposed by captured objects.

Also, the retrofitting aspect is a first-class object within the
application’s codebase. It can access the objects, methods, and
fields from captured context and can execute actions around join
points. Thus, contextual features introduced by the aspect operate
under the same conditions as any other application feature.

However, setting up join points implies a priori knowledge and
raises other issues, which are discussed in section 4.5.

4.4 Aspects Minimize Impact
There are two ways to introduce aspects into an application
(termed weaving). The first approach is to use an aspect compiler
that compiles the aspect and generates intermediate code or
binaries that express the aspect in the application’s original
language through a variety of techniques, including reflection and
event hooking. In the case of AspectJ and various other AOP
implementations, the process does not require recompilation of
the non-aspect code, only linking. The second approach uses a
special runtime that dynamically incorporates the aspect code at
runtime, which also requires no recompilation of the non-aspect
code [2].

Thus a retrofitting aspect minimizes impact on the host
application’s codebase. No changes pollute the original codebase,
and no recompilation of the original application is required. Only
linkable binaries are needed, so even legacy applications without
original source code are eligible for retrofitting.

Compiling and linking in the aspect does affect the build process,
but impact may be minimal. The first approach to building an
aspect only requires compilation of the aspect, generation of
intermediaries that do not affect the original application, and
linking. The second approach does not involve building or
linking at all, but requires deployment of a special runtime to
dynamically bind the aspect with the application.

4.5 Drawbacks
Despite its advantages, Aspect-Oriented Retrofitting has a number
of potential drawbacks. These are: finding the right join points,
expressing join points, restrictions of the programming
environment, and overhead.

4.5.1 Finding the Right Join Point May Be Hard
A key difference between designing a retrofitting aspect and a
regular aspect is finding the right join point. Traditionally aspects
are developed along with the rest of the application and design
documents and source code are readily available. Also, the
developer can change non-aspect code to accommodate aspects
(e.g. remove crosscutting method calls that will be replaced by an
aspect). Under these conditions, a join point can be found in the
source code, or the code can be changed to provide the right join
point.

However, a retrofitting aspect faces a more restrictive design
condition. The application source code and documentation might
not be available. They might have been lost over time, or legal,
political, and security issues may block access to code. The
developer may have to resort to reverse engineering techniques,
but some applications may be too complex to analyze.

Also, the retrofitting process seeks to minimize change on the
codebase and the build process. Thus, the code should not be
changed simply to facilitate a join point.

These conditions, which will vary from situation to situation, can
restrict the available join points a retrofitting aspect can choose.
A restricted set will limit how deeply contextual features can be
embedded into the host application.

4.5.2 Join Points May Be Brittle
The difficulty of finding desirable join points means trade-offs
must be made with the restricted set of join points. This
highlights another difference between retrofitting aspects and
regular aspects: join points in retrofitting aspects may be very
narrowly focused on opportunistic calls that are vulnerable to
change.

Given a more limited choice of join points, a retrofitting aspect
may have to rely on coincidental calls and events in the host
application to incorporate new features, rather than staying true to
the application’s semantics. For example, suppose a retrofitting
aspect wants to introduce some initialization after the host
application completes its own, but that the host application put all
its initialization in the “main” block. The only available join
point is when the application finally instantiates the UI after
everything is initialized. Thus, the retrofitting aspect uses the join
point and defines an action to execute new initialization routines
before the UI is instantiated. Although this gets the job done, it
takes advantage of the coincidence that the UI gets instantiated
after the application’s initialization. If the next major revision of
the application removes the initialization, then the retrofitting
aspect will fail and must find another appropriate join point.

4.5.3 The Environment May Not Allow Aspect-

Oriented Retrofitting
Using AOP to retrofit is similar to retrofitting approaches
operating at the programming environment level. The
environment building and running the aspect is leveraging hooks,
events, and dynamic loading capabilities from the programming
language. Thus, the drawbacks of the programming environment
level may apply as well. The original application’s language may
not support AOP extensions. The security model may prevent
aspects from being incorporated with the application.

4.5.4 The Retrofitting Aspect May Incur Too Much

Runtime Overhead
Although using aspects may eliminate the need to recompile the
original codebase, and minimize the impact on the build process,
the AOP implementation may incur memory or performance
overhead on the host application. Using an aspect compiler to
generate intermediate objects may add too many objects and
increase the memory requirements. Using a special runtime to
dynamically introduce aspects may slow down the application.

This is a problem with adding new modules to any system,
however. Also, the additional overhead may be acceptable
depending on the retrofit’s requirements. Finally, AOP
technology is constantly improving to address these overhead
issues [21].

4.6 Related Work
There are numerous examples of building AOP applications that
separate out secondary infrastructure capabilities related to
collaboration, such as object persistence and authentication (e.g.
see Laddad for detailed examples [14]), but not in the context of
retrofitting new collaborative capabilities into the UIs of existing
applications.

There is some work describing the use of AOP to design new
collaborative systems and UIs. Veit and Herrmann extend the
AOP paradigm with their own programming model to realize the

model-view-controller architectural pattern for building UIs [23].
Cardone et al. introduce new language constructs to decompose
UI libraries by feature-encapsulating components to support
multiple platforms from the same codebase [5]. While these
approaches are valuable in architecting new applications or
redesigning UI libraries, they do not directly address the problem
of retrofitting new collaborative capabilities into old applications.

Mørch introduces a notion of aspect-oriented software
components, which he uses to architect a flexible application for
customization and runtime extension [18]. Mørch‘s approach,
however, is still focused on architecting first for aspects rather
than tackling a completely foreign, non-extensible application.

We have also conducted an investigation in using aspects to
retrofit a collaborative capability (which will be summarized in
section 6), but focused on UI-derived join points [6]. In this
paper we examine a wider spectrum of potential join points that a
retrofitting aspect needs to consider before introducing new
collaborative features.

5. SOCIAL FABRIC: DESIGN

GUIDELINES FOR RETROFITTING IN

COLLABORATION WITH ASPECTS
Given the advantages and drawbacks of retrofitting aspects, now
we need to consider how to design them for embedding contextual
collaboration. This raises three questions. First, what kinds of
concerns in contextual collaboration should retrofitting aspects
address? Second, where are the relevant join points in the
application’s architecture? Third, what if the architecture lacks
the relevant join points?

To answer these design questions, we propose some guidelines
structured around the set of concerns that need to be introduced
by the retrofitting aspect (which we call social concerns), and a
set of layers describing the existing application architecture as
well as the desired architecture. We call this overall set of social
concerns and architectural layers the “social fabric”: the missing
pieces that the retrofitting aspect must add to realize contextual
collaboration and the hooks in the host application that contextual
collaboration will attach to.

5.1 Social Concerns
Our social concerns for contextual collaboration are inspired by
consideration of the simplest social interaction: a conversation.
Before a conversation can begin one must be aware of the
availability of someone to talk to. We refer to this as social
awareness. We refer to the actual conversation as a social
interaction. As the conversation proceeds there are rules and
expectations for how it will happen. These are referred to as
social roles. We expand on these concerns in the sections that
follow.

5.1.1 Social Awareness
Social awareness is a critical feature of collaboration. When we
work with other people we are aware of their comings and goings,
their availability for interruption, and their level of distraction.
When we work in the same location, this knowledge of the
context of our collaborative partners is not something we must
seek out -- it’s available for free if we bother to notice. This
social awareness is the “backplane” from which our social
interactions are launched.

When we are not in the same location, supporting social
awareness is more difficult. Buddy lists are an attempt to
introduce social awareness into a distributed work environment.
Depending on our concerns for privacy and our familiarity with
our potential collaborators, we may be willing to share much more
information about our context, provided it requires no effort.
Close collaborators might be welcome to know what applications
we are running or which files we are working on. The trick is to
make the information available without disturbing the person who
provides it and without overwhelming the person who will notice
it.

When we retrofit an application to support social awareness we
are either exporting context from the application or importing
context from somewhere else. Thus, a retrofitting aspect may
need to implement two specific tasks:

• Collecting context that is offered for others to perceive,

• Presenting the context of others.

To collect context, the retrofitting aspect can specify join points to
capture parameters, returned objects, calling objects, and other
details. These details from the application should derive what can
be offered to other users to perceive. An approach to consider for
collecting context may be the “wormhole pattern” which allows
context to be passed directly between points in the call stack [14].

Example: Consider the case of retrofitting the ability to
share an editor with multiple users. The act of loading a
file and the filename can be captured at a join point
associated when the application loads a file. This
information can then be sent to other users to indicate
that someone is loading a specific file in the editor.

To present context to others, the retrofitting aspect must transmit
the contextual information across the network and eventually
manifest it in the UI of another application.

Example: In the shared editor example, the retrofitting
aspect could establish a socket session with the other
user’s shared editor and broadcast the file loading event
and the filename. Then the recipient aspect can display
this information in the other editor’s UI.

5.1.2 Social Interaction
Social interaction is what collaboration is all about. It can be
done in many ways, but it is a dialog or conversation among two
or more people about something. Sometimes the interaction is
verbal, but it might also involve drawings or pictures.
Sometimes the interaction is immediate as in a chat, but other
times it takes place over time with no two participants working on
the conversation at the same time.

When we retrofit an application to support social interaction we
must both establish a channel for the conversation and provide the
content that the users want to discuss. Thus, a retrofitting aspect
will need to be concerned with:

• Providing a mode of interaction,

• Providing the referent of the interaction.

The mode of interaction has implications for the networking
requirements of the collaborative feature being added and how the
interaction will occur in the UI. As a result, the retrofitting aspect
will need to specify join points and actions to set up networking
and set up a UI for interaction. The nature of the interaction will

also affect how the network notifies the UI of new collaboration-
related events, and how the UI will send collaboration-related
information to other applications.

Example: Consider the case of retrofitting a chat
component into a spreadsheet application. The
retrofitting aspect may choose to use the join point
where the spreadsheet UI is being initialized, after that,
the aspect initializes networking and the chat
component’s UI.

Because chat messages can arrive at any time, the
networking code must listen for incoming messages
from the chat server. When a new chat message arrives,
the retrofitting aspect must pop up a chat window. The
window’s constructor will need the spreadsheet’s
window object as a parent and thus it must be captured
by a join point where that window instance is available.
When the user finishes typing a reply in the chat
window, the retrofitting aspect must then relay the reply
back to the recipient through appropriate networking
calls.

The referent of the interaction will vary with the type of
collaboration (e.g. communication support, information sharing,
workflow/coordination) and is not always needed. As in the
social awareness concern mentioned earlier, our desire to provide
a referent for the interaction is an effort to give it a context. In
social awareness, however, we are only providing snippets of
context -- enough to inform the decision to interact or not, but not
enough to invade privacy or overwhelm the user’s attention. To
support social interaction, we now want major pieces of an
application to be shared in a detailed manner as the backdrop or
referent of the conversation. This retrofitting aspect will need to
bring elements of the application into the communication channel.

Example: In the case of the chat example, a retrofitting
aspect might obtain context from a spreadsheet being
edited (e.g. cell locations, data, formulas, etc) and bring
it into the chat for discussion.

5.1.3 Social Roles
Social roles loosely define the script by which people interact.
Normally, we simply “know” what’s going on, but computers
offer the opportunity to keep track of people’s roles and even
enforce them. This reification of social roles can be essential for
blocking unwanted or inappropriate actions, but it can also be
useful for informing users about what is expected of them.

When we retrofit an application to support social roles we
introduce policy requirements and coordination rules. As a result,
a retrofitting aspect will need to consider these two capabilities:

• Providing policies regarding user rights,

• Providing indications of user responsibilities.

Rights imply issues such as authentication and access control. A
retrofitting aspect may be able to leverage frameworks available in
the application, utilize services available in the organization, or
come up with a custom-built solution. The aspect may need to
identify join points in the application that need to validate
incoming accesses from remote users. Access control and security
are common examples in the AOP literature – see Laddad for
examples [14].

Example: Consider the case of retrofitting a shared
task component into a personal calendar application,
where task objects can be linked to calendar entries.
The retrofitting aspect could use the corporate directory
service to authenticate users. Users associated with a
task object may want to retrieve the description in the
linked calendar entry, so the join point around the
method retrieving the calendar entry is needed, and the
aspect must verify that only authorized users can obtain
the entry’s description.

Responsibilities imply issues around coordination and social
norms. The retrofitting aspect will need to provide a UI that
could assign responsibilities to users, or let users choose their
own. The resulting system could be “laissez-faire”, where nothing
is expected, or very structured based on activities, workflow, and
deadlines. Responsibilities also imply actions that the user needs
to perform in the application, and a retrofitting aspect can help by
identifying appropriate join points where these actions can be
performed and any useful context.

Example: In the case of the task assignment, the
retrofitting aspect provides a user interface for assigning
tasks to other users, and uses calendar details (e.g. dates
and times) to define deadlines. When a user is assigned
a task, the retrofitting aspect uses join points within the
calendar object to display who assigned the task and
how much time is left to complete it, as well as a button
on the calendar entry widget to indicate completion.

5.2 Architectural Layers
Retrofitting contextual collaboration requires join points tying
into the architecture of the application. Also it involves
introducing new pieces of architecture that did not exist before,
especially if the application was originally intended for standalone
use. Regardless of whether they exist or not in the application,
there are three layers to consider: the distributed system, the
application model, and the UI.

5.2.1 Distributed System
The distributed system layer refers to how the retrofitted
application communicates with external applications and services.
It can refer to calls to the operating system, a traditional
client/server networking model, or a peer-to-peer networking
system. There are three cases worth considering:

• The layer is present and it can be used for contextual
collaboration.

• The layer is present but it is inadequate for contextual
collaboration.

• There is no layer or its join points are completely
inaccessible.

The first case is very convenient, but probably specific to
applications that already have some limited collaborative
capabilities. In this situation, a retrofitting aspect only needs to
find the appropriate join points to attach calls into the distributed
system layer.

Example: Consider the case of retrofitting a document-
sharing component for a medical imaging application
that uses a proprietary networking protocol to exchange
images among users. Each time an image is sent, a

document should be attached to it. A retrofitting aspect
can leverage join points into the module managing the
proprietary networking to share documents in addition
to images.

The second case is probably more common, and here the
retrofitting aspect must introduce its own networking capabilities.
There might be some useful context worth capturing from the
existing networking layer, so join points into the existing layer
may be needed.

Example: Regarding the medical imaging example,
suppose there is a join point to signal that an image was
sent, but there is no way to add in documents with the
outgoing image. A retrofitting aspect will need to
define its own scheme to exchange documents (e.g.
HTTP). It can still use the join point to capture the
identifier for the image sent out, and execute calls using
the custom networking scheme to share documents
associated with the image.

The third case is also probably commonplace. Again, the
retrofitting aspect must introduce its own networking capabilities.
However, the join points will need to target places in the
application model layer, or, failing that, the UI layer.

Example: Regarding the medical imaging example,
suppose there are no join points available around the
networking module. However, there is a join point
where the user clicks on the “send image” button
widget. The retrofitting aspect can target this join point
to share documents with its own networking scheme.

Retrofitting aspects operating at the distributed system layer may
benefit from using distributed AOP implementations such as JAC
[20].

5.2.2 Application Model
The application model layer describes the core logic of the
application. An application may lack a distributed layer or a UI
layer, but it will always have some sort of application model layer.
Retrofitting aspects have the potential of significantly changing
the behavior of the application by leveraging join points at this
layer. Collaborative features that involve sharing application state
as opposed to pixels or UI widget events (e.g. shared editors,
shared debuggers, shared web browsers) benefit from accessing
context information at this layer.

Example: Regarding the medical imaging example,
suppose that the application has a core object with a
method called “sendImage(Image)”. This is an ideal
join point for a retrofitting aspect to capture image
information, and implement document sharing.

5.2.3 User Interface
The UI layer provides the screen presentation and processes the
user’s direct input. If the user interface follows the Model-View-
Controller paradigm, then this layer contains the View and
Controller. The Application Model layer contains the Model.
There are three cases to consider:

• The layer is present and is adequate for contextual
collaboration

• The layer is present but it is inadequate for contextual
collaboration

• There is no layer (e.g. the application is a system
service), or there are no accessible join points to the UI

The first case is ideal, since the retrofitting aspect can introduce
user interfaces that appear like natural extensions to the
application. Retrofitting aspects can consider join points at the
boundary between the UI and application model layers, as well as
the boundary around the UI library itself. Veit and Herrmann’s
extensions to Model-View-Controller may help [23].

Example: Regarding the medical imaging example,
suppose the user receiving an image wants to read the
associated document. A retrofitting aspect can find the
join point where the image viewer window’s menu is
being defined, retrieve the menu widget, and add in an
option to pop open the document in a text widget.

In the second case, the retrofitting aspect can still leverage join
points where the user interacts with the UI. However, the
retrofitting aspect must now use its own custom user interface
widget to supplement the application’s user interface. Cardone’s
mixin widgets [5] and JAC’s UI aspects [20] may be helpful.

Example: Returning to the previous example, suppose
the document is in HTML, but the application’s text
widget does not support HTML. The retrofitting aspect
can still use the same join points as before, but must use
a custom widget to display the document.

In the third case, there are two choices. The retrofitting aspect
can advise join points at the distributed system layer to pass
application information to another application providing a UI,
thus turning the main application into a server, and the UI
application into a client. Another option is to add in a new UI
layer by building on top of join points at the application model
layer.

Each approach has its own uses depending on the requirements of
the retrofit. If a clean separation between application logic and UI
is desired, and the application is already capable of running as a
server, then the first choice may be worthwhile. If the application
is incapable of becoming a server, then adding in a new UI layer
may be useful.

6. AN ADDRESSBOOK EXAMPLE
To explore aspect-oriented retrofitting for contextual
collaboration, we began with a simple example focusing largely
on the UI layer [6]. Here, we summarize the steps we took for the
retrofit and reflect on how it ties into our notion of a social fabric.

6.1 From Address Book to Buddy List
We started with a basic address program, written in Java and
using the SWT widget library [8]. The program is a single-user
application that lets the user enter contact information, save and
load all contact data, and conduct searches (top of Figure 1).

The address book’s list of names was modified to present online
awareness information provided by an instant messaging service.
Our final result appears at the bottom of Figure 1. We have the
same application, but now names are decorated with icons
denoting online status. Tooltips over the names reveal status

messages. We did not have to recompile the original application
and only added one aspect written in about one hundred lines of

code that interacted with the IBM Lotus Sametime instant
messaging toolkit [12].

6.2 Implementation
Our strategy to accomplish the retrofit was threefold. First:
understand the application from its runtime behavior and its
codebase, looking for useful internal application programming
interfaces. Second: identify the join point and define the
associated code where we can initialize the new collaborative
feature upon application startup. Third: identify the join point
and define code where we can establish a foothold into the UI and
add to it.

6.2.1 Understanding the Application
From understanding the operation of the address book
application, we learned that the address book is represented by an
AddressBook class, which includes an open() method that is
called when the application is starting up, and returns a Shell
object (the widget for the entire application window). Thus, we
can leverage the application model to help start up our new
collaborative feature.

Also, the address book uses a Table widget consisting of
TableItem widgets for each row. Each TableItem contains the
fields for one contact, which are set up using a setText() method.
The key field is the email address which we can use as an
identifier to get online status information from the instant
messaging service. There are also unused methods to set icons
and tooltips in the table.

We then used AspectJ [1] to define an aspect representing instant
messaging awareness information associated with a row entry in

the table of the address book. Figure 2 shows the aspect we
created, with the internals written in pseudo-code for brevity.

Sections A and C in Figure 2 define the join points of interest,
while Sections B and D define corresponding code to execute
after their respective join points.

6.2.2 Retrofitting Initialization
Section A defines a join point on any call to the open() method of
the AddressBook class. This captures the moment when the
application is starting up. This is an important moment to allow
us to perform setup related to our new collaborative feature.

Section B captures the shell widget returned by the open() method
and performs various actions after the application starts up. We
pop up a login dialog using the shell widget as a parent object.
After obtaining login information from the dialog, we log into the
instant messaging service and set up a status change listener,
responsible for updating icons in the table rows, using a hashtable
that maps email addresses to rows.

6.2.3 Retrofitting the Existing User Interface
Section C defines a join point on any call to the setText() method
of the TableItem widget, and captures the actual TableItem widget
instance calling the setText() method. This specifies the moment
when a row with contact information is being created or changed.
This is an important moment to set up an awareness icon in the
table, and establish tooltip information.

Section D takes the TableItem widget captured by the join point
and extracts the email field from “item”, which is then used to
query the instant messaging system for status information. The
status information is then mapped to appropriate tooltip and icon
information to display in the table (“item” allows us to access the
appropriate methods). The hashtable used in section B is updated
with a mapping between the email address and the table row.

6.3 Social Concerns
Social Awareness (collect and present context): This example
was about introducing social awareness into an application. The

public aspect LiveName

{

after() returning(Shell shell):

 call(* AddressBook.open(..))

{

 // Display login dialog in shell
// Login to IM System
// Add listener for IM status changes, update icons

 }

 after(TableItem item) :

(target(item) &&

 call(* TableItem.setText(..)))

 {

// Get email from table item
// Get current IM status using email
// Get icon based on IM status

 // Add listener for mouse hover, show IM status text
// Add icon to table item

 }

}

Figure 2: Pseudo-code showing the aspect responsible for

retrofitting the Address Book application

Figure 1: Original address book application (top) and the same

application retrofitted with IM presence icons and tooltips

(buttom)

A

B

C

D

context for the social awareness is provided by a separate
application (a buddy list) and must be presented to the user. To
do this we need to collect two pieces of information from the table
of contacts: the appropriate contact field that we can use to query
the instant messaging service for online status information and
updates, and the table item widget to let us insert awareness icons
and tooltips. If we can obtain the table item widget for each row,
then we can display awareness icons and tooltips.

Social Interaction (mode and referent of interaction): In this
example, there is no real interaction going on, since we are only
displaying awareness information. However, the example could
be extended to launch a chat (the mode of interaction) from the
name. Moreover, the retrofitting aspect could bring in contact
information from the address book as a context (the referent of
interaction) for the chat.

Social Roles (rights and responsibilities): In this example, we
need to log on to the instant messaging service in order to access
online status information. This relates to Rights. There are no
Responsibilities, since there are no expectations associated with
monitoring online status and maintaining an address book.
However, the example could be extended with an expectation that
users should keep their contact information up-to-date. This
could be implemented by reminding the user to verify contact
information and automatically share updates with other users.

6.4 Architectural Layers
Distributed System: The address book is a standalone
application. Thus, we introduced a networking layer via the
instant messaging toolkit.

Application Model: Given that our collaborative features are
largely UI-based (adding icons and tooltips), we only used the
application model to trap program startup. For instance, we do
not really need to manipulate contact information, and all of our
context can be gleaned from the table widget.

User Interface: We needed a join point where the main window
appears so we can pop up a login screen for the instant messaging
service, establish our connection, and set up a listener for online
status updates. Also, we needed a join point where a row in the
table is updated or added. This is where we can insert our
awareness icons and tooltips.

7. REPLICATED APPLICATION

SHARING
A more complex example of aspect-oriented retrofitting is our
Zipper project, which is still work in progress [22]. The goal of
this project is to provide synchronous collaboration using
distributed copies of single-user applications. After a brief
introduction to the problem of replicated application sharing, we
describe how it relates to our social fabric model.

7.1 What Is Replicated Sharing?
Collaborative use of replicated, single-user applications has long
been a dream of groupware developers. If such a system were
available, then the myriad of single-user applications could be
repurposed as collaborative tools. Not only would people be able
to collaborate, they would be able to collaborate with the
applications to which they are accustomed.

On the face of it, the idea is simple. If all of the collaborators
have a copy of the single-user application, then one user can

“drive” all the application replicas. Underlying this idea is the
notion that, if the same sequence of events (e.g., user input) is sent
to replicas of the application, then the application state will be
manipulated and modified in the same manner in each of the
application copies—each collaborator will see the same result.
(This can be seen graphically in Figure 3.) This is much more
network-efficient than “screen scraping” systems such as
NetMeeting [17], since the bandwidth of the input events is small
compared to the application output that gets displayed to the user.

Figure 3 shows two collaborators (although theoretically there
could be any number of collaborators); the collaborator on the left
is the moderator interacting with the application while the
collaborator on the right is observing the moderator’s actions.
When the moderator interacts with the application, an input event,
labeled ex, is sent to the controller for interpretation. Application
logic will cause some sequence of operations as a result. This
processing flow is shown as the black lines. The processing will
wind through the model and the view and eventually produce
some output, ox. In replicated application sharing, the initial
event, ex, is caught and transmitted to the other collaborators
(shown as the dotted line in Figure 3). The event is then
interpreted by the remote collaborators. Assuming that the
applications were in the same initial state, the same processing
flow occurs and the same output, ox, is produced.

The problem with this simple vision is that it doesn’t work; it
assumes state changes within the application are deterministic. In
replicated application sharing, that assumption is usually
incorrect. Whenever the application logic consults something in
the environment outside of the application, such as a local file
access or a system call to retrieve the time, the environmental
access may return a different result. Subsequent processing may
follow a different path through the two applications. Begole, et

al., call these environmental problems externalities. More
specifically, they define an externality as an input (other than the
user) or an output (other than the display) that is external to the
application itself [3].

The Flexible JAMM system took one approach to fixing the
problem of externalities. It exploited properties of the Java
language to dynamically replace single-user components with
specially-written multi-user counterparts. It did this to ensure that
all the replicated applications experience a common environment
by directing all environmental accesses to a common proxy server

Figure 3: The replicated application sharing vision

[3]. Our Zipper system is investigating a different approach using
aspect-oriented programming.

In the discussion that follows, we will concentrate on the aspect
retrofitting in Zipper. Other issues of making a replicated
application sharing system are described in [22].

7.2 Zipper Implementation
The Zipper system is designed to share editors within the Eclipse
environment. Initially, we are targeting text-based editors with a
goal of sharing other Eclipse editors. Sharing editors (for Java
code, XML files, etc.) is one piece of a larger story on
collaborative application development. Our goal is to share
pieces of the Eclipse environment without needing to change any
existing code, either in Eclipse or in Java itself.

Figure 4 shows the current Zipper prototype. From the user’s
perspective, the Java editor, the main portion of the Eclipse
screen, looks and behaves like any other Java editor in Eclipse.
What is different is that a remote collaborator can make changes
to the document. The Zipper view, below the editor, allows any
collaborator to control the amount of sharing—in this case, text
scrolling and selection events can be selectively shared with
remote participants. Text entry or deletion events are always
shared among collaborators.

We originally anticipated the use of two types of aspects. The
first would involve aspects to catch the moderator’s input events
and share them with other users. The second would involve
catching the environmental accesses on one replica and
forwarding them to the other replicas ensuring that all of the
applications experience the local environment in a common
fashion. In this manner, we hoped to use aspects to preserve the
deterministic assumption and ensure that the processing on all
replicas is identical.

7.2.1 Capturing Input Events
As we have implemented Zipper, we have found that our use of
aspects has changed from our anticipated uses. In particular, we
found that Eclipse’s UI widgets provide very rich interfaces for
intercepting user input events. For example, we wanted to be able
to share text selection events among users. As it happens,
Eclipse’s ITextViewer object defines an interface for registering
selection listeners. Similarly, there are listener APIs for capturing
text entry and scrolling events. Our problem stemmed from the
fact that the ITextViewer objects to which we wanted to listen
were hidden from us—ITextViewer objects for editing text are
created as a by-product of instantiating an IEditorPart object—the
actual UI widget used to contain the ITextViewer within the
Eclipse framework.

Figure 5 shows an aspect we used to make up for this deficiency
in the Eclipse API. It looks for the ITextViewer objects created as
a result of an IEditorPart’s UI widget being created. Once we
have a handle to the ITextViewer being shared, capturing input
events is simply a matter of registering the appropriate listeners
with that object.

A related issue is interjecting events programmatically into the
editor’s processing stream. Again, in the case of textual editing,
Eclipse provides the necessary APIs for creating events that
appear as if they were the result of user interaction. Although
Eclipse has been a good environment in which to catch and create
these sorts of user input events, we can imagine that in other
environments, or even for certain events within the Eclipse
environment, we may need to use aspects rather than rely on
listener APIs.

7.2.2 Capturing Environment Accesses
Unlike user input events, Eclipse does not have an existing API
that can be used for capturing environment accesses. Instead,
much of the environment of a file in an editor is provided by
IResource objects. As we move forward, we will need to use
additional aspects in Zipper to detect when the Eclipse workbench
consults the IResource associated with a given piece of text being
edited.

7.2.3 Code “Archaeology”
One unanticipated use of aspects in the Zipper project has been
for reverse engineering Eclipse to determine which events need to
be intercepted. In the Eclipse SWT graphics package, we can
capture individual key down and up events. Alternatively, in the

Figure 4: A Zipper-enabled Java editor in Eclipse. The

sharing panel at the bottom allows text scrolling and selection

events to be selectively shared; text entry events are always

shared.

// Adds a new mapping of an IEditorPart to an ITextViewer.

after(IEditorPart e, ITextViewer v) returning :

 cflowbelow(

 execution(* IEditorPart.createPartControl(..))

 && target(e))

 && (initialization(ITextViewer.new(..))

 && target(v))

{

 editorToViewer.put(e, v);

}

Figure 5: Code showing the aspect responsible for finding the

Eclipse ITextViewer object associated with an IEditorPart.

Eclipse JFace package, those low-level keyboard events get
aggregated into higher-level text events comprising a range of
characters in the text to be replaced and the new replacement text.
These higher-level events are more useful for replicated
application sharing.

The use of aspects proved invaluable for determining which
objects and events were most useful for collaboration. Most of
these aspects were simple, logging aspects to help decipher the
flow of control within Eclipse. Once the appropriate objects were
discovered, these aspects were no longer needed.

7.3 Social Concerns
Social Awareness (collect and present context): Zipper is not
directly concerned with social awareness. We expect it will
launch from a separate system, such as an instant messaging
client. As such it is a specialized conferencing tool that may be
added to an ongoing chat. It would be useful if that client were
augmented with information about which applications are Zipper-
enabled and available to each of the participants in the chat.

Social Interaction (mode and referent of interaction): The
purpose of Zipper is to permit any application to become the
referent of a conversation. A chat or telephone call provides the
primary means for direct interaction. Zipper provides the
information about which to talk.

In addition to providing the context for a conversation, Zipper can
also support some interaction through the application. If the user
is the moderator, then he is driving the application just as he
would if it were not being shared. A retrofitting aspect will
intercept the moderator’s actions and transmit it to the other
collaborators where, once interpreted, the results are seen.

If a collaborator is not the moderator, then his interactions are
limited to affecting only the surface presentation of the
application in the form of a telepointer. Most replicated
applications add a telepointer feature allowing the remote
collaborators to point to things even if they are not currently the
moderator.

Social Roles (rights and responsibilities): The primary roles in a
replicated application are the moderator and the other
collaborators. The moderator is allowed to interact fully with the
application while the other collaborators are limited to viewing
and interacting with telepointers. These roles are needed to
ensure system synchronization, however; it is best if the
collaborators do not need to be aware explicitly of the roles. The
idea is to let the person who interacts with the system be the
moderator. When there is no activity, another user can begin
interaction with the application. At that point, they become the
moderator without an explicit passing of control. In this case the
retrofitting aspect needs to hook user input to the replicated
applications and, based upon whether someone else is currently
interacting with the system, allow the user to become the
moderator or not.

7.4 Architectural Layers
Distributed System: The point of Zipper is to make single-user
applications collaborative. As a result, these applications
typically do not have a communication layer already. Zipper
must add networking support for transmitting events among the
collaborators.

Application Model: There are critical points of the application
model which must be monitored in a replicated situation. Zipper
must monitor any calls made outside of the application into the
larger computing environment. An example is making a system
call to get the current time. These accesses are externalities.
Since the operating environments are not identical across
collaborators’ computers, the externalities on the moderator’s
computer must be tracked so that the same result can be sent to
the other collaborators. Without doing this, it is very likely that
the distributed applications will not maintain synchronization.
(This problem is described more fully in [22])

User Interface: For typical interactions with the application, we
need a join point wherever a user can interact with the system.
For the moderator, this is so we can transmit the events to the
others; for the others, it is so we can transmit telepointer
information.

8. FUTURE DIRECTIONS
Contextual collaboration is an opportunity for existing
applications to incorporate new collaborative features. AOP can
extend the reach of contextual collaboration to applications
without extensible frameworks. The main benefits of using AOP
for retrofitting are: the ability to trap events and application flow,
access to application semantics and context, and minimal impact
on the original application’s code base and build process. We
also present the notion of social fabric to help guide the design of
aspects that retrofit contextual collaboration into applications, and
examples showcasing the potential of this approach.

There are drawbacks to Aspect-Oriented Retrofitting: finding the
right join points, brittle join points, restrictions in the
programming environment, and runtime overhead. Automated
analysis of the event flow of applications [15], may help address
the first and second problems. Work needs to be done in trust
models for weaving in retrofitting aspects, and enhancing aspect
runtime technology [21].

The potential for brittle join points has long-term consequences
for maintainability. Over time, numerous retrofitting aspects may
be applied on a complicated legacy system, which may make it
even harder to understand. Thus, retrofitting aspects could be
viewed as a tactical short-term patch for a long-term problem.
This may suggest explorations of how to design retrofitting
aspects to fit within a long-term strategy of migration towards a
new system.

There is also an opportunity to extend AOP with new join point
models capturing human-computer and human-to-human
interaction, which will help better express join points in
retrofitting aspects. These join point models would go beyond
single UI events, and represent event flows in a UI model and
workflows requiring multiple users to participate synchronously
and asynchronously. The challenge of better expressing join
points is related to the goals of Naturalistic Programming [16].

We are only speculating on the potential of contextual
collaboration with aspects. Future research should implement
contextual collaboration on large, complex, existing systems with
Aspect-Oriented Retrofitting, and compare the results with other
approaches. Such a comparison should consider not only the
software engineering metrics, but also feedback regarding the user
experience. Case studies can also inform our model of the social

fabric, and build a grounded set of guidelines to help future
retrofitting endeavors. Finally, the hidden pieces of context and
application interfaces uncovered by retrofitting aspects may lead
to new creative and insightful uses of contextual collaboration.
Through aspects, existing software applications -- as old and
peculiar as they may be -- can still remain comfortable and
familiar, while entering the new world of social software.

9. ACKNOWLEDGEMENTS
We would like to thank Martin Lippert for making his AspectJ-
Enabled Eclipse Runtime (AJEER), which was used in the Zipper
prototype, available (see http://www.martinlippert.com/eclipse-
aspectj-runtime/index.html for more information).

10. REFERENCES
[1] AspectJ. http://www.eclipse.org/aspectj.

[2] AspectWerkz. http://aspectwerkz.codehaus.org.

[3] Begole, J., Rosson, M., Shaffer, C. Flexible Collaboration
Transparency: Supporting Worker Independence in
Replicated Application-Sharing Systems. ACM Transactions

on Computer-Human Interaction, 6, 2 (June 1999), 95-132.

[4] Booch, G., Brown, A. Collaborative Development
Environments, in Advances in Computers Vol. 59, Academic
Press, August 2003.

[5] Cardone, R., Brown, A., McDirmid, S., Lin, C. Using Mixins
to Build Flexible Widgets. In Proceedings of AOSD 02

(Enschede, The Netherlands, April 22-26). ACM, New
York, NY, 2002, 76-85.

[6] Cheng, L., Rohall, S., Patterson, J., Ross, S., Hupfer, S.
Retrofitting Collaboration into UIs using Aspects. In
Proceedings of CSCW 04 (Chicago, USA, Nov. 6-10).
ACM, New York, NY, 2004.

[7] Churchill, E., Trevor, J., Bly, S., Nelson, L., Cubranic, D.
Anchored Conversations: Chatting in the Context of a
Document. In Proceedings of CHI 00 (The Hague,
Netherlands, April 1-6). ACM, New York, NY, 2000, 454-
461.

[8] Eclipse.org. Eclipse 2.1.2 Example Plug-ins,
http://fullmoon.torolab.ibm.com/downloads/drops/R-2.1.2-
200311030802/

[9] Fontana, J. Collaborative Software Ages Slowly. In Network

World Fusion, January 6, 2003.

[10] Grudin, J. Groupware and Social Dynamics: Eight
Challenges for Developers. Communications of the ACM,
37, 1 (Jan. 1994), 92-105.

[11] Hupfer, S, Cheng, L., Ross, S., Patterson, J. Introducing
Contextual Collaboration into an Application Development

Environment. In Proceedings of CSCW 04 (Chicago, USA,
Nov. 6-10). ACM, New York, NY, 2004.

[12] IBM. Lotus Instant Messaging and Web Conferencing,
Sametime Java Toookit, http://www-136.ibm.com/
developerworks/lotus/products/instantmessaging

[13] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,
C., Loingtier, J-M., Irwin, J. Aspect-Oriented Programming.
In Proceedings of ECOOP 97. Springer-Verlag LNCS n.
1241, Germany, 1997, 220-242.

[14] Laddad, R. AspectJ in Action. Manning, Greenwich, CT,
2003.

[15] Li, D., Li, R. Transparent Sharing and Interoperation of
Heterogeneous Single-User Applications. In Proceedings of

CSCW 02 (New Orleans, USA, Nov. 16-20). ACM, New
York, NY, 2002, 246-255.

[16] Lopes, C., Dourish, P., Lorenz, D., Lieberherr, K. Beyond
AOP: Toward Naturalistic Programming. In Companion of

OOPSLA 03 (Anaheim, USA, Oct. 26-30), ACM, New York,
NY, 2003, 198-207.

[17] Microsoft. NetMeeting Home Page,
http://www.microsoft.com/windows/netmeeting

[18] Mørch, A. Aspect-Oriented Software Components. In
Adaptive Evolutionary Information Systems, N. Patel (ed).
Idea Group, Hershey, USA, 2002, 105-123.

[19] Mørch, A. Three Levels of End-User Tailoring:
Customization, Integration, and Extension. In Computers

and Design in Context, M. Kyng & L. Mathiassen (eds.).
MIT Press, Cambridge, USA, 1997, 51-76.

[20] ObjectWeb, JAC Project. http://jac.objectweb.org/index.html

[21] Popovici, A., Alonso, G., Gross, T. Just-in-Time Aspects:
Efficient Dynamic Weaving for Java. In Proceedings of

AOSD 03 (Boston, USA, March 17-21). ACM, New York,
NY, 2003, 100-109.

[22] Rohall, S.L., Patterson, J. Another Look at Replicated-
Application Sharing, . Position paper for CSCW 04

workshop on Making Application Sharing Easy:

Architectural Issues for Collaboration Transparency

(Chicago, USA, Nov. 6-10). ACM, New York, NY, 2004.

[23] Veit, M., Herrmann, S. Model-View-Controller and Object
Teams: A Perfect Match of Paradigms. In Proceedings of

AOSD 03 (Boston, USA, March 17-21). ACM, New York,
NY, 2003, 140-149.

[24] Wilson,R. IBM Workplace Client Technology Powering
Managed Client Solutions, http://www.eclipsecon.org/
EclipseCon_2004_TechnicalTrackPresentations/21_Wilson.
pdf

