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Abstract: Asset tracking – knowing what you have and where it is located – is essential for the smooth 

operation of many enterprises. From manufacturers, distributors, and retailers of consumer goods, to 

government departments, enterprises of all kinds are gearing up to use RFID technology to increase the 

visibility of goods and assets within their supply chain and on their premises. However, RFID technology 

alone lacks the capability to track the location of items once they are moved within a facility. This paper 

presents a prototype automatic location sensing system that combines RFID technology and off-the-shelf 

Wi-Fi based continuous positioning technology for asset tracking in indoor environments. The system 

employs a robot, with an attached RFID reader, which periodically crawls the space, associating items it 

detects with its own location determined with the Wi-Fi positioning system. We propose three algorithms 

that combine the detected tag’s reading with previous samples to compute its location. Our experiments 

have shown that our positioning algorithms can bring a two to three fold improvement on the raw 

accuracy provided by the positioning technology. 

1 Introduction 
Consider a typical public library. Each book has its own place in a particular shelf. Usually, readers 

like to take several books (from different shelves) and browse through them until they find the right book. 

While some readers manage to return the unwanted books to the correct shelf, many of them either leave 

the books in some corner of the library or place them back in the wrong location. This latter situation is 

hard to detect and can become a librarian’s nightmare. A similar situation exists in many retail stores 

where the customers can tryout several items before deciding which one to buy. In most cases, the 

customer never returns the tested item to its correct shelf. Some kind of automated tracking mechanism is 

required. The problem of asset tracking is not restricted to libraries or small retail stores. Many companies 

are realizing the importance of increasing the visibility within their supply chain. Asset tracking – 

knowing what you have and where it is located – is essential for the smooth operation of large 

manufacturing companies. It also helps big retailers (like Wal-Mart) isolate bottlenecks in their supply 
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chain, reduce overstocking or locate spoiled cargo. Several government and military organizations are 

always on the lookout for cheaper (and more efficient) ways to track their assets and equipment. 

Automatic location sensing is the key to enabling such tracking applications. One of the most well-

know positioning systems is GPS [16], which relies on satellites to track location. However, due to its 

dependence on the satellites, GPS lacks the ability to accurately determine location inside buildings. In 

order to achieve location tracking inside buildings, researchers and industry have proposed several 

systems, which differ with respect to the technology used, accuracy, coverage, frequency of updates and 

the cost of installation and maintenance [22] [2] [25] [4] [14] [6] [20] [23]. Triangulation, scene analysis, 

and proximity are the three principal techniques for automatic location-sensing [18]. Steggles and 

Cadman [24] provide a good comparison of various RF-tag-based location sensing technologies. Many of 

the current location sensing systems are radio based (Wi-Fi - [14] [23] [26] [5] [1], Bluetooth - [3] [1]). 

By using base station visibility and signal strength or time of flight, it is possible to locate Wi-Fi devices 

with an accuracy of several meters. 

In recent years, RFID technology has attracted considerable attention. RFID is emerging as an 

important technology that is reshaping supply chain management. RFID not only replaces the old barcode 

technology but also provides a greater degree of flexibility in terms of range and access mechanisms. For 

example, an RFID scanner can read the encoded information even if the tag is concealed (this might be 

for either aesthetic or security reasons). Several companies (like Wal-Mart, Gillette, CVS etc) are 

proposing to use RFID for identifying large lots of goods at pallet and carton level. Usually passive tags 

are preferred for tagging goods as they are much cheaper, long lived, lightweight and have a smaller foot 

print. However since passive tags work without a battery, they have a very small detection range. Current 

RFID systems are portal based where tagged items are scanned either when they enter or leave a facility. 

This scheme does not provide any information about the exact location of the item once it is moved away 

from the portal. 

The prototype system described in this paper combines (passive) RFID technology and a Wi-Fi 

(802.11b) based continuous location positioning system to provide a periodic asset-locating sweep. 

Although, our system uses Wi-Fi based location positioning, it can work with any continuous positioning 

technology. The prototype system not only identifies but also provides location information of every 

RFID-tagged item in the sweep space. A portable system (e.g. laptop or PDA) running a Wi-Fi client and 

connected to an RF reader is mounted on a robot that moves autonomously through the space. As the 

robot moves, the RF reader periodically samples which tags are detectable. At each sample time, the 

robot’s position is obtained from the positioning system. For each detected tag, given the estimate of the 

robot’s current position, knowledge of the reader’s physical detection range, and the robot’s position 
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estimates at previous detections, an algorithm computes an estimate of the tag’s position. In summary, our 

experiments with the prototype system show that we are able to estimate positions of tagged entities to 

within 1.5m, given an accuracy of the raw positioning system of about 4m. We experimented with 

different position estimation algorithms and found that certain algorithms work better than others when 

the raw positioning system is capable of giving better accuracy. 

The rest of the paper is structured as follows. In Section 2, we survey related work in the area of 

location tracking in indoor environments. Section 3 briefly describes RFID technology and its use in our 

project. Section 4 explains the Wi-Fi positioning system and our experience with its performance. In 

Section 5 we present results of experiments carried out using our prototype system (and our algorithms). 

Finally, Section 6 concludes the paper and presents directions for future research. 

2 Related Work 
Researchers and industry have proposed several location-sensing systems, which differ with respect 

to technology used, accuracy, coverage, frequency of updates and the cost of installation and 

maintenance. Some of these systems suffer from disadvantages that limit their use. For example, infrared 

systems [25] have line of sight restriction; ultrasonic systems [2] [4] are accurate but expensive. Recently, 

there has been an increase in the number of wireless companies that are seeking newer ways to track 

people and things in indoor environment. The rest of this section gives a brief description of several 

indoor location sensing technologies and various companies that make use of these technologies for asset 

tracking in indoor environment. 

Some of the earlier attempts for location sensing used infrared (IR) technology. Active Badge, 

developed at Olivetti Research Laboratory (now AT&T Cambridge), used diffuse infrared technology 

[25] to realize indoor location positioning. The line-of-sight requirement and short-range signal 

transmission are two major limitations that suggest it to be less than effective in practice for indoor 

location sensing. More recently, the focus has moved to using radio frequency (RF) signals RF-IR 

combination or Ultrasonic. In case of RF, techniques such as Differential Time of Arrival or simple signal 

strength measurement at various sensors are employed. RADAR is an RF based system for locating and 

tracking users inside buildings [14], using a standard 802.11 network adapter to measure signal strengths 

at multiple base stations positioned to provide overlapping coverage in a given area. This system 

combines empirical measurements and signal propagation modeling in order to determine user location 

thereby enabling location-aware services and applications. WhereNet [13] on the other hand works by 

timing signals transmitted from tags to a network of receivers. It uses the same 2.4GHz band as the 

802.11 and Bluetooth systems, but it uses a dedicated standard protocol (ANSI 371.1) optimized for low-
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power spread-spectrum location. AeroScout (formerly BlueSoft) uses 802.11-based time difference of 

arrival (TDOA) location solution. It requires the same radio signal to be received at three or more separate 

points, timed very accurately (to a few nanoseconds) and processed using the TDOA algorithm to 

determine the location. Ekahau [5] Wi-Fi positioning system computes the location of a client device by 

applying a probabilistic model to the signal strength measured at the Wi-Fi client device. Unlike 

AeroScout (and other TDOA based systems), the indoor environment has to be calibrated so that the 

positioning engine get a signal strength map of the room. Ekahau tags (or Wi-Fi devices running Ekahau 

client) constantly send their signal strength measure to the positioning engine which keeps track of each 

device’s location. 

Several other companies like Radianse [9] and Versus [12] use a combination of RF and IR signals to 

do location positioning. Their tags emit IF and RF signals containing a unique identifier for each person 

or asset being tracked. The use of RF allows coarse-grain positioning (e.g. floor) while the IR signals 

provide additional resolution (e.g. room). The Cricket Location Support System [4] and Active Bat 

location system [2] are two primary examples that use the ultrasonic technology.  Normally, these 

systems use an ultrasound time-of-flight measurement technique to provide location information. Most of 

them share a significant advantage, which is the overall accuracy. Cricket for example can accurately 

delineate 4x4 square-feet regions within a room while Active Bat can locate Bats to within 9cm of their 

true position for 95 percent of the measurements. Ultra Wideband (or UWB♣) is a new technology that 

has entered the arena of indoor location sensing. Unlike conventional RF systems, UWB systems are 

much less affected by multipath distortion. The Ubisense [11] system uses UWB and is based on time of 

arrival rather than signal strength and claims to have an accuracy of 6 inches (15 cm) in 3D space at a 

confidence level of 95%. The system uses UWB tags (called UbiTags), which are fixed to the items being 

tracked. 

Discussion 
The asset tracking technologies mentioned above are mostly geared towards tracking items that 

individually have high value (e.g., emergency medical equipment or an important person – a surgeon). 

These items require continuous tracking and justify the use of expensive tracking equipment. However, in 

many tracking applications (e.g. the library scenario described earlier) the object being tracked is either 

too small or too low value to justify the use of a tracking system with high per-item cost. And in fact, 

many of these applications do not require continuous tracking. We believe there are many applications 

where it is valuable to know the precise location of an asset, yet it is permissible for an asset’s location to 

                                                 
♣ An informative web site on UWB is provided by Multispectral Solutions, Inc [8]  
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be updated on a periodic basis—nightly, for example. Our BlueBot system is targeted towards such 

applications.  

We can characterize different tracking technologies by distinguishing between continuity in space and 

continuity in time, as illustrated in Table 1. A technology that provides space-continuous position 

estimates is able to provide a position estimate that falls anywhere in space (that may or may not be 

accurate). GPS is an example. A technology that provides time-continuous position estimates is able to 

provide position estimates at any point in time (intervals between estimates limited only by the 

performance of the system). Most positioning technologies are continuous in both space and time. An 

example that is continuous in time but not in space is “cell-ID,” i.e., reporting the location of an entity as 

that of the wireless base station it is communicating with. The location is known to be somewhere in the 

coverage region of the base station but at no greater resolution than that. An example that is neither 

continuous in space nor in time is a typical RFID deployment, such as the EZ-Pass toll collection system, 

where the location of a tagged item is known only at the times that item passes near a reader. 

We believe that the system discussed in this paper, BlueBot, represents a new point in this taxonomy, 

which provides position estimates continuous in space but not in time. As such, it points the way to 

tracking solutions that provide the precise location estimates needed by some applications, but, by 

sacrificing continuity in time, at a much lower cost. 

Table 1: Tracking Systems Taxonomy 

Continuous in Space  

YES NO 

YES GPS, TDOA, EOTD,  
Wi-Fi signal strength, etc. 

Simple “presence” technologies  
(e.g., cellular system where cellID is 
reported as the cellphone’s location) 

C
on

tin
uo

us
 in

 T
im

e 

NO BlueBot Fixed Beacon  
(e.g., EZPass, Bluetooth) 

3 RFID Technology 
RFID (Radio Frequency IDentification) technology has attracted considerable attention in the recent 

past [15]. Government organizations, especially the military, and several companies (i.e., Wal-Mart, 

Gillette, CVS etc) have been investing heavily in RFID technology to increase the transparency of their 

supply chain and to provide asset tracking on their premises. There are several advantages of using RFID 
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technology – no contact and non-line-of-sight, working under harsh environmental conditions, etc. RFID 

systems have a fast response time and in some cases tags can be read in less than a 100 milliseconds. The 

other advantages are their promising transmission range and cost-effectiveness. RFID tags can be 

concealed for either aesthetic or security reasons and yet be detected by an RFID reader.  

RFID tags are categorized as either passive or active. Passive RFID tags usually operate without a 

battery and offer a virtually unlimited operational lifetime. They reflect the RF signal transmitted to them 

from a reader and add information by modulating the reflected signal. Passive tags are much lighter and 

less expensive than active tags. However, ranges of more than 1.5m are not easily achieved using passive 

tags. Active tags contain both a radio transceiver and a 2-5 year battery to power the transceiver. Since 

there is an onboard radio, active tags have more range than passive tags (30m or more). However, they 

are more expensive and have a larger physical footprint compared to passive tags.  

 4 ft 

0.5m

 

Figure 1: Intermec PCMCIA reader and passive tag. Figure 2: RF characteristic of reader antenna. 

In our system, we use the Intermec [7] PCMCIA RFID reader (Figure 1), which operates at a 

frequency of 915MHz. The reader can be connected to any device that has a PCMCIA port. In our 

experiments, we had the reader connected to a laptop PC, but a smaller device, such as a PDA, or a 

custom-built PC, can be used as well for additional portability. The reader is attached to a directional 

antenna, which has a very short range (5 feet max). The reader’s antenna is placed facing the ceiling such 

that its maximum gain is in the vertical direction. The RF characteristics of the reader would approximate 

a vertical cone with its vertex on the reader’s antenna. We observed that tags at a height of 4 feet were 

detected with 90% (or higher) probability when the reader was (horizontally) within 0.5m of the tag 

(Figure 2). Due to the rectangular base of the reader’s antenna, the RF characteristics had an elliptical 
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shape (with the larger axis along the longer sides of the rectangle). However, we found that the 

eccentricity was close to 1. For all our experiments we have considered the reader’s RF characteristics to 

be a circle. 

4 Wi-Fi Positioning System 
We use an off-the-shelf Wi-Fi (802.11b) positioning system to track our client system (consisting of 

the RFID reader, client machine and the robot - Figure 8). The positioning system computed the location 

by using signal strength information (as perceived by the client device being tracked). The positioning 

engine advertised an average accuracy of 1m (3.5 ft). 

4.1 Calibration 

 

Figure 3: Asymmetric coverage improves positioning system’s accuracy. 

The positioning system we used needs to be calibrated before location scanning can begin. The 

calibration process establishes an RF-signal strength plot of the area into the positioning system’s engine. 

The calibration process involves drawing a series of straight lines on the area map and recording sample 

points – signal strength at a given location along the line. While at a particular location, the recording 

device (client device e.g. laptop/PDA wirelessly connected to the positioning engine) is turned around 

360° to record the signals from all directions. Several sample points are taken at 3-5m intervals along the 

lines. The calibration process is repeated until the entire area is covered. In general, a higher number of 

calibration points give better accuracy. Since the Wi-Fi system that we used was signal strength based, 

any major change in the environmental conditions in the room (e.g. moving of office partition, metal 

shelves/cupboards) required re-calibration to ensure maximum accuracy. The calibration process needs to 

be repeated if an access points are added, removed or moved from the calibrated area. There are some 

simple techniques to improve the overall accuracy of the system. One such technique is to avoid 



 8

symmetric coverage within a room. For example, using two omnidirectional access points for coverage in 

an open room can cause a symmetric RF pattern. As a result, there would be two or more sample points 

that would record the same signal strength pattern from the two APs (Figure 3a). Using APs with 

directional antennas or having an asymmetric coverage by introducing a third access point (APs at 3 

corners of the room - Figure 3b) can solve this problem. 

4.2 Positioning Technology Accuracy Analysis 
Because our tag-position estimation algorithms (described later) use characteristics of the positioning 

technology used to position the robot, we carried out two sets of experiments to examine the performance 

of our positioning system. The two sets differed in the density of calibration points and the size of the 

experiment area. 

4.2.1 Case A 
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Figure 4: Experiment setup (case A) 

The experiment area chosen was a large open 12.5m x 13.75m room (Figure 4). The positioning 

system was calibrated to work with only the three access points that were installed in the room (during the 

calibration process, the positioning engine was programmed to ignore any other access points installed in 



 9

the building). The calibration points were spaced at a distance of approximately three meters. The three 

access points were powered down to run at 15mW. To improve accuracy of the system, we wanted to 

have the access point coverage such it gives the steepest signal strength gradient across the room. Our 

Cisco 340 access points had four power levels (100mW, 30mW, 15mW and 5mW). Using the positioning 

system’s software, we found that 5mW power level didn’t give complete coverage in the room which 

resulted in a higher error. We selected 15mW which seemed to give the best gradient. 

After the calibration process, 48 points (refer Figure 4) were chosen as sample locations in an 

approximate area of 9m x 12m. An 801.11b client device was moved to each of the sample locations and 

positioning system was queried to report the position of the client. This process was repeated at four 

different times during the day with varying conditions in the room (e.g. people playing foosball or having 

a discussion on the couch, etc). The positioning system’s API gave us the X, Y coordinates of the client 

and an error estimate e in meters. In general it can be observed that the error distance is more for points 

near the wall (e.g. sample points 1-6 and multiples of 6 – 6, 12, 18). There is no definite pattern for the 

error estimate values. Figure 5 gives the mean and variance of the error distance and error estimate for 

each of the sample points. Table 2 shows the mean (and variance) error distance (the positioning system’s 

expected error) for this setup. Our experiments showed that the average positioning error (for the 

positioning system) was between 3.5-4 meters for this setup. 

Mean/Variance of each Sample
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Figure 5: Mean/Variance Error Distance and Error Estimate for each sample point. 

Table 2: Mean and Variance of Error Distance and Error Estimate for the entire set. 

Mean error 
distance 

Variance in error 
distance 

Mean error 
estimate 

Variance in error 
estimate 

4.001 2.047 2.681 0.421 

4.2.2 Case B 
In our next set of tests, the positioning engine was calibrated for a smaller area (8.08m x 3.71m) 

within the room (see Figure 6). Unlike case A, the calibration points in this experiment were closely 
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spaced (1m). The rest of the calibration setup (position of access points and their power level) was the 

same as case A. After the calibration process, 21 points (refer Figure 6) were chosen as sample points. We 

followed the same procedure as described in case A – the Wi-Fi client device was moved to each of the 

sample points and positioning engine was queried to report the location of the client (the process was 

repeated at four different times during the day with varying conditions in the room). The error distance 

and the error estimate values are much lower in this case (compared to case A) probably because the area 

is better calibrated (densely spaced calibration points). The error values are higher near the edges of the 

experiment area where there is uneven (and less dense) distribution of calibration points. Figure 7 gives 

the mean and variance of the error distance and error estimate for each of the sample points while Table 3 

gives the mean and variance of the error distance and error estimate. The positioning accuracy has now 

improved to approximately 3m. 
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Figure 6: Experiment setup (case B). 
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Figure 7: Mean/Variance Error Distance and Error Estimate for each sample point. 

Table 3: Mean and Variance of Error Distance and Error Estimate for the entire set. 

Mean error 
distance 

Variance in 
error distance 

Mean error 
estimate 

Variance in 
error estimate 

2.619 1.386 1.624 0.280 

5 The BlueBot System 

5.1 BlueBot Setup 

  

Figure 8: BlueBot Setup Figure 9: Samples for a particular tag during 
robot’s random walk. 

Our system uses the Roomba Robotic Floorvac [10] as the robot that moves autonomously in the 

sweep space. The Roomba uses intelligent navigation technology to automatically move around the room 

without any human direction. The Roomba expects to cover 90% of the room. A server machine running 

the positioning engine (PE) tracks our client device (laptop/PDA) that sits on the robot. Figure 8 depicts 

the BlueBot setup. The PE is calibrated to work with the access points placed in the corners of the 
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experiment room (case B). The RFID reader is connected to the client device and records all the tags that 

it detects as the Roomba moves to different corners of the room. In our experiments, the tagged items 

were placed at a height of approximately 4ft from the ground. Whenever the reader detects a tag, the 

client machine sends a message containing the tag’s id to the server. The server then notes the current 

position of the client and associates it with the detected tag. Our algorithms combine this sample with the 

previous samples to refine the position of the tagged item over time. As seen from Figure 9, a tag will be 

sampled only when the RF-reader enters its coverage area. Figure 10 gives a logical flow chart of the 

system. It should be noted that due to the random movement of the robot, consecutive samples for the 

same tag might not be equally spaced in time. Experimental results in later section confirm this. 

 
Figure 10: Logical flowchart of the robotic crawler system. 

5.2 Algorithms 
As mentioned before, the positioning system reported the X, Y coordinates and an error estimate ee in 

meters. We have seen before that the RF characteristics of the reader are in the form of a cone expanding 

outwards in the vertical direction. With the tags placed at 4ft from the ground, the reader’s detection 

circle was determined to have a radius (r) close to 0.25m. A circle drawn with center at (X, Y) and radius 

(R) of ee+r (Figure 11) will include the tag being tracked.   We call this circle the confidence circle.  We 

define the following: 

t – represents the tag with id t 

Nt – is the total number of samples for a given tag, t.  

(Xti,Yti) – is the location estimate for sample i of tag t 

TagID, Robot’s Position, 
Timestamp, Sample no. 

RF Reader Position 
Determination 

Technology 
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Location 

Algorithm for computing the 
location of tagged items 

Robot 

Hardware

Software
Location 
Sensing 
System 

RF Reader 
Client 
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 eeti – is the error estimate for the positioning report for sample i of tag t 

r –is a constant representing the read radius of the RFID reader. 

Rti = eeti + r  -  is the radius of the confidence circle for sample i for tag t. 
C[(Xti,Yti),Rti] - is the confidence circle for sample i of tag t. 

With these in mind, we provide three algorithms to compute the location.   

Intersection Algorithm: Intersection of several confidence circles provides a finer estimate of a tag’s 

position. We represent the tag’s location as the centroid of the bounding box of this intersection area. As 

the number of samples increases, the intersection area decreases (Figure 12), thus improving the accuracy 

of the (tag’s) calculated location. The estimate location then is: 

(Xt,Yt) = Centroid ( BoundingBox ( C[(Xt1,Yt1),R1]∩C[(Xt2,Yt2),Rt2]∩….∩ C[(XNt,YNt),RNt])) 

The precision of this algorithm is inversely proportional to the size of the intersection region. Smaller 

intersections imply higher probability distribution. 

  

Figure 11: Total radius is the sum of the reader 
coverage and the uncertainty circle (error estimate 

circle). 

Figure 12: Intersection of the different ‘sample’ 
circles converges to the tag location (not all 
confidence circles are shown in the figure). 

 

Weighted Averages: Here we create an algorithm that computes the location coordinates of the tagged 

entity as a weighted average of the reader’s locations when it detected the entity. The weight of each 

location estimate is inversely proportional to the square of the error radius.  

(Xt,Yt) = [ ∑ { 1/eei
2 * (Xi, Yi) } ]/(∑ 1/eei

2) 
The positioning system’s location estimates having a smaller error radius tend to be closer to the tag. 

Therefore, by using 1/Ri
2, the algorithm is able to give higher weight to sample points that are closer to 
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the tag. The accuracy of this algorithm depends more on the estimated position (Xi, Yi) as reported by the 

positioning system and also to a large extent on the distribution of samples around the tagged entity.  We 

assume that with enough samples, this will be averaged out. 

 

Plain Averages: An algorithm that computes the location coordinates of the tagged entity as the statistical 

average of the reader’s location when it detected the entity. 

(Xt,Yt) = [ ∑ (Xti, Yti)  ] / Nt 
The accuracy of this algorithm is similar to weighted average algorithm. However, since this 

algorithm does not take into account the error estimate of the positioning system, the errors in the 

estimated location this algorithm will be slightly higher compared to the estimated error for the weighted 

average. 

 
Figure 13: Screenshot of our Tag Tracker GUI before convergence (‘X’ marks the actual location of the tags). 

Figure 13 shows our tag tracking GUI, which shows the computed positions of detected tags (by the 

three algorithms) on a map of the room. 
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5.3 BlueBot Performance 
We used a large open 12.5m x 13.75m room (Figure 14) to carry out a series of experiments to 

examine the performance of our prototype system.  

5.3.1 Experiment Set A 
In the first round of experiments, the positioning engine was calibrated for the entire room as 

described in Section 4.2.1. For this setup (as seen in Table 2), the positioning system’s accuracy was 

around 4m. The tag placement for this set of experiments is as shown in Figure 14. We recorded the 

performance of the three algorithms for this setup for four different runs of the experiment. Figure 15 

shows the performance for one such run. 

 

Figure 14: BlueBot setup with non-uniform placement of tags. 
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Error Distance wrt Sample (Tag C)
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Error Distance wrt Samples (Tag D)
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d) 

Figure 15: Error distance convergence w.r.t sample no. for each tag 
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Figure 16: Sample distribution w.r.t time for two different experiment runs 

It is easy to see that the positioning accuracy of the three algorithms greatly varies between tags. Part 

of the reason is due to the large variation in the number of detections for each tag. In our experiments we 

started the Roomba from the center of the experiment area. However, we noticed that since it moved in a 

random fashion, the number of ‘detection’ samples for each tag is not a uniform distribution. We expect 
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that the averaging effect (from several runs of the experiment) to smooth out the large variation. Figure 16 

shows the time distribution between consecutive detections. Since the number of samples per tag per run 

is different, the values (per run) have been normalized to be on the same scale. 

We define the term error distance as the difference between the estimated location and the actual 

location of the tagged item. The three positioning algorithms start with a large error distance and as they 

get more samples, they slowly converge to the actual location of the tag. In order to quantify the 

performance of our system, we define a convergence point for each tag (in each run of the experiment). 

Convergence point can be thought of as the start of the steady state for a tag. Beyond this point, there is 

no significant change in the computed coordinates for that tag. For example, the convergence values for 

Figure 15 are shown in Table 4. We use convergence values to find the accuracy of our system. Table 5 

shows the average time and the average number of samples at which the algorithms converged for each 

run of the experiment. Table 6 and Figure 17 show the mean and median at convergence for each of the 

three algorithms. As we can see from Figure 17, the Intersection algorithm was able to position the tags 

with accuracy close to 1.5m. This is almost a three-fold improvement in the accuracy provided by the 

positioning system. The two averaging algorithms (plain and weighted), however gave an average error 

close to 3.5m. 

Table 4: Convergence values for Figure 15 

Tag Sample No. Time (sec) Plain (m) Weighted (m) Intersection (m) 
A 25 1414 1.527 1.510 0.224 
B 22 1380 3.478 3.267 1.642 
C 19 2430 3.286 3.265 1.4868 
D 20 1271 4.5123 4.386 2.583 

Table 5: No. of samples and time (sec) at convergence 

Run No. No. of samples at Convergence Time at Convergence (sec) 
 Mean Median Std Dev Mean Median Std Dev 

1 21.5 21 2.645 1623.75 1397 540.95 
2 13.25 14 3.774 1178.25 1169.5 448.973 
3 24.25 23 8.845 1706 1553.5 442.621 
4 12.75 11.5 6.238 916.75 879 261.515 

Average 17.9375 17.375 5.3755 1356.188 1249.75 423.514 

Table 6: Error distance at convergence for each algorithm 

Run No. Plain Averages Algorithm Weighted Averages Algorithm Intersection Algorithm 
 Mean Median Std Dev Mean Median Std Dev Mean Median Std Dev 

1 3.201 3.382 1.239 3.107 3.266 1.188 1.484 1.564 0.969 
2 3.120 2.977 1.129 3.088 2.928 1.135 1.735 1.701 0.861 
3 3.241 3.513 1.334 3.162 3.360 1.295 1.571 1.587 0.759 
4 3.117 3.055 0.793 3.073 3.067 0.745 1.289 1.059 0.576 

Average 3.170 3.232 1.124 3.108 3.155 1.091 1.520 1.478 0.791 
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Error Distance at Convergence for each algorithm

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4
Experiment Runs

Er
ro

r D
is

ta
nc

e 
(m

)

Plain Avg (Median) Weighted Avg (Median) Intersection (Median)  
Figure 17: Error distance at convergence for each algorithm 

We investigate the reason why the intersection and the averaging algorithm didn’t converge to same 

error distance. As an example, we look at Figure 18 which shows the performance of the Wi-Fi 

positioning system and each of the three algorithms at every sample (for experiment set A tag B - Figure 

15). The two averaging algorithms depend more on the positioning system’s accuracy and hence, their 

performance is close to positioning system’s accuracy (which as we saw in Section 4.2.1 was close to 

4m). Referring to Figure 18a, one would expect a uniform distribution of the estimate (from positioning 

engine) around the actual 15.2m; however that was not the case. The positioning engine has an offset 

close to 3.5m in the estimated X (actual X=15.2m, Estimated X from positioning engine varies between 

11.5m to 13m). For the averages algorithm to converge to the actual location, the offset from the 

positioning engines needs to be uniformly spread above and below the actual location. In this case, the 

offset was always below; hence the large error.  

The intersection algorithm on the other hand is based on the intersection of several confidence circles. 

The intersection algorithm gives an area where the tracked entity is located. To better represent the result 

of the algorithm, the center of the bounding box around the intersection area is reported as the computed 

location. A close examination of the two graphs shows that the error estimate for the first few samples is 

high resulting in larger confidence circles. The intersection of these circles gives a large area, the centroid 

of which is reported as the calculated location. As the experiment proceeds, the error estimate (ee) 

decreases. Later on, more circles (with smaller radius) intersect and the intersection area slowly shrinks 

the centroid until a point where all the new circles overlap the intersection area or the intersection area is 

so small that there is not much change in its centroid. This is when the intersection algorithm converges. 
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Comparison of Actual, Estimated and Algorithm's Y
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Figure 18: Comparison of computed/estimated coordinates with the actual coordinates. 

5.3.2 Experiment Set B 

 
Figure 19: BlueBot setup with uniform placement of tags. 

The calibration setup for our second round of experiments was that of Case B as described in Section 

4.2.2. The positioning engine was calibrated to work with the smaller experiment area and the calibration 

points were closely spaced. As seen in Section 4.2.2, this setup gave accuracies close to 2.5m (Table 3). 

Figure 19 shows the placement of the tags. In this scenario, the positioning technology gave a better 

accuracy and had lesser variation in the error estimate. As a result, our averages algorithms performed 

better giving us accuracies close to 1m (Figure 23). In most cases, the averages algorithms surpassed the 

performance of intersection algorithm by at least 0.5m. Table 7 and Figure 21 shows the computed 

location of the tags at the end of an experiment run (same run shown in Figure 20). 
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Error Distance wrt Sample No. (Tag A)
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Error Distance w.r.t Sample No. (Tag B)
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Error Distance w.r.t Sample No. (Tag C)
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Error Distance wrt Sample No. (Tag D)

0

1

2

3

4

5

6

7

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55

Sample No.

Er
r D

is
ta

nc
e 

(m
)

Plain Weighted Intersection Err Est  

d) 

Figure 20: Error distance convergence w.r.t to sample no. for each tag 

Table 7: Location coordinates of tags as computed by the three algorithms (for Figure 20) 

Tag ID Actual (X, Y) Plain Weighted Intersection 
A (1,2) (1.55, 1.86) (1.43, 1.80) (2.99, 3.02) 
B (3,2) (2.94, 1.45) (2.86, 1.50) (4.01, 2.47) 
C (5,2) (4.35, 1.29) (4.80, 1.33) (6.24, 2.35) 
D (7,2) (4.99, 1.31) (5.32, 1.41) (6.62, 2.22) 

 

 
Figure 21: Position of tags as computed by the three algorithms (for Figure 20) 
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Distribution of samples over time
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Figure 22: Sample distribution w.r.t time for two different experiment runs 

Table 8: No. of samples and time (sec) at convergence 

Run No. No. of samples at Convergence Time at Convergence (sec) 
 Mean Median Std Dev Mean Median Std Dev 

1 12.25 12.5 2.753 678.5 580 285.487 
2 8.25 8.5 2.5 716 715.5 134.806 
3 29.75 31.5 6.184 1335.75 1358.5 679.237 
4 21.5 21 3.415 1538.25 1651.5 498.893 

Average 17.938 18.375 3.713 1067.125 1076.375 399.606 

Table 9: Error distance at convergence for each algorithm 

Run No. Plain Averages Algorithm Weighted Averages 
Algorithm Intersection Algorithm 

 Mean Median Std Dev Mean Median Std Dev Mean Median Std Dev 
1 1.250 1.230 0.532 1.650 1.696 0.915 3.057 2.682 1.937 
2 0.955 0.822 0.521 1.085 1.028 0.479 2.009 2.031 0.659 
3 0.829 0.758 0.286 0.684 0.621 0.219 1.252 1.187 0.759 
4 1.468 1.031 1.377 1.587 1.048 1.500 2.476 2.140 1.294 

Average 1.126 0.960 0.679 1.252 1.098 0.778 2.199 2.010 1.162 
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Figure 23: Error distance at convergence for each algorithm 
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A special note about run 1 in this set: during this run, access point 1 was blocked by a folded ping-

pong table placed in front of it. This change in the environment altered the signal strength map of the 

room and hence affected the positioning system’s accuracy. As a result, the three algorithms have a 

relatively higher error distance. This illustrates the inability of the (signal strength-based) positioning 

system’s to adapt to change in environmental conditions. Some tracking applications may require 

recalibration of the room to accommodate the change in the signal strength pattern. 

6 Conclusion and Future Research 
In this paper, we have presented an inexpensive automated indoor asset tracking system called 

BlueBot. This prototype system works by making use of any off-the-shelf location positioning system and 

passive RFID technology. Beyond simply providing a novel mechanism to track tagged items, our 

experiments have shown that our positioning algorithms can bring a three-fold improvement on the raw 

accuracy provided by the positioning technology. We also found that the intersection algorithm worked 

better than the two averages algorithm when the positioning system was not very accurate. In the case 

where the positioning system had high accuracy, the averages algorithm out-performed the intersection 

algorithm. We are look at new algorithms that can average out the offset in the raw location reported by 

the positioning system. 

In our current system, there is a high variation in the amount of time and number of samples required 

to converge to a certain level of accuracy. In the future, we are planning to reduce this variation by using 

a robot that can be controlled to move in a directed pattern. We have considered employing a feedback 

system; so that the direction of the robot is controlled by the RF system. A dual-variable gain antenna 

system can be used such that the high gain antenna controls the movement of the robot until its low gain 

partner sees the tag being hunted. We noticed that signal strength based Wi-Fi systems are easily affected 

by changes in the surroundings. In the future we plan to make use of systems that are immune to 

environmental changes (perhaps TDOA based positioning systems) and analyze the performance of our 

BlueBot system. Another approach would be to continue to use Wi-Fi signal strength, but add reference 

RFID tags through the environment that could be used to remove any positional offsets that might be 

present relative to the original calibration.  We are also looking at various ways to make 3D positioning 

possible. 
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