
RC23512 (W0502-007) February 2, 2005
Computer Science

IBM Research Report

Reducing the Cost of IT Operations --
Is Automation Always the Answer?

Aaron B. Brown, Joseph L. Hellerstein
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Reducing the Cost of IT Operations—Is Automation Always the Answer?
Aaron B. Brown and Joseph L. Hellerstein
IBM Thomas J. Watson Research Center

Hawthorne, New York, 10532
{abbrown,hellers}@us.ibm.com

Abstract
The high cost of IT operations has led to an intense fo-
cus on the automation of processes for IT service de-
livery. We take the heretical position that automation
does not necessarily reduce the cost of operations since:
(1) additional effort is required to deploy and maintain
the automation infrastructure; (2) using the automation
infrastructure requires the development of structured in-
puts that have up-front costs for design, implementation,
and testing that are not required for a manual process;
and (3) detecting and recovering from errors in an au-
tomated process is considerably more complicated than
for a manual process. Our studies of several data cen-
ters suggest that the up-front costs mentioned in (2)
are of particular concern since many processes have a
limited lifetime (e.g., 25% of the packages constructed
for software distribution were installed on fewer than
15 servers). We describe a process-based cost-benefit
analysis that aids in determining if automation will in-
deed reduce costs. Our analysis indicates that automat-
ing a process is beneficial if the process has a sufficiently
long lifetime, if it is relatively easy to automate (i.e., can
readily be generalized from a manual process), and if
there is a large cost reduction (or leverage) provided by
each automated execution of the process compared to a
manual invocation.

1 Introduction
The cost of information technology (IT) operations
dwarfs the cost of hardware and software, often account-
ing for 50% to 80% of IT budgets [7, 3, 14]. IBM,
HP, and others have announced initiatives to address this
problem. Heeding the call in the 7th HotOS for “futz-
free” systems, academics have tackled the problem as
well, focusing in particular on error recovery and prob-
lem determination. All of these initiatives have a com-
mon message: salvation through automation.

After working with corporate customers, service de-
livery personnel, and product development groups, we
have come to question the widely held belief that au-
tomation always reduces costs. In fact, our claim is that
automation can increase cost if it is applied without a
holistic view of the processes used to deliver IT services.
This surprising conclusion derives from the hidden costs

of automation, costs that become apparent when au-
tomation is viewed holistically. While automation may
reduce the cost of certain operational processes, it can
add additional cost in other processes due to the need
to support the automation infrastructure, adapt inputs to
structured formats required by automation, and handle
automation failures.

In this paper, we use the example of automating soft-
ware distribution to illustrate the hidden costs of automa-
tion. We draw on data collected from several real data
centers to help illuminate these costs, and to give an ex-
ample of how a cost-benefit analysis can be used to de-
termine when automation should and should not be ap-
plied. Finally, we broaden our analysis into a general
discussion of the trade-offs between manual and auto-
mated processes and offer guidance on the best ways to
apply automation.

2 Hidden costs of Automation
Throughout this paper, we use software distribution to
server machines as a running example since the proper
management of server software is a critical part of op-
erating a data center. Our discussion applies to software
package management on centrally-administered collec-
tions of desktop machines as well. Software distribution
involves the selection of software components and their
installation on target machines. We use the term “pack-
age” to refer to the collection of software resources to in-
stall and the step-by-step procedure (process) by which
this is done.

Figure 1(a) abstracts the process of software distri-
bution carried out by System Administrators (SAs) at
IBM. A request is made to distribute software to a set
of servers. The SA starts by obtaining the software re-
sources. Then, for each target, the following steps are
done repeatedly. First, the software’s prerequisites are
checked (e.g., operating system release level, memory
requirements, dependencies on other packages). Next
comes configuration in which the SA determines the val-
ues of various parameters (e.g., server’s IP address, fea-
tures to be installed). Then, the SA performs the install,
verifies the result, and handles error conditions that arise.
While Figure 1(a) abstracts heavily to illustrate simi-
larities between software installs, we underscore that a

Draft: 2005/02/01 15:08 Page: 1

 (a) Manual Software Distribution

S
ys

te
m

 A
dm

in
is

tr
at

or

Obtain Source
Distribution

Validate
Prerequisites

Configure
Installer

Perform
Installation

Install
Succeeds?

Verify
Installation OK?

Remove
Installation
Remnants

Fix Problem

SW Request

Y Y

N N

Prereqs
Met?

Y

Fail

N

More
Targets?

Success

Y

N

 (b) Automated Software Distribution

Operation

A
ut

o
m

a
tio

n
In

fr
as

tr
u

ct
u

re

M
a

in
ta

in
e

r
S

o
ftw

a
re

P

a
ck

ag
e

r
S

ys
te

m
 A

d
m

in
is

tr
a

to
r

SW Req.

Obtain
Source
Dist’n

Perform
Pilot

Install

Create
Deployment

Wrapper

Identify
Customizations

OK?Test
Wrapper

Publish
Package

Invoke
Installer

Check
Results OK?

Research
Available
Packages

Req.
Package
Exists?

Diagnose
Problem

Invoke
Wrapper

Validate
Prereqs.

Configure
Installer

Perform
Installation

Verify
Installation

Select
Targets

OK? Log
Results

Y

Y

N

N

Remove Install
Remnants

End

Package
Problem?

Diagnose
Endpoint

Repair
Endpoint

Maintenance

Y

Y

N

N

Automation
Update

Upgrade
Distribution

Servers

Upgrade
Endpoints

Identify
Affected

Packages

Wrapper
Change

Required?
End

N

Y

Y

N

Y

N

Prereqs
Met?

Figure 1: Manual and automated processes for software distribution. Boxes with heavy lines indicate process steps that
contribute to variable (per-target) costs, as described in Section 3.

particular software install process has many steps and
checks that typically make it quite different from other
seemingly similar software installs (e.g., which files are
copies to what directories, pre-requisites, and the setting
of configuration parameters).

Now suppose that we automate the process in Fig-
ure 1(a). The System Administrator selects a separately
developed package that specifies the details of the in-
stall process, and the software distribution infrastructure
handles the other parts of the process flow in Figure 1(a)
based on the information in the package. Have we sim-
plified IT operations?

No. In fact, we have most likely made IT operations
more complicated. First, the automation infrastructure
is another software system that must itself be installed
and maintained. (For simplicity, we assume throughout
that the automation infrastructure has already been in-
stalled, but we do consider the need for periodic updates
and maintenance.) Next, using the automated infrastruc-
ture requires that information be provided in a structured
form (e.g., as software packages), which requires design,
implementation, and testing. Last, when errors occur,
they happen on a much larger scale than for a manual

approach, and hence additional processes and tools are
required to recover from them.

This extra complexity manifests as additional opera-
tional processes that must be carried out to support the
automation. Figure 1(b) illustrates the process changes
that occur when the software distribution process in Fig-
ure 1(a) is automated (excluding the processes needed
to initially build the automation infrastructure). The
diagram is organized as a “swim-lane” chart, dividing
process activities into two phases (operations and main-
tenance, the two columns) and allocating them amongst
four roles (the swim-lanes, or rows). Roles are typi-
cally performed by people (and can be shared or consol-
idated); we include automation as its own role to reflect
activities that have been handed over to an automated
system. We see that the automation (the bottom row)
has a flow almost identical to that in Figure 1(a). How-
ever, additional roles are added for care and feeding of
the automation. The responsibility of the System Ad-
ministrator becomes the selection of the software pack-
age, the invocation of the automation, and responding to
errors that arise. Since packages must be constructed ac-
cording to the requirements of the automation, there is a

Draft: 2005/02/01 15:08 Page: 2

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Targets

C
um

ul
at

iv
e

Fr
ac

tio
n

of
 P

ac
ka

ge
s

Figure 2: Cumulative distribution of the number of targets
(servers) on which a software package is installed in several
data centers. A larger number of packages are installed on
only a small number of targets.

new role of Software Packager. The responsibility of the
packager is to generalize what the System Administrator
does in the manual process so that it can be automated.
There is also a role for an Infrastructure Maintainer who
handles operational issues related the software distrib-
ution system (e.g., ensuring that distribution agents are
running on endpoints) and the maintenance of the au-
tomation infrastructure.

From inspection, it is apparent that the collection of
processes in Figure 1(b) is much more complicated than
the single process in Figure 1(a). Clearly, such addi-
tional complexity is unjustified if we are installing a sin-
gle package on a single server. This raises the following
question—at what point does automation stop adding
cost and instead start reducing cost?

3 To Automate or Not To Automate
To answer this question, we first characterize activities
within a process by whether they are used for setup (the
outer part of a loop) or per-instance (the inner part of the
loop). Boxes with heavy outlines in Figure 1 indicate the
per-instance activities. Note that in Figure 1(b), most of
the per-instance activities are done by the automation.
We refer to the setup or up-front costs as fixed costs,
and the per-instance cost as variable costs.

A rule-of-thumb for answering the question above is
that automation is desirable if the variable cost of the
automated process is smaller than the variable cost of
the manual process. But this is wrong.

One reason why this is wrong is that we cannot ig-
nore fixed costs for automating processes with a limited
lifetime. IT operations has many examples of such lim-
ited lifetime processes. Indeed, experience with trying to
capture processes in “correlation rules” used to respond
to events (e.g., [9, 4]) has shown that rules (and hence
processes) change frequently because of changes in data

center policies or endpoint characteristics.
Our running example of software distribution is an-

other illustration of limited lifetime processes. As indi-
cated before, a software package describes a process for
a specific install. The fixed cost of building a package
must be amortized across the number of targets to which
it is distributed. Figure 2 plots the cumulative fraction
of the number of targets of a software package based on
data collected from a several data centers. We see that a
large fraction of the packages are distributed to a small
number of targets, with 25% of the packages going to
fewer than 15 targets.

There is a second reason why the focus on variable
costs is not sufficient. It is because the focus is on the
variable costs of successful results. From Figure 1(b),
we see that more sophistication and people are required
to address error recovery for automated software distri-
bution than for the manual process. Using the same data
from which Figure 2 is extracted, we determined that
19% of the requested target installs fail. Furthermore,
at least 7% of the installs fail due to issues related to
configuration of the automation infrastructure, a consid-
eration that does not exist if a manual process is used.

The foregoing motivates our development of a sim-
ple quantitative cost-benefit model to determine when to
automate a process. Let Cm

f be the fixed cost for the
manual process and Cm

v be its variable cost. We use N
to denote lifetime of the process (e.g., a package is dis-
tributed to N targets). Then, the total cost of the manual
process is

Cm = Cm
f + NCm

v

Similarly, there are fixed and variable costs for the auto-
mated process. However, we observe from Figure 1(a)
and Figure 1(b) that the fixed costs of the manual process
are included in the fixed cost of the automated process.
We use Ca

f to denote the additional fixed costs required
by the automated process, and we use Ca

v to denote the
variable cost of the automated process. Then, the total
cost of the automated process is

Ca = Cm
f + Ca

f + NCa
v

We can make some qualitative statements about these
costs. In general, we expect that Cm

v > Ca
v ; otherwise

there is little point in considering automation. Also, we
expect that Cm

v ≤ Ca
f since careful design and testing

are required to build automation, which requires per-
forming the manual process one or more times. Sub-
stituting into the above equations and solving for N, we
can find the crossover point where automation becomes
economical. That is, where Ca < Cm.

N >
Ca

f

Cm
v − Ca

v

.

Draft: 2005/02/01 15:08 Page: 3

 1/N

Auto
mate

d

Man
ua

l
 1

Automation Leverage (L)

A
m

or
tiz

ed
 G

en
er

al
iz

at
io

n
D

iff
ic

ul
ty

 (G
/N

)

 1

Figure 3: Preference regions for automated and manual
processes. Automated processes are preferred if there is a
larger leverage for automation and/or if there is a smaller
(amortized) difficulty of generalizing the manual procedure to
an automated procedure (G/N).

This inequality provides insights into the importance
of considering when to automate a process. IBM inter-
nal studies of software distribution have found that Ca

f

can exceed 100 hours for complex packages. Our intu-
ition based on a review of these data is that for complex
installs, Cm

v is in the range of 10 to 20 hours, and Ca
v

is in the range of 1 to 5 hours (mostly because of er-
ror recovery). Assuming that salaries are the same for
all the staff involved, these numbers indicate that there
should be approximately 5 to 20 targets for a automated
software distribution to be cost effective. In terms of the
data in Figure 2, these numbers mean that from 15% to
30% of the installs should not have been automated.

The foregoing cost models can be generalized fur-
ther to obtain a broader understanding of the trade-off
between manual and automated processes. In essence,
this is a trade-off between the leverage provided by au-
tomation versus the difficulty of generalizing a manual
process to an automated process.

Leverage L describes the factor by which the variable
costs are reduced by using automation. That is, L =
Cm

v

Ca
v
≥ 1.

The generalization difficulty G relates to the chal-
lenges involved with designing, implementing, and test-
ing automated versions of manual processes. Quanti-
tatively, G is computed as the ratio between the fixed
cost of automation and the variable cost of the manual
process: G =

Ca
f

Cm
v

≥ 1. The intuition behind G is that,
to construct an automated process, it is necessary to per-
form the manual process at least once. Any work beyond
that test invocation of the manual process will result in a
larger G. Substituting and solving, we find that

G

N
= 1 −

1

L

We refer to G/N as the amortized difficulty of gen-
eralization since the generalization difficulty is spread

across N invocations of the automated process.
Figure 3 plots G/N versus L. We see that the ver-

tical axis (G/N) ranges from 1/N to 1 since G ≥ 1
and G ≤ N . The latter constraint arises because there
is little point in constructing automation that is G times
more costly than a manual process if the process will
only be invoked N < G times. The figure identifies re-
gions in the (L, G/N) space in which manual and auto-
mated processes are preferred. We see that if automation
leverage is large, then an automated process is cost effec-
tive even if amortized generalization difficulty is close
to 1. Conversely, if amortized generalization difficulty
is small (close to 1/N), then an automated process is
cost effective even if automation leverage is only slightly
more than 1. Last, having a longer process lifetime N
means that G/N is smaller and hence makes an auto-
mated process more desirable.

This analysis suggests three approaches to reducing
the cost of IT operations through automation: reduce
the generalization difficulty G, increase the automation
leverage L, and increase the process lifetime N . In
the case of software distribution, the most effective op-
tions are to increase N and to reduce G. We can in-
crease N by making the IT environment more uniform
in terms of the types of hardware and software so that
the same package can be distributed to more targets.
However, the dangers here are twofold. First, increasing
N has the risk of increasing the impact of automation
failures, causing a commensurate decrease in L. Sec-
ond, attempts to increase homogeneity may encounter
resistance—ignoring a lesson learned from the transi-
tion from mainframes to client-server systems in the late
1980s, which was in large part driven by the desire of
departments to have more control over their computing
environments and hence a need for more diversity.

To reduce cost by reducing G, one approach is to
adopt the concept of mass customization developed in
the manufacturing industry (e.g., [8]). This means de-
signing components and processes so as to facilitate cus-
tomization. In terms of software distribution, this might
mean developing re-usable components for software
packages. Mass customization can also be achieved by
having target systems that automatically discover their
configuration parameters (e.g., from a registry at a well
known address). This would mean that many differences
between packages would be eliminated, reducing G and
potentially leading to consolidation of package versions,
also increasing N .

4 Related Work
The automation of IT operations has been a focus of at-
tention for the last two decades [9], with on-going de-
velopment of new technologies [4, 17, 1] and dozens of
automation related products on the market [16]. More

Draft: 2005/02/01 15:08 Page: 4

recently, there has been interest in process automation
through workflow based solutions [5, 15, 12]. How-
ever, none of these efforts address the question of when
automation reduces cost. There has been considerable
interest in manufacturing in business cases for automa-
tion [11, 2, 6], and even an occasional study that ad-
dresses automation of IT operations [10, 13]. However,
these efforts only consider the automation infrastructure,
not whether a particular process with a limited lifetime
should be automated.

5 Conclusions
Recapping our position, we argue against the widely-
held belief that automation always reduces the high costs
of IT operations. Our argument rests on three pillars:

1. Introducing automation creates extra processes to
deploy and maintain that automation, as we saw in
comparing manual and automated software distrib-
ution processes.

2. Automation requires structured inputs (e.g., pack-
ages for a software distribution system) that in-
troducing extra up-front (fixed) costs for design,
implementation, and testing compared to manual
processes. These fixed costs are a significant con-
sideration in IT operations since many processes
have a limited lifetime (e.g., a software package is
installed on only a limited number of targets). In-
deed, our studies of automated software distribu-
tion in several data centers found that 25% of the
software packages were installed on fewer than 15
servers.

3. Detecting and removing errors from an automated
process is considerably more complicated than for
a manual process. Our software distribution data
suggest that errors in automation can be frequent—
19% of the requested installs failed in the data cen-
ters we studied.

Given these concerns, it becomes much less clear
when automation should be applied. Indeed, in our
model-driven analysis of software distribution in several
large data centers, we found that 15–30% of automated
software installs may have been less costly if performed
Manually. Given that IT operations costs dominate IT
spending today, it is essential that the kind of analysis
we have demonstrated here become an integral part of
the decision process for investing in and deploying IT
automation. We encourage the research community to
focus effort on developing tools and more sophisticated
techniques for performing such analyses.

References
[1] G. Candea, E. Kiciman, S. Kawamoto, and A. Fox. Au-

tonomous recovery in componentized internet applica-

tions. Cluster Computing Journal, 2004.
[2] T.J. Caporello. Staying ahead in manufacturing and

technology-the development of an automation cost of
ownership model and examples. IEEE International
Symposium on Semiconductor Manufacturing, 1999.

[3] D. Cappuccio, B. Keyworth, and W. Kirwin. Total
Cost of Ownership: The Impact of System Management
Tools. Technical report, The Gartner Group, 2002.

[4] G. Kaiser, J. Parekh, P. Gross, and G. Valetto. Kines-
thetics extreme: An external infrastructure for monitor-
ing distributed legacy systems. In Fifth Annual Interna-
tional Active Middleware Workshop, 2003.

[5] A. Keller, J.L. Hellerstein, J.L. Wolf, K.-L. Wu, and
V. Krishnan. The champs system: Change management
with planning and scheduling. In IEEE/IFIP Network
Operations and Management, April 2004.

[6] N.S. Markushevich, I.C. Herejk, and R.E. Nielsen. Func-
tion requirements and cost-benefit study for distribution
automation at B.C. Hydro. IEEE International Transac-
tions on Power Systems, 9(2):772–781, 1994.

[7] MicroData. The Hidden Cost of Your Network. Techni-
cal report, MicroData, 2002.

[8] J.H. Mikkola and T. Skjott-Larsen. Supply-chain inte-
gration: implications for mass customization, modular-
izaiton and postponement strategies. Production Plan-
ning and Control, 15(4):352–361, 2004.

[9] K.R. Milliken, A.V. Cruise, R.L. Ennis, A.J. Finkel,
J.L. Hellerstein, D.J. Loeb, D.A. Klein, M.J. Masullo,
H.M. Van Woerkom, and N.B. Waite. YES/MVS and
the autonomation of operations for large computer com-
plexes. IBM Systems Journal, 25(2), 1986.

[10] NetOpia. netoctopus: The comprehensive system ad-
ministration solution. http://www.netopia.com/
software/pdf/netO-ROI.pdf, 2005.

[11] C.A. Niznik. Cost-benefit analysis for local inte-
grated facsimile/data/voice packet communication net-
works. IEEE Transactions on Communications, 30(1),
January 1982.

[12] Peregrine. Service center. http://www.
peregrine.com/products/servicecenter.
asp, 2005.

[13] M. H. Sherwood-Smith. Can the benefits of integrated
information systems (IIS) be costed. Internation Confer-
ence on Information Technology in the Workplace, pages
11–18, 1991.

[14] Serenity Systems. Managed Clinent Impact
on the Cost of Computing. http://www.
serenity-systems.com, 2005.

[15] G. Valetto and G. Kaiser. A case study in software adap-
tation. In WOSS ’02: Proceedings of the first workshop
on Self-healing systems, pages 73–78, 2002.

[16] ComputerWorld Staff Writer. E-business buyers’ guide.
In www.computerworld.com, 2005.

[17] S. A. Yemini, S. Kliger, E. Mozes, Y. Yemini, and
D. Ohsie. High speed and robust event correlation. IEEE
Communications Magazine, 34(5):82–90, 1996.

Draft: 2005/02/01 15:08 Page: 5

