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Abstract 
Applications on today’s high-end systems typically make varying load demands over time. A single application 

may have many different phases during its lifetime, and workload mixes show interleaved phases. Memory-

intensive work or phases may exhibit performance saturation at frequencies below the maximum possible for the 

processors due to the disparity between processor and memory speeds. Performance saturation is a sign of over-

provisioning and leads to energy-inefficient systems. Computers using heterogeneous processors, with the same 

ISA, but different implementation details, have been proposed as a way of reducing power while avoiding or 

limiting performance degradation. However, using heterogeneous processors effectively is complicated and requires 

intelligent scheduling. 

The research reported here explores the use of a heterogeneous system of processors with identical ISAs and 

implementation details, but with differing voltages and frequencies. The scheduler uses the execution characteristics 

of each application to predict its future processing needs and then schedule it to a processor which matches those 

needs if one is available. The predictions are used to minimize the performance loss to the system as a whole rather 

than that of a single application. The result limits system power while minimizing total performance loss. A 

prototype implementation on a Power4 four-processor system is presented. 

1. Introduction 

The primary design concern for processors has, until recently, been performance. As technologies continue to 

scale to smaller feature sizes and more transistors are placed on a die, power has also become a first order design 

constraint. Problems that have long fallen in the domain of small handheld devices are now faced by large systems. 

The details and focus may be different, but the underlying issues remain the same. While the primary problem for 

embedded and laptop computers is battery life and, thus, total energy consumption over time, the most important 

problem for servers and server clusters is maximum power [1]. Servers have limitations on their internal power-

delivery and cooling systems as well as site limits on the total power and cooling available in the external 



environment. Processor frequency and voltage scaling has been studied as a way to reduce processor power, which 

is often the most important contributor to system-level power consumption [1].  

However, dynamic voltage scaling comes at a cost – when the voltage is changed, some amount of processing 

time is lost as the voltage settles. Although settling times are getting smaller, they do place limits on the number of 

times the voltage may be changed in a given time period. For example, in a 1GHz system using a 10-millisecond 

scheduling quantum, no interruptions and a settling time of 30 microseconds, the performance loss due only to 

changing the voltage is negligible (~0.3%). In a system with interrupts, the actual effective time a task runs without 

interruption may be much shorter leading to larger performance losses (~1%) due to more voltage changes.  Actual 

performance losses may be much higher because some sort of monitoring and prediction is needed to accurately 

identify the appropriate voltage and frequency for each task in the system.  

This paper considers an alternate approach. Rather than identifying the desired frequency and changing the 

voltage and frequency to match, it investigates a simpler system with fixed frequencies and voltages. The processors 

in the system run at different, but fixed frequencies, and tasks are assigned to appropriate processors based on their 

frequency demands. This approach can be used to control maximum power dissipation in SMP servers and offers the 

possibility of a further extension to server clusters.  

Earlier work by Kotla, et al., [2] demonstrates that workloads vary in their level of memory intensity, both 

between different workloads and over their execution lifetimes. Given that secondary cache and memory 

performance are unaffected by processor frequency scaling, memory-intensive workloads exhibit performance 

saturation at a characteristic frequency related to their level of memory intensity. Raising the frequency above the 

saturation point yields no further benefit in performance. Figure 1 demonstrates this property for a simple 

benchmark with the ability to set the memory intensity via a command line argument to the benchmark. 

 Kotla’s work considered only a single application at a time and used post-processing to determine the most 

appropriate frequency for each task based on aggregate measures of the task over its lifetime.  This research instead 

extends the Linux operating system scheduler to dynamically monitor and place tasks in a heterogeneous system. 

The new scheduler is called the task-to-frequency scheduler (TFS). 
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Figure 1: Performance saturation with a synethic benchmark. Taken from Kotla, et. al [2]. 
The TFS may be considered an extension of traditional complexity-effective designs which respond to varying 

demands for the core and memory subsystems by reconfiguring components to meet current demand. The 

reconfiguration seen by a task is the selection of a frequency and subsequent scheduling to that frequency rather than 

a direct change in the features of the core. This approach to reconfiguration makes this work more similar to the 

recent work on general purpose heterogeneous processors than to traditional complexity effective designs. Like 

some recent work on heterogeneous processors ([4], [5], [6], [9], [10], [11]), this effort uses processors that have the 

same instruction architecture but offer different implementation characteristics including different performance and 

power levels by using different microarchitectures or different but fixed frequency and voltage settings. The 

research presented in this paper makes a number of contributions beyond the prior work in the area. 

• It uses the known phenomena of workload diversity and performance saturation along with the predictive 
performance model of Kotla, et. al[2] to determine the appropriate frequency setting for each task based on its 
observed behavior. 

• It introduces task-to-frequency scheduling. 
• It applies task-to-frequency scheduling rather than frequency and voltage scaling, to SMP servers. 
• It minimizes the overall system performance lost. 
• It reduces total power consumption of the system by using lower voltages and frequencies for some processors. 
•  

The results reported here represent a prototype implementation and its initial evaluation rather than a definitive 

study of the underlying ideas and techniques. 

2. Related Work 

This research extends the investigation that started in [2], but it draws upon other, related work in frequency and 

voltage scaling and designs with heterogeneous processors. The goal of the current paper is to offer a scheme that 



controls maximum power and minimizes average power by scheduling tasks to the appropriate frequency available 

in a system with processors using a small set of fixed frequencies and voltages.  

2.1. Dynamic Frequency and Voltage Scaling 
Transmeta’s LongRun [7] and Intel’s Demand Based Switching [8] respond to changes in demand, but do so on 

an application-unaware basis. In both schemes, an increase in CPU utilization leads to an increase in frequency and 

voltage while a decrease in utilization leads to a corresponding decrease.  Neither one makes any use of information 

about how efficiently the workload uses the processor or about its memory behavior. Instead, they rely on simple 

metrics like the number of non-halted cycles in an interval of time. 

Flautner and Mudge [3] explored the use of dynamic frequency and voltage scaling in the Linux operating system 

with a focus on average power and total energy consumption. They examined laptop applications and the interaction 

between the system and the user to determine the slack due to processor over-provisioning. They used frequency and 

voltage scaling to reduce power while consuming the slack by running the computation slower. Their Vertigo 

system dynamically uses multiple performance-setting algorithms to reduce energy. 

Elnozahy, et al. [15] extended the ideas found in Flautner and Mudge[3] to the domain of web server farms. They 

explore the use of DVS to respond to changes in server demands. They also examine the use of request batching to 

gain larger reductions in power during periods of low demand. The two techniques compliment each other, but 

neither provides a means to address peak power 

This work differs by responding to easily observed changes in memory subsystem demands rather than to changes 

in the CPU utilization metric. The latter approach takes advantage of system idle, while the former approach takes 

advantage of pipeline idle. Tasks are assigned to frequencies based on the characteristics of the memory subsystem 

accesses.  

2.2. Heterogeneous Processors 
The scheduling scheme described in this paper uses an environment in which an SMP server has heterogeneous 

processors that differ in frequency and voltage. Prior work on single-ISA, heterogeneous processors falls into two 

distinct categories. The first uses a processor family which may be run at the same frequency, while the second 

category uses a processor family which cannot be run at the same frequency.  

Single frequency heterogeneous processors have been studied by Kumar, et al. ([4], [5], [6]). Their work uses 

different generations of the Alpha processor family scaled into the same technology generation and run at the same 

frequency. The goal of the work is to minimize energy consumption while maintaining performance. The authors 



use a variety of metrics to identify which tasks should be assigned to which core, with all cores running 

simultaneously. Trial-and-error testing is used to identify the best-suited core. In contrast, this paper predicts 

performance to find the appropriate core. 

Ghiasi and Grunwald ([9], [10], [11]) explored single-ISA, heterogeneous cores of different frequencies for 

controlling the thermal characteristics of a system. Applications are run simultaneously on multiple cores and an 

operating system  component is introduced to monitor and direct applications to the appropriate task queues.  

This work uses a single generation in IBM’s PowerPC processor family, but the cores are run at different 

frequencies. It also differs from prior work by using a commercial product and direct evaluation of the proposed 

techniques on real hardware, rather than relying on simulation. 

2.3. Hardware Approaches 
There is some work other than that reported in [2] that attempts to manage power while minimizing performance 

loss by predicting the impact of the power-management actions on the performance. In particular, Stanley-Marbell, 

et al, [12], propose a hardware mechanism that does frequency selection based on predicted performance loss. Like 

this work, it makes use of the memory behavior of the workload to determine when the processor can run more 

slowly due to a heavy use of the cache and memory subsystem. It differs by virtue of its focus on microprocessor 

changes for the uniprocessing environment. The details of the performance model are also quite different since [12] 

works from processor/memory overlap values, which are generally unavailable on standard hardware, while the 

scheme presented here uses access counts. 

2.4. Performance Counter-based Scheduling 
Phase detection is important to any real world system which is designed to take advantage of the variability of 

applications. Sherwood, et al.[16] provides the most detailed analysis of phase detection, but their work uses offline 

phase analysis. They use different performance-related metrics and correlate them to different phases of a program. 

Dhodapkar and Smith [17] compared the use of working set signatures, basic block vectors and conditional branch 

counters and illustrated the tradeoffs between identifying stable phases and phase length. Dynamic phase detection 

is more prone to error and is not as well studied at the operating system level. The simple performance model 

developed here can be used for dynamic phase detection. 

Most recent work in the area has been on identifying threads to run simultaneously on multi-threaded systems via 

the use of core metrics accessible through performance counters. Snavely and Carter [18] used trial and error on a 

subset of possible application combinations to determine which applications can be run together with minimal 



impact on the Tera MTA. Snavely differs from most work in this area by performing experiments on commercial 

hardware. Kumar, et al, [5] also detects and responds to changes in behavior through the use of trial-and-error. 

Ghiasi [11] used temperature-defined phases, relying on simulated temperatures rather than performance counters to 

detect phases. 

3. System Design 

This work considers a multiprocessor system in which the different processors run at different, but fixed 

frequencies. The different processor frequencies are accompanied by different voltages since lower frequencies 

allow processors to run at lower voltages. The frequency set used by the processors may be changed by some 

external mechanism, and the TFS responds to the new frequency set.  

Although a server cluster is a form of multiprocessor, this paper concentrates on studying SMP systems, leaving a 

detailed investigation of clusters to future work.  A simple example of the type of heterogeneous system studied here 

is shown in Figure 2. The original system is composed of N processors, all of which use the same voltage and 

frequency. The heterogeneous system is composed of the same N processors, but each processor may have a 

different frequency and voltage. At each frequency, the minimal voltage necessary to reliably drive that frequency is 

chosen. For this paper, the frequencies and voltages are fixed. In a more general system planned for the future, the 

frequencies and voltages are not permanently fixed. Instead, the frequency and voltage set might occasionally 

change in response to large-scale changes in system demands as well as changes in power constraints which force 

changes in frequencies, or even changes in environmental conditions such as temperature. 

On a system with processors at different frequencies, a mechanism is needed to determine which frequency to 

assign for each task. This section presents a methodology for predicting the performance impact of the different 

possible frequency settings, given counts of the cache and memory accesses, and then using the predictions to guide 

the assignment of tasks to frequencies in order to meet power constraints and reduce performance loss. 
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Figure 2: Heterogeneous Multiprocessor System 

3.1. Performance Saturation 
The reason that it is often possible to use a lower processor frequency is that some workloads cannot make use of 

all of the available frequency due to the latencies associated with cache and memory accesses. This phenomenon is 

referred to here as performance saturation.  Even when the maximum power constraint is severe enough to require 

some performance penalty for all tasks, it is generally possible to take advantage of performance saturation to 

minimize the overall performance penalty of the power-management action. The intuition is that many programs 

obtain a limited benefit from increasing processor frequency due to the slow speed of memory relative to the 

processor. Thus, at some point the speed of a program making memory references is limited by the speed of the 

memory. The ratio of memory-intensive to CPU-intensive work in a workload determines the saturation point as 

illustrated for a simple synthetic program by Figure 1. Each task in the system has different characteristics and a 

different saturation point. The saturation point may change during the lifetime of a task as the task itself changes 

phases. 

3.2. Predicting Performance at Frequency f 
The system under consideration has a small number of fixed frequencies. To predict the performance impact of 

running task A at frequency B, some method of projecting future processing needs must be used. Kotla, et al.[2], 

proposed a simple mechanism for predicting the observed instructions per cycle (IPC) at different frequencies. 

Existing processor hardware, such as that found in the IBM Power4, has performance counters which may be 

utilized by a task to frequency prediction mechanism. The counters are used to track the number of accesses made to 

each level of the memory hierarchy in during a full scheduling quantum. A more direct method is to count the 



number of cycles stalled due to outstanding memory references, but many processors, including those of the 

experimental platform used in this study, do not have such a counter. 

To do the IPC projection, the performance model breaks the IPC into frequency-dependent and frequency-
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is a task-phase specific constant that takes into account both the instruction-level parallelism of the workload and the 

processor resources available to extract it. 

 

 

 

Each Nx is a count of the number of occurrences of a particular type of cache or memory reference, as provided by 

the performance counters, each Cx is the number of processor cycles per reference and each Tx is the time consumed 

by each reference.  

Tx is pre-determined for the particular processor. The equation assumes that the Tx values are all truly constant. In 

reality, this is not true and is a source of error, but in practice it does yield a reasonable approximation for the 

purpose of frequency and voltage scheduling. The reason that this assumption is not valid is due to differences in 

accessing different ranks of memory as well as the latency masking effects of pre-fetching and the effects of 

overlapping memory accesses. Two possible techniques have been studied to compensate for this shortcoming. The 

first technique, proposed in Kotla, et al.[2], requires running each task at two frequencies and then finding the 

solution to a linear equation. The second uses the minimum and maximum observed latencies to provide fuzzy 

boundaries for each prediction. Performance is predicted using both latencies. If the required frequency is different 

using the two latencies, the faster frequency is chosen as the desired frequency. The second technique is used in this 

work. Comparing the two methods is beyond the scope of this paper. 

At any given frequency, the previous equation can be used to predict the IPC at another frequency given the 

number of misses at the various levels in the memory hierarchy as well as the actual time it takes to service a miss. 

This provides a mechanism for identifying the optimal frequency at which to run a given phase with minimal 

performance loss. As expected, the more memory-intensive a workload is, as indicated by the memory subsystem 

performance counters, the more feasible it is to schedule the work to lower frequency and voltage processors to save 

power without impacting overall performance. 
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Rather than calculating the IPC at a given frequency f, the PerfDelta(f,g) equation can be rewritten to instead 

solve for the ideal frequency, given the predicted performance at the maximum frequency, the performance counter 

data at the current frequency and a measure of the maximum performance loss the system will tolerate. The 

calculation of ideal frequency, fideal, is used as part of the TFS. It is possible to calculate Perf(f) at each available 

frequency in the system, but this alternative approach is limited to systems with fixed, known frequencies and a 

relatively small set of such frequencies. In the following, fmax is the nominal maximum frequency for the processor 

family and ε is a small constant indicating the amount of performance loss the system will tolerate. 
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3.3. Calculating Performance Loss  
The implementation or the capacity of the system may be such that it is not possible to schedule all tasks at their 

desired fideal. In such situations, it is necessary to make reasonable scheduling decisions based on additional criteria. 

The criteria used here are the performance loss and priority of the tasks under consideration.  

The predicted IPC can be translated into a more meaningful metric for calculating the performance loss of task t at 

frequency f. Rather than working directly with the predicted IPC, the predicted throughput at frequency f and fmax 

are used.  Throughput is used as the metric of performance when attempting to minimize performance loss, as 

defined by the next two equations. Here throughput performance is the produce of IPC and frequency while 

performance loss the fraction of the performance lost by running at the same work at a different frequency. The idea 

behind the use of throughput can be seen in Figure 1. Performance saturated tasks gain nothing from the increase in 

frequency which will be reflected by a constant throughput value.   

max

max

( , ) ( , )
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( , )
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−
=  

3.4. Minimizing Performance Loss 
Performance loss estimates for individual tasks can be used to minimize the performance loss of the system as a 

whole. Any particular task may suffer  a performance loss, but as long as the system incurs the least possible 



performance loss under the current frequency constraints the situation is acceptable. The total performance loss is 

the sum of the performance loss of each task scheduled at each frequency. If the possible frequency settings are F = 

f0, …,fm,  where fm <= fmax, then 
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The minimum performance loss can be found by considering all possible combinations of tasks and frequencies. 

Each task is considered at each available frequency. However, this approach has a number of shortcomings. The first 

is that the algorithm necessary to study all possible combinations is computationally prohibitive for use in a kernel-

based scheduler. This issue is address in Section 4. Another problem is that the TotalPerfLoss metric described 

above does not take into account the different priorities of tasks in the system. A high priority task may itself suffer 

a small performance loss, but the impact of that lost performance may be felt elsewhere. To alleviate this problem, 

TotalPerfLoss can be modified to take into account the priorities of the tasks involved: 
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4. Scheduling Algorithm 

The scheduler in Section 3.4 cannot be implemented in a fixed resource, time-critical kernel scheduler. It would 

require the entire system partitioning to be recalculated every time some characteristic of the system changes. This 

would include new phase behavior of a task, new tasks entering the system and old tasks leaving the system. The 

original minimum-combination algorithm requires  

!
( )

!( )!

T
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M T M−
 

where T is the number of tasks in the system and M is the number of possible frequencies at which those tasks 

may be placed. 

It is possible to take into account features of the system to find less computationally intensive algorithm that will 

produce the same results. The discussion below uses the following terminology: 
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4.1. Initialization Phase Algorithm 
The current implementation of TFS is broken down into two main phases. The initialization phase uses the 

algorithm in Figure 3. The initialization phase requires 2( )O MT  time to identify the optimal task placement. The 

algorithm uses insertion sort to place tasks and the worst case occurs when all tasks are originally allocated to the 

fastest frequency. Less computationally intensive algorithms exist, but were not used here due to the generally small 

number of tasks in the system. 

The process begins by tracking the performance counters for all the n. The initialization algorithm is invoked 

either during initialization or when the balancing algorithm used in the second phase fails to find a reasonable task 

schedule. 

The first step involves calculating the ideal frequency for each task in the system as well as the maximum possible 

performance. Since fideal is unlikely to be available, fdesired is found and used throughout the rest of the calculations. 

The performance at the fdesired as well as the performance and performance loss at fdown are also calculated.  As 

these calculations are performed, each task is inserted into a frequency bin sorted by the performance lost at fdown.  

After fdesired and the associated performance metrics have been calculated, it is possible to identify an optimal task 

schedule for the system. The task schedule is built using the same fairness principles used by the standard Linux 

scheduler. This leads to the requirement that each frequency bin have the same number of tasks assigned to it. Each 

frequency bin, beginning with the fastest frequency, is considered in turn. Each bin may be in one of three possible 

states: (1) the number of tasks assigned to the bin equals the number of available slots in the bin; (2) the number of 

tasks assigned to the bin is less than the number of available slots in the bin; (3) the number of tasks assigned to the 

bin is greater than the number of available slots, In case (2), tasks are stolen from fdown until the bin is at capacity. In 

this case, the tasks at fdown which would suffer the largest performance loss at the next lower are the tasks chosen to 

fill the remaining available slots at the current frequency. In case (3) TFS has to give away tasks until the number of 



tasks in the frequency bin is reduced to the capacity of the bin. Tasks which would suffer the least performance loss 

at fdown are migrated to the fdown bin.  

A number of additional details must be filled in for all the tasks, whether or not they were moved. To improve the 

performance of the balancing phase, the performance and performance loss at the fdesired,  fup, factual and fdown  are 

monitored.  

 

Figure 3: Initial Task Placement Algorithm. 

4.2. Balancing-Phase Algorithm 
The Linux 2.6.7 scheduler upon which TFS is based performs load balancing every 100 milliseconds. The load 

balancer in Linux essentially balances the number of tasks assigned to each processor.  TFS replaces the load 

balancer with a more complicated algorithm that takes into account the performance loss of scheduling tasks at a 

frequency less than fdesired as well as the number of tasks assigned to each processor.  

The initialization phase performs many calculations that may not be necessary each time the some characteristic 

of the system changes. The balancing-phase algorithm is takes advantage of this behavior to minimize the number of 

calculations and comparisons which must be performed. In the worst case, it defaults to the initialization phase, but 

its average case behavior is much better. It too has 2( )O MT time but, on average, many fewer tasks are moved and 

Start with some set of tasks assignments and a running system with an 
ordered set of known frequencies, f in F 

 
for all tasks 
 calculate PerfMax, fideal 
  find fdesired, f closest to fideal from set F 
  calculate Perf at fdown 
  calculate PerfLossDown  
  place into fdesired bins (sorted by PerfLossDown ) 
 
//load balance  
for each f  bin{ 
 start at f = fm 
 for all tasks in f  bin { 
  if tasks in f bin = number of available slots (T/M) 
   allocate tasks to queues 
  if tasks in f bin < number of slots (T/M) 
   borrow tasks from fdown until bin is full 

give priority to tasks which suffer the most performance loss 
at fdown 

  if tasks in f bin > number of slots (T/M) 
   move tasks to fdown until  f  bin is at full 

move tasks which suffer the least  performance loss at fdown  
  if a task is kept in the current bin 

update TotalPerfLoss for the current bin  
 } 
 Move to the fdown bin 
} 

 



fewer operations are performed. The balancing-phase algorithm is based heavily on the notion of performing small 

local minimizations in order to keep the overall minimum small. 

Once the system has had its initial task placement schedule identified, the TFS continues to monitor the 

performance counters for each task in the system. At the end of every scheduling quantum, fdesired is recalculated. If 

it has not changed and the other performance characteristics such as the IPC, and number of memory references 

remain approximately the same, then nothing is done with the current task. If TFS detects a change in the task, the 

task is treated more carefully. The new characteristics, particularly fdesired and the new performance loss metrics, are 

updated and the task is re-inserted into its new position in its current bin. Load balancing occurs more infrequently 

than scheduling quanta and tasks may be moved only during load balancing. 

The balance-phase algorithm is presented in  

Figure 4. Processing begins at the lowest frequency bin in order to percolate resource-needy tasks to faster 

frequencies. In each frequency bin, all needy tasks are considered. The TFS first checks the fdesired bin to see if there 

is a task which would suffer less performance loss at the current frequency than the needy task. If such a task exists, 

the swap is performed, and the performance metrics are updated.  

If no such task exists at fdesired, the TFS instead searches the fup bin to identify which task would be best suited 

for swapping positions with the current task. In this case, the task at fup which would suffer the largest performance 

loss that is less than the performance loss of the current task at the current frequency is chosen if there is more than 

one task which would like more resources. If this is not the case, then the smallest performance loss is chosen. The 

reason for choosing the largest performance loss that is less than the current performance loss when additional tasks 

need to move is to make sure that additional tasks may be able to move. If the smallest performance loss is taken, 

subsequent tasks may not be able to move even though they would have been able to if a different original task was 

selected. 

If the total performance lost becomes too large, the initialization algorithm is invoked again and the system is 

recalibrated to the new total performance loss bounds set by the new partitioning. 



 

Figure 4: Balancing Phase Algorithm 

5. Prototype Implementation 

To evaluate the TFS proposed in Section 4, the authors implemented a prototype version on an IBM pSeries 

system running Linux. The prototype runs on a single SMP. The details of the experimental environment are given 

in the next section. 

The prototype relies on an approximation of frequency scaling and cannot actually scale voltages. The underlying 

hardware provides mechanisms for throttling the pipeline using by interspersing the dispatch, fetch or commit cycles 

with dead cycles. Since the hardware does not currently support kernel-directed frequency scaling, fetch throttling is 

used to mimic the effects of frequency scaling. Experimental data indicate that it provides a good approximation to 

frequency scaling, even though the remainder of the pipeline continues processing during fetch-throttled cycles. 

Start with set of task assignments and running system with an 
ordered set of known frequencies, f in F  
 
//load balance 
for each f  bin{ 
 start at f = fm 
 for all tasks in f bin { 
  if tasks in f bin = number of available slots (T/M) 
   allocate tasks to queues 
  if tasks in f bin < number of slots (T/M) 
   borrow tasks from fdown until bin is full 

give priority to tasks which suffer the most performance 
loss at fdown 

  if tasks in f bin > number of slots (T/M) 
   move tasks to fdown until f bin is at full 

move tasks which suffer the least  performance loss at fdown  
  if a task is kept in the current bin 

update TotalPerfLoss for the current bin  
 } 
 Move to the fdown bin 
} 
 

start at the slowest bin 
for all frequency bins 
 for all tasks at current frequency that benefit from higher 
frequency 
  for all tasks at fdesired{ 

   if (task at fdesired wants current frequency) 
   swap tasks, placing in correct order 
   continue with the next task in the current bin 
 } 
 for all tasks at frequency one faster than current{ 
  if (task would suffer less performance loss at the  
   current frequency than current task) 
   swap tasks, placing in correct order 
   continue with the next task in the current bin 
 } 
move to next bin 
} 



Throttling can be used to cover the entire range from 0% frequency to 100% frequency. This work assumes 

throttling yields the same power and performance results that using different frequencies for the processors would 

but ignores the settling time. In other words, if feff is the effective frequency, fnominal is the nominal frequency, and 

throttle is the throttling percentage, expressed as a decimal, then feff = throttle x fnominal. Although not completely 

accurate, microbenchmarks indicate that this is a reasonable first approximation on the hardware used in the 

experimental studies. 

The Power4+ processor used in the current generation of pSeries machines provides the required performance 

counters for cache and memory accesses. These counters are accessed and stored as part of the context switch. The 

TFS collects the performance-counter data on each context switch and updates performance metrics at the 

completion of each scheduling quantum. The TFS has associated kernel support that generates both scheduling and 

counter logs that provide performance and frequency information to allow for post-processing analysis. Due to the 

limitations of the hardware, the program does not do any voltage calculations or detailed power computations. 

However, the data collected is sufficient to allow one to do post-processing to determine the amount of power that 

would have been saved as well as the maximum power and the overall impact on system performance. 

6. Evaluation Methodology 

To determine the practical value of the TFS mechanism proposed in the previous sections, the authors ran a 

number of experiments. This section describes the experimental platform, the metrics used to evaluate the 

benchmark results and the benchmarks themselves. 

6.1. Experimental Platform 
The experiments described in this paper were performed on an IBM PowerPC-based pSeries P630 [14] system 

consisting of 4 1GHz Power4+ cores operating at a core voltage of 1.3 volts. Each core has a private 32 KB L1 

instruction cache and a 64 KB L1 data cache. Two adjacent cores share a unified 1.44 MB data cache as well as a 32 

MB L3. The machine has 4 GB of main memory. Using experimentation, it was determined that the nominal latency 

to the L1 cache is 4-5 processor cycles, the latency to the L2 cache is 12-20 cycles, the latency to the L3 is 100-150 

cycles and that to memory is 350-400 cycles, and these are the values used by the scheduling implementation. 

Although they agree reasonably well with other reported values for the same hardware, they are, in fact, dependent 

on the way in which the measurement program accesses the caches and memory. The experimental platform runs 

Gentoo Linux with a 2.6.7 kernel with modifications to support CPU throttling. The scheduler and task structures 



have been modified to support TFS. It is very important to note that the prototype runs on a real system in which no 

effort has been made to reduce the number of tasks present. TFS was responsible for tracking and scheduling 

approximately 80 tasks when the pSeries P630 was idle. The number of tasks in the system can increase 

dramatically when under heavy load. 

 Table 1 shows the frequency set used in the prototype system. Reduced frequencies and voltages for some 

processors in the system lead to a lower maximum total power. The power numbers are derived from IBM’s Lava 

power-estimation tool. 

Original  Heterogeneous   

P0-P3 P0 P1 P2 P3 
Frequency  (MHz) 

1000 
1000 950 900 800 

Power  (Watts) 130 130 110 95 75 

Maximum Power 
(Watts) 

520 420 

Table 1: Frequencies and estimated power values for the heterogeneous prototype system. 
 

ε was selected to be 0.01 for all experiments. Smaller values of ε indicate a system less tolerant of performance 

loss, while larger values indicate more performance loss is acceptable. An ε of 0.01 indicates that a task may lose no 

more than 1% of its performance when identifying the ideal frequency. 

6.2. Benchmarks 
This work is a preliminary study of using prediction to guide tasks to fixed frequencies while minimizing 

performance loss. To allow for a controlled study of the scheduling scheme, the first evaluation reported here uses 

with the synthetic benchmark from [2], which allows one to measure the performance variability of a program with 

an adjustable ratio of CPU-intensive to memory-intensive operations. The synthetic benchmark is a single-threaded 

program that accepts parameters that determine the ratio of memory-intensive to CPU-intensive as well as the length 

of phases. It currently supports two (2) phases, but the phases may be of different lengths and different memory-to-

CPU intensity. It is constructed so that a miss in the L1 is highly likely to result in a memory access due to the large 

memory footprint. The program reports its performance in terms of throughput from its phases.  

Although this synthetic benchmark provides a basic evaluation of TFS, it does not give a sense of the scheduler’s 

behavior on more realistic workloads. Thus, this paper also includes results on a selected set of additional, standard 

benchmarks. The benchmark set includes three CPU-intensive benchmarks from SPECCPU2000, gap, gzip, and 



parser, as well as three memory-intensive benchmarks, equake and mcf from SPECCPU2000 and health from the 

Olden benchmark suite.  

7. Experimental Results 

The synthetic benchmark was studied initially because it provides a controllable benchmark for experimentation. 

The benchmark was configured in a number of different ways, each of which exposes different characteristics of the 

underlying TFS.  

7.1. Stability and initialization 
The first experiment performed with the synthetic benchmark consisted of running the benchmark at different 

fideal. Target fideal were identified offline by using the data from previous characterization experiments.  The 

benchmark was then run in the same configuration that generated the target fideal. The experiment exposes stability 

and initialization characteristics of TFS. XXX indicates the stability of the TFS scheduler and highlights the 

problems with initialization. The frequency settings of the processors were conservatively chosen to minimize the 

potential for performance loss. This is reflected in the fact that in the situations where there are additional nearby 

frequencies, the task is sometimes assigned to those frequencies. A larger delta between available frequencies would 

reduce this problem, but other methods are also available, including a variant of processor affinity that is managed 

by TFS. This suggestion has not been implemented for this work, but it would enhance task-to-frequency 

assignment stability.  The low frequency fideal cases illustrated a different, but more tractable problem. In these 

cases, any time the task spent assigned to a processor other than 800 MHz occurred during the initialization phase.  

Because initialization behavior can be highly variable 

8. Conclusions and Future Work 

TFS is a task-to-frequency scheduler for a computing environment that uses processors with the same ISA but 

operating at different frequencies and voltages. It can be used to keep the total power of the processors below a 

defined limit and minimizes average power with minimum loss in total system performance. The authors evaluated a 

prototype implementation of TFS on commercial hardware using both a synthetic, controllable benchmark as well 

as a set of standard benchmark programs. 

Although this is a preliminary study, TFS shows promise as a practical way of using heterogeneous processors 

without incurring severe performance penalties. However, there are several important questions that remain to be 

explored. First, TFS needs to be evaluated using a wider set of benchmarks. Second, the current prototype does not 



react to changes in the frequency and voltage set that may occur due to changes in the available power and cooling 

for the system. Third, the ideas behind TFS have application to clusters where the different machines have 

processors running at different speeds, but there is currently no implementation on clusters and no evaluation of how 

TFS would behave in such an environment. Fourth, the problem of non-constant memory latencies deserves more 

study. With better hardware instrumentation or more careful software data collection, one can potentially extend 

TFS to adapt to changing memory latencies. 
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