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Abstract 

Most of the best translation systems today 
are based on phrase translation pairs (i.e. 
“blocks”). The blocks are obtained from 
word alignment.  In this paper, we use 
blocks to improve word alignment.  Im-
proved word alignment in turn leads to 
better inference of blocks. We propose 
two new probabilistic models and EM-
based algorithms to estimate their pa-
rameters. The first model recovers IBM 
Model-1 as a special case.  Both models 
outperform bidirectional alignments based 
on HMM or IBM Model-4: up to 10% ab-
solute improvement in Chinese-English 
word alignment over GIZA Model-4 bidi-
rectional alignment.  Using blocks ob-
tained from the proposed models, we also 
get statistically significant improvement 
in BLEU on NIST MT-03 test set. 

1 Introduction 

Today’s state-of-the-art statistical machine transla-
tion systems use phrase translation pairs 
(“blocks”).  Here, phrase is simply a contiguous 
sequence of words. Blocks are obtained automati-
cally from pairs of sentences that are translations 
of each other.  This block extraction is based on 
underlying alignment of words between the paral-
lel sentences.  Therefore, word alignment is fun-
damental to statistical machine translation. It is 
also challenging in that automatic word alignment 
accuracy is not yet close to inter-annotator agree-
ment – at least in some language pairs: for Chi-
nese-English, inter-annotator agreement is in the 

90’s (F-measure) whereas Model-4 or HMM accu-
racy is in the 70’s.   

Word alignment traditionally is based on IBM 
Model-1 to Model-5 (Brown, et.al. 1993) or Hid-
den Markov Models (Vogel, et.al. 1996). HMM-
based alignment assumes that words “close-in-
source” are aligned to words “close-in-target”.   
While this locality assumption is generally sound, 
HMMs do have limitations:  the self-transition 
probability of a state (word) controls only the dura-
tion in the state: the length of the phrase aligned to 
the word.  But there is no natural way to control 
repeated non-contiguous visits to a state.  For in-
stance, when there is a single comma in the Eng-
lish sentence and there are three commas scattered 
in the Chinese sentence (“observation”), HMM 
models incorrectly align all the Chinese commas to 
the English comma.   However, HMMs are attrac-
tive for their speed and reasonable accuracy. 

In this paper, we study another way of localizing 
alignments.  We use blocks to achieve locality in 
the following manner:  a block in a sentence pair is 
a source phrase aligned to a target phrase.  But we 
assume that words in the source phrase cannot 
align to words outside the target phrase and that 
words outside the source phrase cannot align to 
words in the target phrase.   

Furthermore, a block divides the sentence pair 
into two smaller regions: the inner part of the 
block, which corresponds to the source and target 
phrase in the block, and the outer part of the block, 
which corresponds to the remaining source and 
target words in the parallel sentence excluding the 
block. The two regions are non-overlapping, and 
each of them is shorter than the original parallel 
sentence pair. It is easier to align shorter sentence 
pairs.  We can carry out the alignment for each of 
these smaller sentence pairs (e.g. using IBM 
Model-1), collect the fractional counts from them, 
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We do not allow alignment to cross the region 
boundaries.  This is our proposed new localization 
method.  

and weigh the counts by the posterior probability 
of the block.   

In the above, we used a single block to split the 
sentence pair into two regions.  But it is not clear 
which block we should pick for this purpose.  We 
treat the splitting block as a hidden variable.    This 
approach is far simpler than treating the entire sen-
tence as a sequence of phrases and considering 
such segmentation as a hidden variable. It is also 
simpler than segmenting the sentence pair into 
non-overlapping block sequence as in (Marcu and 
Wong, 2002). 

 
Figure 1. A block induces segmentation. 

The paper is organized as follows:  Section 2 
formally introduces the segmentation induced by a 
block.  Section 3 describes our new models, Inner-
Outer Bracket Model-A and the Inner-Outer 
Bracket Model-B, together with a new Null-word 
model.  Section 4 describes a maximum posterior 
search for word alignment.  Section 5 presents our 
experimental results and Section 6 the conclusions. 

3 Inner-Outer Bracket Models  

As introduced in the previous section, each block 
is a local constraint for the alignment decisions. If 
the block is reasonably good, we can expect better 
word alignment. We treat the constraining block as 
a hidden variable in a generative model as shown 
in Equation 3. 
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2 Segmentation by a Block 

We use the following notation throughout the pa-
per:  E denotes the English sentence and F denotes 
the foreign-language sentence. The English sen-
tence is indexed with i , with sentence length of I, 
and the foreign sentence is indexed with j, with 
sentence length J; e is a word in E and f a word in 
F; A is the alignment vector with aj indicating the 
position of the English word to which fj connects. 
We therefore have the standard limitation that one 
foreign word cannot be connected to more than one 
English word. 

where  is one bracket in English sentence; 
is a set of projections of B  in the foreign  

sentence, and  is one such projection.  
is a monolingual bracketing model,  and 

 is a generative model which im-
plements the inner-outer constraint in the genera-
tion process. Two different interpretations of 

 result in two sub models described  
below. 
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A bracket is a pair of indices specifying a span 
of contiguous positions in the sentence.   3.1 Inner-Outer Bracket Model-A 

],[)( rightleftE iiEBracketB ==  
],[)( rightleftF jjFBracketB ==  (1) The first simplified model assumes 

that the inner part and the outer part are generated 
independently:  

),|,( EBBFP EF

We define a block as a pair of brackets:  one 
bracket in English sentence together with its pro-
jection in the foreign sentence, which is also a 
bracket.   
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BE segments E into two parts: the inner part 

, and the outer part [  ∪ . 
B

],[ rightleft ii ),0 lefti ],( Iiright

F segments F similarly. The block splits the paral-
lel sentence pair into two non-overlapping regions: 
Inner and Outer parts.  Figure 1 shows such a seg-
mentation of the parallel sentence by one block, 
and the resulting inner and outer parts.  
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{aa Λϖ=  is the word alignment vector, 
which is the other hidden variable in our model. 
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where λ  is the normalization factor. 
For simplicity, we can assume IBM-Model-1 

alignments for both inner and outer parts as in 
Equation 5: In principle, BE can be a bracket of any length 

not exceeding the sentence length.  If we restrict 
the bracket length to that of the sentence length, we 
recover IBM Model-1. In practice, the length of BE 
is limited to 4 or 5 words.  
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(5) 

Figure-2 illustrates the generation process for 
Inner-Outer Bracket Model-A. Equation 4 shows a bracket segments F into 

two non-overlapping regions:  inside(B
FB

F) and out-
side(BF), and they are generated independently.  

 

The next independence assumption comes from 
the English side, where we assume the English 
words inside the block  can only generate 
the words in , and nothing else; likewise 

 only generates F . In Equation 5, 
for a particular B

)( EBinsideE

(Boutside
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)( FBinside
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)F

F, if BE is too small, 
 will suffer, and if BE is too 

big will suffer. Overall, our 
proposed model in Equation 4 and 5 combines both 
costs, and requires both inner and outer parts to be 
explained well at the same time. 

( Figure 2. Illustration of generative Model-A 

3.2 Inner-Outer Bracket Model-B 

Starting from Equation 2, we can go one step fur-
ther to re-write  by first explicitly 
predicting the projections for the given English 
bracket as shown in Equation 6. 
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We can simply apply IBM Model-1 shown as in 
Equation 5 to model both P  
and , and the key E-step 
computations are shown as follows: 
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Here, the model first generates the brackets for 
English sentence, and then generates the bracket’s 
projections. The projection is a bracket in the for-
eign sentence expressed by the left and right 
boundaries  in the foreign sentence.  
This can be equivalently defined as the center and 
width of the bracket: ( . We assume 
that center and width can be predicted independ-
ently.  The width usually depends on the length of 
the English bracket, while the center is usually de-
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In M-step, we collect all the fractional counts 
and normalize them to update the parameters as 
shown in the following equation:  



pendent on the translational equivalence of the 
English bracket  and its projection . 

),,|( EBBFP EF  is the alignment model, and 
can be approximated as in Equation 7: 
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Inner-Outer Bracket Model-B avoids the burden 
of predicting links in the outside part of the block. 
In this way, it saves some computation, and practi-
cally the model is more focused on the predictions 
of the inner part of the block. 

 The EM training is straightforward. The E-step 
is very similar to Bracket Model-A, as shown in 
the following equations: 
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Modeling  can be very dif-
ficult and complicated. Theoretically, any reason-
able score function can be used. To simplify the 
computation, we first compute the expectations of 
the center and width, and then apply a local greedy 
search over all the neighboring candidates close to 
the computed expectations. If only the top choice 
from the greedy search for the center and width is 
chosen, then the posterior is also simplified as 

.   

),,|( EB BEFcenterP
F

0.1) =EB,,|( F EFBP
The expectation of widthF depends on BE’s 

width and the fertilities of English words in BE.  In 
our case, the expected width is computed as in 
Equation 8. 

EEE BBwidthEBEFwidthE ⋅== γ)|(),,|(  (8)

where γ  is the phrase length ratio, which is ap-
proximated as the sentence length ratio computed 
from the whole parallel corpus. For Chinese-
English in our case, γ  is set as 1/1.3 (0.77).  

The expectation of centerF is computed as in 
Equation 9:  
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where j is the position in the foreign sentence, and 
the expectation is a weighted average of the ex-

pected centers from all the individual English 
words in the bracket of BE. 

Given the expected center and width, which is a 
good starting point to compute the left and right 
boundaries, we do a local greedy search for the 
final best projection for the given English bracket 
BE as shown in the following table. 

 

For left=center-width; left <=center+1; left++, 
For right=center-1;right<=center+width;right++ 
      Score=  
             ;  )|()|( )()()()( EFEF BoutsideBoutsideBinsideBinside EFPEFP

      Record the best score and its boundaries; 
   end 
end 
Retrieve the best score and the 
   corresponding left and right boundaries. 
Table 1. Local Greedy Search for Bracket Boundaries 

 

In this strategy, one can choose Top-1, which 
corresponding to the Viterbi search, and the poste-
rior is 0.1),,|( =EF BEFBP

),, EBEF

; One can also choose 
Top-N candidates of the projections from this local 
greedy search, and normalize over these choices, 
one can also get estimations of the posterior of 

. |( FBP
The M-step is similar to Bracket Model-A, but 

with different interpretations for sub-models. It is 
essentially a normalization of the fractional counts 
collected from the E-step. 

Figure-3 illustrates the generation process for 
Inner-Outer Bracket Model-B. 

 
Figure 3. Illustration of generative Model-B 

3.3 A NULL Word Model  

The null word model enables words to be aligned 
to nothing. In the traditional IBM models, there is 
a universal null word, which is attached to every 
sentence pair to compete with the word generators 



in the training. This universal null word is too gen-
eral to be effective for null links. 

In our inner-outer bracket models, we propose a 
context specific null word model, which uses the 
left and right context as competitors in the genera-
tive process for the current word.  We show the 
equations for P(E|F) with the left context for sim-
plicity, and P(F|E) is similar.  
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The above equation is expanded by the left context 
, which competes with foreign words to gener-

ate the current word . The null word model is 
now . With it, we can use heuristics 
to infer which bracket the current word is in, and 
if its alignment is too far away from the center of 
that bracket, then the alignment link for  will be 
dropped (i.e. a null link).  
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4 A Max-Posterior for Word Alignment 

A maximum-posterior method is shown to be ef-
fective in (Ge, 2004). We also applied it in both 
our baselines and proposed models to infer word 
alignment. This method can be applied to any ma-
trix besides posteriors such as HMM or our pro-
posed Inner-Outer Bracket Models.  

Let the words in the foreign sentence be the set 
of states S and the words in the English sentence 
be the set of observations O. The posterior prob-
abilities P(s|o) (i.e. state given observation) are 
obtained after the forward-backward training.  The 
maximum-posterior word alignments are obtained 
by computing 

)|(maxarg* OsSPS tst

ρ
==  

where t is chosen globally over the entire posterior 
matrix.  In V terbi alignments one computes ρρi

)|,...(maxarg 1
* OSSPS T=  

that is, the best state sequence given the observa-
tion.  In contrast, the maximum posterior computes 
the best state one at a time.   

Once we find the maximum in the matrix, we 
also know the corresponding state and observation 
(St, Ot), which is nothing but the word pair (ei, fj).  
We’ll then align the pair and continue to find the 
next posterior maximum.  The process is repeated 

until either every word in one (or both) language is 
aligned or no more maximum can be found, 
whichever happens first.   

We also observe in parallel corpora that when 
one word translates into multiple words in another 
language, it usually translates into a phrase, i.e. a 
contiguous sequence of words. We therefore im-
pose this contiguity constraint on word alignments. 
When one foreign word aligns to multiple English 
words, the English words must be contiguous in 
the sentence.  The procedure to find word align-
ments is as follows. Given a parallel sentence pair 
[E, F] with lengths I and J, let  A be an alignment 
matrix with J rows and I columns. 

 

clear A 
while  (f = St

*) { 
     if  (f is not aligned) align(f, et) 
     else if  (et is contiguous to what f is aligned to) 
           align(f, et) 
     } 
} 
return A 

Table 2. A Max-Posterior for word alignment 

5 Experiments 

To evaluate our proposed models’ performance, 
we run both word alignment experiments and ma-
chine translation experiments using these align-
ments.  Our experiments are carried out on 
Chinese-English language pair. 

For word alignment, there are 260 hand-aligned 
sentence pairs labeled by eight bilingual speakers. 
There are total 4676 word pair links in this gold 
standard set. We have one-to-one, one-to-many, 
and many-to-many alignment links. If the link has 
one target spontaneous word (in our case, the tar-
get is English), it is considered as a spontaneous 
link.  We report the overall F-measures as well as 
F-measures for both content and spontaneous word 
links, as also suggested in (Ahrenberg, et.al. 2000).  
Our significant test shows a confidence interval of 
+/-1.56% F-measure at the 95% level, and our 
bootstrap significant test using 200 batches, 13 
sentences per batch (sampled with replacement 
from the data) gives +/- 0.61% as the interval.  

We prepared two sets of data. The small training 
set has 5K sentence pairs, which is a selection of 
XinHua news stories sentence-aligned by a human 
annotator.  It has 131K English words and 125K 



Chinese words1. The large training set has 181K 
sentence pairs (5K + 176K), and the additional 
176K sentence pairs are from FBIS and Sinorama 
provided by LDC, which has 6.7 million English 
words and 5.8 million Chinese words. It turns out 
that the 5K subset does not matter in the large set-
ting. 

To train our models, we run 5 iterations of HMM, 
and then load the trained P(f|e) to initialize our 
proposed inner-outer Bracket models. 15~20 EM 
iterations are carried out to estimate our model pa-
rameters. The very initial iteration starts from the 
fully aligned2 sentence pairs, which has a F-
measure of 9.28%.  

Figure 4 shows the performance of Inner-Outer 
Bracket Model-A (BM-A) over EM iterations. 
Top-1 means we only collect fractional counts 
from Top-1 projection for each given English 
bracket. Top-all means we collect fractional counts 
from all the possible projections for the given 
bracket.  Inside means the fractional counts are 
collected from the inner part of the block only, and 
outside means collecting the counts from outer 
parts only.  From Figure 4, using Top-1 projection 
from the inner parts of the block gives the best per-
formance. The peak performance for BM-A is 
achieved at iteration 5 at an F-measure of 72.29%, 
about 7.5% improvement over the strongest base-
line, and is statistically significant. 

5.1 Baseline Systems  

Our baseline is our implementation of HMM with 
the maximum-posterior method for inferring word 
alignment.  IBM Model-4 is trained using 
GIZA++, of which we follow the best reported 
settings in (Och , Ney 2003), and tuned a few pa-
rameters including maximum fertility, and smooth-
ing factors for up to IBM Model-4. We collect two 
directions of the alignments, get the intersections 
and fill in the gaps with heuristics of looking at 
neighbors like the algorithm in (Kohen 2004).  Ta-
ble 3 summarizes our baselines.  

 

Data Settings Spont Content Both 
HMM EC-P 54.69 69.99 64.78 
HMM EC-V 31.38 5356 55.59 
HMM CE-P 51.44 69.35 62.69 

Small 
(5K) 

HMM CE-V 31.43 63.84 55.45 
HMM EC-P 60.08 78.01 71.92 
HMM EC-V 32.80 74.10 64.26 
HMM CE-P 58.45 79.44 71.84 

Large 
(181K) 

HMM CE-V 35.41 79.12 68.33 
GIZA MH-bi 45.63 69.48 60.08 Small 

(5K) GIZA M4-bi 48.80 73.68 63.75 
GIZA MH-bi 49.13 76.51 65.67 Large 

(181K) GIZA M4-bi 52.88 81.76 70.24 
 Fully-aligned2 5.10 15.84 9.28 
Table 3. Baseline Systems (V: Viterbi, P: Max-Posterior) 
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Figure 4. BM-A with different settings on small data  

The best baseline (HMM using maximum-
posterior: HMM EC-P) we have for small training 
data is F-measure 64.78%, and for large training 
data is 71.92%.  The best result from using 
GIZA++ is using Model-4 bi-direction alignments 
with F-measure of 63.75% for small data, and F-
measure 70.24% for large training data. Our HMM 
with max-posterior gives the strongest baseline, 
and is statistically significant better than HMM 
Viterbi alignment. 

 

Figure 5 shows the performance of Inner-Outer 
Bracket Model-B (BM-B) over EM iterations.  
Similar to BM-A, Top-1 means we only use top-1 
projection for each given English bracket, and Top-
all means we use all the projections for the given 
English bracket.  Smoothing means in collecting 
the fractional counts, we weigh the original frac-
tional count by 0.95, and give the remaining 0.05 
weight to each confident link, which was also 
aligned in the previous iteration.  “w/null” means 
we applied the proposed NULL word model to 
infer null links. We also predefined a list of 15 
English function words, for which there might be 
no corresponding word in Chinese.  These 15 Eng-
lish words are “a, an, the, of, to, for, by, up, be, 
been, being, does, do, did, -”.  In the “drop-null” 

5.2 Inner-Outer Bracket Models  

                                                           
1 Chinese is word segmented using a segmenter built inter-
nally. 
2 Every word pair is aligned. 



experiments, the links containing these predefined 
function words are dropped in the final word 
alignment (i.e. they are left unaligned) 

BM-B different settings on 5K data 
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Figure 5. BM-B with different settings on small data 

The peak performance is achieved around iteration 
4~5. At iteration 5, setting “top-1” gives F-
measure of 73.93%, which is significantly better 
than BM-A’s best setting in Figure 4. With 
smoothing, it reaches to 74.46%. After applying 
null word model, we achieved an F-measure of 
75.20% at iteration 4. If we simply drop links con-
taining the 15 English words, we can achieve F-
measure of 76.24%. Figure 6 shows the perform-
ance when using the large training data. 

F-measure of BM-B using 181K data

65

67

69

71

73

75

77

79

81

83

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Iterations

F-
m

ea
su

re
 (%

)

5k data

181k data

181k data w/ null

181k w/drop null

 
Figure 6. BM-B with different settings on large data 

In Figure 6, without dropping the 15 English 
words, the best performance we achieved is F-
measure of 80.38% at iteration 4 using the Top-1 
projection per bracket together with the null word 
model.  With dropping 15 English words, we have 
F-measure of 81.47% using the Top-1 projection 
per bracket.  In this large data setting, the 5K (hu-
man sentence-aligned) data gives only 0.5% F-
measure difference, which is not statistically sig-
nificant.  

In Figure 7, we show the F-measure perform-
ances at different maximum bracket lengths using 
BM-B with the top-1 projection only on the large 
training data. When the maximum bracket length 

equals to 1, the model tries to map unigram to 
brackets generally longer than unigram. This pro-
jection is often incorrect and the performance is 
close to that of IBM Model-1. When using longer 
bracket length such as 9-gram, the computation is 
more expensive, but the performance stays almost 
the same. So practically, we choose maximum 
bracket length of 4 or 5. 
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Figure 7. BM-B using different max ngram length 

5.3 Evaluate Blocks in the EM Iterations  

Out intuition was that good blocks can improve 
word alignment, and in turn, good word alignment 
can lead to better blocks.   Our experimental results 
support the first claim.   Now we consider the sec-
ond claim of whether good word alignment leads 
to better blocks.  

Given reference human word alignment, we ex-
tract reference blocks up to 5-gram phrases on the 
Chinese side.  This block extraction procedure is 
the same as the one used to extract blocks for the 
translation experiments in section 5.4 

During the EM iterations, we output all the 
blocks actually used in the iteration, then evaluate 
the precision and recall according to the extracted 
reference blocks.  The results are in Figure 8.  
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Figure 8. A direct evaluation of Blocks in BM-B 

Because we extract all possible N-grams at each 
position in the English sentence, the precision is 



low, and the recall is relatively high.  The figure 
shows that blocks do improve, presumably benefit-
ing from better word alignments. 

In Table 4, we summarize our Inner-Outer 
Bracket Model-B at different settings for detailed 
comparisons.  
 

Data Settings  Spontaneous Content Both 
Baseline  54.69% 69.99% 64.78% 
BM-B-drop 62.76% 82.99% 76.24% 
BM-B w/null 61.24% 82.54% 75.19% 

Small 
(5K) 

BM-B smooth 59.61% 82.99% 74.46% 
Baseline  60.08% 78.01% 71.92% 
BM-B-drop 63.95% 90.09% 81.47% 
BM-B w/null 62.24% 89.99% 80.38% 

Large 
(181K) 

BM-B smooth 60.49% 90.09% 79.31% 
Table 4.  Performances of BM-B with different settings 

 

Overall, without dropping the 15 English words, 
BM-B gives about 8% F-measure improvement in 
large training data settings and 9% for small train-
ing data settings whereas the confidence interval is 
only +/- 1.5%.   

5.4 Evaluation of Translations  

We also carried out the translation experiments 
using our Inner-Outer Bracket Model-B best set-
tings on the TIDES Chinese-English 2003 test set.   

We trained our models on 354,252 sentence 
pairs, drawn from LDC-supplied parallel corpora.  
With this test-specific training data, we run 5 itera-
tions of EM training of BM-B to infer word align-
ments. We use a monotone decoder for final 
translations. Our baseline is using phrase pairs 
built from the HMM maximum posterior word 
alignment and using the HMM trained P(f|e).  This 
baseline blue score is  0.2237 +/- 0.0113 (cased) 
and 0.2453 +/- 0.0117 (uncased).  Table-5 summa-
rizes the bleu scores using blocks inferred from 
improved word alignments over each of the EM 
iteration. 
 

 EM-1 EM-2 EM-3 EM-4 EM-5 
Bleur4n4 0.2515 0.2549 0.2521 0.2530 0.2501 
Bleur4n4C 0.2276 0.2303 0.2280 0.2287 0.2257 

Table 5. Bleu scores from the word alignment of each EM 
iterations in Bracket Model-B 

 

If we use the same blocks as used in the baseline, 
but use BM-B trained lexicon P(f|e) instead, we 
have bleu score 0.2308 (cased) and 0.2521 (un-
cased) which is comparable to the numbers in Ta-
ble 5.  If we use both word alignment and the 
model parameters of P(f|e) trained from BM-B, we  

improve the translation quality further as shown in 
Table 6: 
 EM-1 EM-2 EM-3 EM-4 EM-5 
Bleur4n4 0.2641 0.2703 0.2698 0.2725 0.2696 
Bleur4n4C 0.2413 0.2453 0.2450 0.2480 0.2451 

Table 6. Bleu scores from the word alignment and p(f|e) 
trained in Bracket Model-B 

Using our proposed model,  we got overall im-
provement in translation from 0.2237 (uncased: 
0.2453) to 0.2480 (uncased: 0.2725).  

6 Conclusion 

Our main contributions are two new Inner-Outer 
Bracket models, which utilize blocks as features to 
infer better word alignments. We also proposed 
one context dependent NULL word model to infer 
the null links. We show improved word alignments 
using both the small training data and the large 
training data. We also show significant improve-
ments in translation quality using the proposed 
models.  
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