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Peer-to-Peer in the Design of Structured Overlay Networks
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Laura Z. Luan†, Edward So†, and Christopher Ward†

ABSTRACT
The routing tables of Distributed Hash Tables (DHTs) can vary from size
O(1) to O(n). Currently, what is lacking is an analytic framework to
suggest the optimal routing table size for a given workload. This paper
(1) compares heterogeneous DHTs with O(1) to O(n) routing tables and
identifies the good design points for typical workloads; and (2) proposes
practical protocols to realize the potential of those good design points. We
validate our protocols through both analysis and extensive simulation.

Our comparison is novel in two aspects. First, we compare totally
heterogeneous DHTs and use capacity as the uniform metric to evaluate
them. Second, we emphasize that a good design should strike a balance
between maintenance cost and lookup cost. Our analysis shows that, for
typical workloads, large routing tables actually lead to both low total traf-
fic and low lookup hops. These good design points translate into one-hop
routing for systems of medium size and two-hop routing for large systems.

Existing one-hop or two-hop protocols are based on a hierarchy. We in-
stead demonstrate that it is possible to achieve one-hop or two-hop routing
without giving up being peer-to-peer. We propose 1h-Calot for one-hop
routing and 2h-Calot for two-hop routing. They are purely peer-to-peer,
efficient in traffic, and resilient in the face of frequent node arrivals and
departures. Moreover, they are extremely simple for practical uses. Com-
pared with traditional DHTs that use O(log n) routing tables, 1h-Calot
and 2h-Calot save total traffic by up to 70% under typical workloads,
while resolving lookups in one or two hops as opposed to O(log n) hops.

1. INTRODUCTION
In recent years, Distributed Hash Tables (DHTs) have been proposed

as the infrastructure for building a wide range of wide-area distributed
applications such as storage [3], content distribution [2], and search en-
gines [26]. Early DHTs [19, 22, 25, 28] use small O(log n) routing tables,
due to the concern that big routing tables are hard to maintain and cannot
scale to large systems. Later designs use O(

√
n) [8] or even O(n) [7]

routing tables and argue that it is actually feasible to do so.
Previous works [6, 13, 14, 27] mainly compared DHTs with O(log(n))

routing tables. Currently, what is lacking is an analytic framework to
suggest the optimal routing table size for a given workload. This paper
(1) compares heterogeneous DHTs with O(1) to O(n) routing tables and
identifies the good design points for typical workloads; and (2) proposes
practical protocols to realize the potential of those good design points. We
validate our protocols through both analysis and extensive simulation.
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1.1 Comparison of Heterogeneous DHTs
Our comparison of heterogeneous DHTs focuses on the aspects below.

• Resilience. DHTs target dynamic environments in which nodes
may join and leave at any moment. Good designs should be able to
continuously operate without disruption under these conditions.

• Lookup latency. Object lookup is the basic operation of DHTs.
The lookup latency in DHTs needs to be low in order to accommo-
date interactive applications such as name resolution [18].

• Capacity. High capacity is desirable. It allows architects to use a
smaller DHT, which is faster and cheaper, to handle a given load.

• Being Peer-to-Peer. A purely peer-to-peer architecture is prefer-
able, in which nodes assume equal roles and share load evenly.

Previous works [6, 13, 14, 27] that compare DHTs with O(log n) rout-
ing tables mainly focus on the resilience and lookup latency aspects. We
are among the first to emphasize the capacity aspect. Capacity is relevant
as we expect DHTs to operate under medium to high load. Otherwise, a
smaller DHT can handle the given load at a lower cost and provides better
services. KaZaA [10], for instance, uses only a subset of super nodes to
provide services. We measure the capacity of a DHT using the total main-
tenance and lookup traffic it introduces under a given workload. Reducing
traffic not only saves precious bandwidth, which is the key factor that lim-
its wide-area applications [1], but also reduces the messages processed by
nodes and hence increases system capacity.

We stress the role of workload in the comparison. A workload is pa-
rameterized by a tuple <n, l, f>, where n is the number of nodes in the
system, l is the average node lifetime, and f is the average number of
lookups a node processes per second. We are among the first to empha-
size the balance between maintenance cost and lookup cost. In particular,
lookup rate is a critical but historically overlooked parameter that shifts
this balance. For instance, if lookups are frequent, it is beneficial to use
DHTs that require high maintenance but save significantly on lookups.

Our comparison does have practical use. It helps us to identify pitfalls
in existing DHT designs that are mainly driven by the desire to improve
lookup latency, for example, the argument [7] that it is favorable to main-
tain O(n) routing tables for systems with up to a few million nodes. Our
analysis shows that it is not cost-effective to do so for systems larger than
a few thousand nodes. Otherwise, it could introduce 1,000 times more
traffic than traditional DHTs [19, 22, 25, 28].

1.2 Non-hierarchical Protocols for One-hop and
Two-hop Routing

Assuming half to several hour node lifetime (e.g., 2.9 hours in Gnutella [23])
and a medium lookup rate, our analysis shows that large routing tables
with several hundred to one thousand entries actually lead to both low
traffic and low lookup hops. This design point translates into one-hop
routing (with O(n) routing tables) for systems with up to a few thousands
nodes; or two-hop routing (with O(

√
n) routing tables) for systems with



up to a few million nodes. We emphasize that our targets are typical work-
loads rather than the extreme conditions assumed by some other works,
e.g., only several minute node lifetime [20]. On the other hand, we also
propose solutions to achieve low lookup hops under extreme dynamism,
of course, at the expense of increased traffic (Section 3.2.5).

One-hop and two-hop routings are efficient in traffic and lookup hops,
but their large routing tables are hard to maintain, which poses signifi-
cant challenges on being resilient and peer-to-peer. Existing proposals for
one-hop or two-hop routing are either hierarchical [5, 7, 8, 16, 21]—in
which nodes have different roles and the load is unevenly distributed—or
assume a particular query distribution that limits its generality [17]. We
will demonstrate that it is possible to achieve one-hop or two-hop rout-
ing without giving up being peer-to-peer. A peer-to-peer architecture im-
proves system resilience and eliminates the need for manual management,
which are the reasons that originally gave birth to DHTs [25].

We propose what we believe are the first practical, non-hierarchical
protocols for one-hop routing (1h-Calot) and two-hop routing (2h-Calot).
Compared with traditional DHTs that use O(log n) routing tables, 1h-
Calot and 2h-Calot save total traffic by up to 70% under typical work-
loads, while resolving lookups in one or two hops as opposed to O(log n)
hops. Their fast lookups are particularly attractive for latency sensitive
applications such as cooperative web caching and name resolution [18].

To maintain the large routing tables in a scalable fashion, 1h-Calot and
2h-Calot multicast node arrivals and departures through O(n) different
trees embedded in the overlay. The “trees” in Calot are purely conceptual
and require no explicit maintenance. 2h-Calot’s randomized algorithm
further exploits virtual nodes running on the same computer to connect re-
mote nodes in a purely peer-to-peer fashion. Both 1h-Calot and 2h-Calot
are extremely simple: multicast maintains the routing tables; information
in the routing tables is then used to guide multicast and routing.

The remainder of the paper is organized as follows. Section 2 com-
pares heterogeneous DHTs in order to identify the good design points.
Sections 3 and 4 present the design and analysis of our one-hop and two-
hop protocols, respectively, and compare them with existing DHTs. Sec-
tion 5 evaluates our protocols through extensive simulation. Related work
is discussed in Section 6 and Section 7 concludes the paper.

2. COMPARING HETEROGENEOUS DHTS
Previous works [6, 13, 14, 27] mainly used the resilience and lookup

latency metrics to compare DHTs with O(log(n)) routing tables. We
instead compare heterogeneous DHTs with O(1) to O(n) routing tables
to identify design points that have high resilience, low lookup latency, and
high capacity. We are among the first to emphasize the capacity aspect of
DHTs. High capacity is desirable. It allows architects to use a smaller
DHT, which is faster and cheaper, to handle a given load.

We measure the capacity of a DHT using the total traffic it introduces
under a given workload. Lower traffic leads to higher capacity. At a
high level, the traffic metric captures both bandwidth consumption and
DHT protocol overhead in an application independent fashion. In general,
DHTs with larger routing tables introduce higher maintenance traffic but
have smaller routing hops and hence lower lookup traffic. A good design
should strike a balance between them to minimize the total traffic.

The comparison is conducted in the context of workload. A workload
is parameterized by a tuple <n, l, f>, where n is the number of nodes
in the system, l is the average node lifetime, and f is the average num-
ber of lookups that a node processes per second. Our typical workload
assumes a node lifetime similar to that in real peer-to-peer systems. For
instance, the average node lifetime in Gnutella is 2.9 hours [23]. We as-
sume a medium to high lookup rate, f = 0.1 ∼ 10 lookups/second. The
rationale is that, if the system is underutilized, the architect should use a
smaller DHT, which is cheaper and faster, to handle the given load. The
self-organizing feature of DHTs makes load-driven adaptation not only
possible but also beneficial [11]. Among many other real peer-to-peer
systems, KaZaA [10] uses only a subset of super nodes to provide ser-
vices. (This “typical workload” is a stress test for our protocols to be

proposed in Sections 3 and 4. When the node lifetime is longer and the
lookup rate is lower, our protocols function even better.)

We assume that node lifetime follows an exponential distribution

pl(t) = λle
−λlt, (1)

where λl = 1
l
. We assume that node arrival is a Poisson process with rate

λe. The probability that k nodes join during a time period t is

P (X = k) =
(λet)

k

k!
e−λet. (2)

To maintain a stable population of n nodes with average lifetime l, the
node arrival rate λe =nλl =

n
l

. We assume the lookups that a node issues
follow a Poisson process with rate f .

Both lookup messages and messages for routing table maintenance are
small. The payload typically includes a DHT key and the IP address of a
node. Unless otherwise noted, we assume communications use UDP/IP;
lookup and maintenance messages have unit size s (including both packet
header and payload); the messages are explicitly acknowledged and the
acknowledgments have size 0.5s. Our analysis ignores packet loss and
retransmission at the network layer. We assume that the targets of lookups
distribute uniformly across all nodes. We assume an “ideal” representative
for each category of DHTs in order to shed light on the fundamentals.
When it comes to a specific DHT design, we also consider other factors
such as resilience and lookup hops. Sections 3 and 4 will address more
realistic implementation issues. Below we use the total traffic metric to
compare heterogeneous DHTs.

2.1 Degree-diameter Optimal DHTs
For a network of size n in which each node has d neighbors, the diame-

ter D of the network is bounded [14] by: D ≥ dlogd(n(d−1)+1)e−1.
Several degree-diameter optimal DHTs [9, 12, 14, 15] approaches this
lower bound. Our analysis uses de Bruijn graphs [14] as the representa-
tive, in which a lookup on average takes r≈ logd n hops.

We calculate the minimum traffic 1 needed to update the routing tables
of a de Bruijn graph in the face of node arrivals and departures. In an
n-node system with node lifetime l, on average n

l
nodes join and n

l
nodes

leave each second. When a node joins or leaves, at least one message is
sent to notify each of its d routing neighbors. So there are n

l
d messages

for node arrivals and n
l
d messages for node departures. Further, at least

one message is needed to inform a new node of each of its d neighbors.
So there are n

l
d messages 2 to set up the routing tables for new nodes.

Assuming all these maintenance messages have unit size s and each is
acknowledged by a packet of size 0.5s, the maintenance traffic is

B1 = (1 + 0.5)s · (n

l
d +

n

l
d +

n

l
d) (3)

Each node processes f lookups per second. So there are nf lookups in
total. Each lookup takes logd n hops in a de Bruijn graph (or any other
graphs that are close to optimal [12]). The traffic for lookups is

B2 = (1 + 0.5)s · nf logd n. (4)

The total traffic (maintenance plus lookup) in a de Bruijn graph is

M = B1 + B2 = 1.5s · (3n

l
d + nf logd n). (5)

We derive the routing table size d that minimizes the total traffic by setting
the derivative of M with respect to d to 0.

∂M

∂d
= 0 =⇒ d ln2 d =

fl ln n

3
(6)

1In most existing DHTs, nodes probe their routing neighbors periodically.
An “ideal” design can avoid this traffic. For instance, Calot uses overlay
multicast, instead of probing, to maintain routing tables (see Section 3).
2The traffic would be lower if the new node copies a complete routing
table from an existing node in a single, big packet. This only affects our
analysis results by a small constant factor. We choose not to consider
this optimization here because it is adopted in few existing DHTs. The
protocol specific analysis in Section 3 and 4 will consider details like this.
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(a) f=1 lookups/second and l=2.9 hours. (b) n=1 million nodes and f=1 lookups/second. (c) n=1 million nodes and l=2.9 hours.

Figure 1: The optimal routing table size d that minimizes total traffic (from Equation 6).

The fl component in Equation 6 indicates that the optimal routing ta-
ble size d is proportional to the number of lookups a node processes in
its entire lifetime. Previous comparisons mainly focus on node lifetime’s
impact on system resilience and totally ignore lookup rate. Our analy-
sis instead shows that lookup rate is a critical parameter when designing
systems for high capacity.

Equation 6 has no closed form solution. We solve it using the New-
ton’s method for a given workload <n, l, f> and plot the results for some
typical workloads in Figure 1. This figure shows that using large routing
tables with several hundred to one thousand entries is efficient in traffic.
This translates into one-hop routing (with O(n) routing tables) for sys-
tems with up to a few thousand nodes, or two-hop routing (with O(

√
n)

routing tables) for systems with up to a few million nodes. One-hop rout-
ing and two-hop routing are the good design points we focus on.

The above analysis makes some “ideal” assumptions: (1) when a node
joins or leaves, this membership change can be efficiently disseminated to
about 1,000 nodes; and (2) a node need not probe its 1,000 or so routing
neighbors to maintain the accuracy of its routing table. These assump-
tions are obviously not met by existing solutions [14] based on de Bruijn
graph. Other systems that do use large routing tables are based on a hierar-
chy [5, 7, 8, 16, 21]. In Sections 3 and 4, we will present our peer-to-peer
solutions.

2.2 One-hop Schemes
One-hop schemes maintain a complete routing table on each node, d =

n − 1 ≈ n. Substituting this into Equation 5, we obtain the total traffic

M1h ≈ 1.5s · (3n2

l
+ nf). (7)

2.3 Two-hop Schemes
In ideal two-hop schemes, each node has d =

√
n routing neighbors.

Substituting this into Equation 5, we obtain the total traffic

M2h = s(4.5
n1.5

l
+ 3nf). (8)

2.4 Traditional DHTs
In traditional DHTs, each node has O(log n) routing neighbors and

lookups are resolved in O(log n) hops. We consider an abstract version
of the Chord protocol [25], in which each node has d = log2 n neighbors
and lookups on average take log2 n

2
hops.

Following the analysis process in Section 2.1, we know that the abstract
Chord introduces traffic Mc1 = 4.5n

l
s log2 n to update routing tables in

the face of node arrivals and departures (see Equation 3 and note d =
log2 n). In addition, each node sends a heartbeat message to each of its
log2 n neighbors every T=30 seconds. We assume the heartbeat messages
have size 0.5s. The traffic for heartbeats is Mc2 = 0.5sn log2 n

T
. There are

nf lookups in total. Lookups on average take log2 n

2
hops. The traffic for

lookups is Mc3 = (1 + 0.5)s · nf log2 n

2
. The coefficient 0.5 is because

lookup messages are acknowledged. The total traffic is

Mdht =Mc1+Mc2+Mc3 =s · n log2 n(
4.5

l
+0.75f+

0.5

T
). (9)

2.5 Unstructured Overlay Networks
For unstructured overlay networks such as Gnutella, we optimistically

assume that they do not incur any maintenance traffic and queries are
flooded to every node in the system. The traffic to process nf queries is

Mflood = (1 + 0.5)s · n2f. (10)

2.6 Comparing Traditional DHTs with Others
In Figure 2, we compare the traffic of traditional DHTs with that of

one-hop schemes, two-hop schemes, and unstructured overlay networks.
Overall, Figure 2(a) and (b) show that one-hop and two-hop schemes can
be traffic efficient and low latency at the same time. In contrast to the
argument [7] that it is favorable to maintain complete O(n) routing ta-
bles for systems with up to a few million nodes, Figure 2(a) shows that
it is not economical in traffic to do so for systems with more than 2,000
nodes. With a few million nodes, one-hop schemes could introduce 1,000
times more traffic than traditional DHTs. Figure 2(b) shows that “ideal”
two-hop schemes can be traffic efficient for systems with up to tens of
millions of nodes. Figure 2(c) suggests that query flooding schemes used
in unstructured overlay networks are more efficient in traffic than tradi-
tional DHTs only if nodes have very short lifetime (about 75 seconds)
and lookups are very infrequent (one lookup every 30 minutes).

2.7 Proactive vs. Reactive Maintenance
All DHTs described above proactively maintain the accuracy of the

routing tables. An alternative is reactive maintenance, in which nodes
cache other nodes they discovered in past lookups and reuse them in future
lookups. There is no explicit maintenance operation. The drawback is that
nodes may encounter frequent failures during lookups. Next, we calculate
the probability of correct cache hits when nodes use their routing tables.

Suppose node N puts node S into its routing table when N discovers
S through a lookup. The lookups that node N issues follow a Poisson
process with rate f . Since there are n nodes, the lookups that node N
issues to target node S is a Poisson process with rate λv = f/n. The
interval between lookups from N to S follows an exponential distribution

pv(t) = λve−λvt. (11)

Node lifetime follows the exponential distribution pl(t) in Equation 1.
When node N contacts node S at time x since the last lookup, the proba-
bility that S is still alive is (1 −

∫ y=x

y=0
pl(y) dy). So the probability that

node N finds node S is still alive when N issues a new lookup to S is

Pcache hit =

∫ x=∞

x=0

[ pv(x) (1 −
∫ y=x

y=0

pl(y) dy) ] dx

=
λv

λv + λl

=
1

1 + n
lf

. (12)
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Figure 3: Difference between Calot and Chord. (a) Calot stores an object
on the node whose identifier is the closest to the object’s key in absolute
distance. Object x is stored on node A, because A is the closest to x.
Chord would store object x on node B, because B immediately follows
x clockwise. (b) The cumulative distributions of nodes and objects when
storing one million objects into a 1,000-node Calot and a 1,000-node
Chord, respectively. The load in Calot is more balanced.

Table 1 shows the cache hit rate Pcache hit under typical workloads.
When lookup rate f=0.1, about 49% of lookups fail on their first hops.
A failed hop introduces long latency as the query initiator has to wait for
a long, conservative period before it timeouts. Since the cache hit rate is
not sufficiently high, we consider reactive maintenance not suitable for
interactive applications and omit the analysis for its traffic.

3. 1H-CALOT FOR ONE-HOP ROUTING
The analysis in Section 2 shows that it is beneficial to use large routing

tables. When implemented properly, they lead to both low traffic and
low lookup hops. The challenge, however, is to efficiently maintain the
large routing tables in the face of frequent node arrivals and departures.
To this end, we propose 1h-Calot. It uses overlay multicast to efficiently
replicate complete O(n) routing tables on every node. For systems with
up to a few thousand nodes, 1h-Calot resolves lookups in one hop with
high probability while introducing traffic lower than traditional DHTs.
For larger systems, we will introduce in Section 4 our 2h-Calot protocol
that uses O(

√
n) routing tables. Unlike hierarchical one-hop or two-hop

schemes [5, 7, 8, 16, 21], 1h-Calot and 2h-Calot are purely peer-to-peer.
Below we simply refer to 1h-Calot as Calot when the context is clear.

3.1 Overview
Like Chord [25], Calot organizes nodes into a circular ring that corre-

sponds to identifier space [0, 2160-1] (see Figure 3). Each node is assigned

f 0.1 0.3 0.5 0.7 0.9
Pcache hit 0.51 0.76 0.84 0.88 0.90

Table 1: Cache hit rate in Equation 12 (n=1,000 and l=2.9 hours).

an identifier by applying SHA-1 hashing to its IP address. We refer to a
node’s clockwise neighboring node along the ring as its successor and the
counter-clockwise neighboring node as its predecessor. The predecessor
node and the successor node of a key (see below) are defined similarly.

Each object is associated with a key drawn from the identifier space,
for instance, by applying SHA-1 hashing to the object’s content. An ob-
ject is stored on the node whose identifier is the closest to the object’s key
in absolute distance, regardless of the direction (clockwise or counter-
clockwise). By contrast, Chord stores an object on the node whose identi-
fier follows the object’s key clockwise. Figure 3(a) depicts the difference.
Calot balances object distribution across nodes better than Chord (see Fig-
ure 3(b)). In Calot, a node owns a small key range only if it is close to
both its predecessor and its successor. In Chord, a node owns a small key
range if it is close to its predecessor.

Calot maintains a complete O(n) routing table on every node. Ideally,
nodes know each other and messages are delivered directly between the
source and the destination. In case that the routing tables are inaccurate
(e.g., missing living nodes or including dead nodes), routing may take
longer. A node N always greedily forwards a lookup to the node P that is,
to N ’s knowledge, the closest in absolute distance to the lookup key. If P
is the right destination, the lookup is done. Otherwise, P further forwards
the lookup to the node, to P ’s knowledge, closest to the destination, and
so forth. If P is not responsive when N tries to forward P a lookup, N
will timeout and try the second closest node. All communications in Calot
use UDP and messages are explicitly acknowledged.

As in Chord, correct routing is guaranteed so long as each node cor-
rectly maintains its predecessor and successor (therefore a lookup always
moves closer to its destination after each step). The maintenance of prede-
cessors and successors is done through periodic heartbeat messages. Ex-
cept for its predecessor and successor, a node does not periodically probe
any other node in its routing table. This is crucial to keep maintenance
traffic low. Routing table maintenance is described in the next section.

3.2 Routing Table Maintenance

3.2.1 Handling Node Arrivals
We assume that a new node N knows through out-of-band channels

about at least one node P already in the system. Node N generates a
random identifier k by applying SHA-1 hashing to its IP address, and then
asks node P to route a message to locate the predecessor and the successor
of k. Node N joins the ring topology assuming k as its identifier and takes
over from its predecessor and successor objects that are closer to N . Node
N copies a complete routing table from its predecessor in order to have a
global view of the system.

Node N informs other nodes of its arrival by multicasting a notification
through a tree rooted at N . The tree is implicitly embedded in the overlay
(see Figure 4). Unlike approaches [5, 7] that use a single pre-determined
hierarchy to propagate events, Calot multicasts each notification through a
different tree expanded just in time according to the current content of the
routing tables. In different trees, a node sits at different levels. Overall,

4



(a) Multicast process in the overlay. (b) Multicast process as a tree.

Figure 4: Multicast tree for disseminating membership changes. This ex-
ample uses a 3-bit identifier space. There are 8 nodes with identifiers 0-7.
Node 0 just joins and acts as the root of the tree for announcing its arrival.
Node 0 selects its finger nodes at exponentially increasing distance from
itself as its children in the tree. Each children of node 0 is responsible
for covering a range of the identifier space, for instance, range (2, 4) for
node 2. The children of the root further select their finger nodes as their
children to expand the tree, and so forth. Calot uses a total of n trees. The
“trees” are conceptual and require no explicit maintenance.

the load is evenly distributed across all nodes. Our approach retains the
true spirit of the peer-to-peer architecture.

We first give some definition before describing the process for nodes
to select their children in the multicast tree. For a node V with identi-
fier k, the finger nodes of node V are defined as the successor nodes of
keys ri = k + 2i (i = 0, ..., 159). The finger nodes of node V dis-
tribute at exponentially increasing clockwise distance from V . As noted
in Chord [25], with high probability, each node has O(log2 n) distinct
finger nodes (note that, for instance, the successor nodes of keys k0 and
k1 may be the same node since the two keys are close).

The new node N sits at the root of the multicast tree to announce its
arrival. Among nodes in its routing table (which is obtained from its pre-
decessor), node N selects its finger nodes as its children. Let Si and si

(i = 1, · · · , m) denote the m finger nodes and their identifiers, respec-
tively. Nodes Si are ranked in increasing clockwise distance from N .
Node N sends each node Si a message 3 consisting of N ’s identifier, N ’s
IP address, and a multicast range (si, si+1) of the identifier space. Node
Si will be responsible for multicasting the notification to nodes whose
identifiers are in range (si, si+1). Together, the m finger nodes of node
N help N to multicast its arrival to all nodes in the system.

Node Si uses a process similar to what node N uses to expand the
multicast tree with its own children. But the purpose now is to cover
nodes in range (si, si+1) rather than the entire identifier space. Among
nodes in its routing table, node Si selects its finger nodes that are within
range (si, si+1) as its children in the multicast tree. Let Pj and pi denote
the children of node Si and their identifiers, respectively. Node Si asks
node Pi to cover range (pi, pi+1), which in turn expands the multicast
tree by adding their finger nodes as children, and so forth. A node stops
expanding the tree when it discovers that there is no node in the multicast
range it is assigned to, i.e., the multicast range is sufficiently small.

Unlike those pre-determined hierarchies [5, 7], the multicast “trees”
in Calot are transient and purely conceptual. There is no message to
construct the trees before use; no probing to maintain the trees (see Sec-
tion 3.2.4); and no message to tear down the trees after use. Nodes ex-
pand the trees just in time based on local information. This allows suc-
cessful multicast with inaccurate and inconsistent routing tables. (See
Section 3.2.2 for the details on handling failures.) Suppose node S is re-
sponsible for covering key range (a, b) and node P in that key range is
missing from S’s routing table. Node S will not select P as its children
in the multicast tree even if P should be selected based on our definition

3In implementation, the message only needs to include node N ’s IP ad-
dress and node Si+1’s IP address since their identifiers are simply SHA-1
hashing of the IP addresses.

of finger nodes. This mistake, however, will not prevent node P from
receiving the notification. In the worst case, node P will receive the no-
tification from its predecessor as the key range narrows down. In Calot,
nodes maintain accurate predecessors and successors through heartbeats.

3.2.2 Handling Node Departures
When a node leaves, it notifies its predecessor and successor. The pre-

decessor propagates this membership change to all nodes through a mul-
ticast tree rooted at itself, using a process similar to that for node arrival.
A node N may fail without a notice. Its predecessor detects this through
lost heartbeats and then announces node N ’s departure.

The average session duration in Gnutella is 2.9 hours [23], which is
much shorter than the mean time to failure (MTTF) of most modern sys-
tems. We consider most node departures as voluntary rather than due
to hardware failure or software failure. We recommend that the overlay
software running on a node always notifies its predecessor when the user
closes the application, which allows the predecessor to promptly multicast
the node’s departure to keep the routing tables up to date.

3.2.3 Handling Failures
Without faults, each node receives a membership change notification

through a multicast tree exactly once. Faults, however, are unavoidable in
distributed environments. There are several scenarios that a notification
may not be propagated to some nodes. Suppose a node S in a multicast
tree asks its child P to forward a notification to nodes in a key range
that includes nodes Q1, · · · , Qm. If node P is no longer in the system,
which may happen when the routing table of node S is inaccurate, S will
timeout due to missing acknowledgment from node P . Node S deletes
node P from its routing table, and tries using another node to forward the
notification. The retrial may succeed but the notification has already been
delayed such that some nodes hold inaccurate routing tables longer. If
node P dies after receiving and acknowledging the notification but before
forwarding it to nodes Q1, · · ·Qm, these nodes will miss this notification.

Inaccurate routing tables do not persistently fail lookups so long as
nodes properly maintain their predecessors and successors. But inac-
curate routing tables degrade routing performance by taking more hops
(when living nodes are missing from the routing tables) or more fre-
quently encountering failed hops (when dead nodes are kept in the routing
tables). In a long-running environment, it is important to ensure that er-
rors in the routing tables do not accumulate over time and eventually lead
to unacceptable routing performance. To this end, we propose node re-
announcement to address the problem of missing living nodes and routing
entry timeout to address the problem of stale dead nodes.

When a node N joins, it multicasts a message to announce its arrival.
Periodically every h seconds afterwards, if node N is still alive, it multi-
casts a message to re-announce its existence. Nodes that missed previous
announcements now have opportunities to pick up. Therefore, the number
of missing nodes in a routing table does not accumulate over time. The
period h is chosen such that the probability that a node lives longer than h
seconds is 1

2
. Assuming node lifetime follows an exponential distribution

pl(t)=λle
−λlt, where λl=

1
l

and l is the average node lifetime, we have
∫ h

0

p(t)dt =
1

2
=⇒ h = l ln 2 ≈ 0.7l. (13)

When a node P receives a notification regarding the existence of a node
N , P adds N into its routing table and associates an h second timer with
this routing entry. If node N is already in the routing table, node P resets
the timer to h seconds. When the timer fires, node P deletes node N from
its routing table. Ideally, if node N is always alive, node P receives N ’s
re-announcements periodically and keeps N in the routing table. If node
N dies and the notification fails to reach node P , P will purge N from the
routing table after the timer fires. Therefore, the number of dead nodes in
a routing table does not accumulate over time.

In summary, with timeout and re-announcement, routing tables become
soft-state images of the system. When the system stabilizes and no faults
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happen over a certain period, the routing tables converge to a correct
global view. The overhead, however, is the traffic for re-announcements.
We next calculate this overhead. A living node re-announces its exis-
tence every h seconds (see Equation 13) and half nodes leave before
they make the first re-announcements. So half nodes make their first
re-announcements, among which half of them live long enough to make
their second re-announcements, and so forth. The average number of re-
announcements that a node makes during its lifetime is

∑∞

i=1(
1
2
)i = 1.

During a node’s lifetime, it multicasts a notification for its birth and death,
respectively. Adding re-announcements increases multicast messages by
50%. The benefit is a soft-state protocol that handles faults cleanly.

3.2.4 Multicast Traffic Concentration
Some approaches [5, 7] give up being peer-to-peer and use pre-determined

hierarchies to propagate events. Among the n(n−1) links between n
nodes, these systems use only a fixed set of n−1 links in the hierarchy.
Calot disseminates notifications through n different trees built from the
O(n log n) links between nodes and their finger nodes. Another extreme
solution is to use almost all n(n − 1) links in the n trees. We believe our
choice strikes a good balance between load sharing and efficiency.

Regardless of which of the n trees is in use for the current notification,
a node in Calot always forwards the notification to a subset of its O(log n)
finger nodes. Thanks to this traffic concentration, a node talks to its finger
nodes more frequently, which helps detect dead finger nodes faster and
reduce timeout and retrials in multicast. In other words, the concentrated
traffic itself serves as a form of piggybacked “probes”. (Recall that, in
Calot, nodes only send heartbeats to their predecessors and successors.)
The frequency of the “probes” automatically adjusts to the dynamism of
the system. As node lifetime becomes shorter, there are more multicast
notifications and nodes automatically “probe” their finger nodes more fre-
quently. We next calculate the effect of the piggybacked “probes”

A node on average initiates three multicast notifications during its life-
time: one for its birth, one for its death, and one re-announcing its exis-
tence. Amortized over node lifetime l, a node receives q= 3n

l
notifications

per second (e.g., when n=1,000 and l=2.9 hours, q=0.29). Each notifi-
cation travels through n − 1 links. In total, Calot uses n log2 n distinct
links in the n multicast trees. On average, the number of notifications that
travel over a link per second is

λg =
3n
l

(n − 1)

n log2 n
≈ 3n

l log2 n
. (14)

We assume that the notification traveling over a link is a Poisson pro-
cess with rate λg . Suppose a link connects a node P and its finger node
Q. Node Q may leave at any moment between two notifications travel-
ing over the link. Node Q’s lifetime follow an exponential distribution
with rate λl = 1

l
(see Equation 1). Following exactly the same analysis

process that leads to Equation 12, we know that, when node P sends its
finger node Q a notification, the probability that P finds Q dead is

Pdead =
λl

λl + λg

≈ 1

1 + 3n
log2 n

. (15)

The probability Pdead is independent of node lifetime l, which corrobo-
rates our intuition that the frequency of the piggybacked “probes” auto-
matically adjusts to the dynamism of the system. Thanks to the “probes”,
the probability of encountering dead nodes during a multicast is low, for
instance, Pdead=0.003 when n=1,000. The longest path in the multicast
tree has O(log(n)) hops and the average path length is log2(n)

2
. The re-

liable and fast propagation of notifications guarantees the accuracy of the
routing tables. Pdead decreases as the system size n increases, indicating
that the effect of piggybacked “probes” is scalable.

Equation 15 is just an approximation. The probability that a node N
communicates with a dead finger node P during a multicast is actually
lower than Pdead. This is because node N may have already received
the departure announcement of node P before N tries to communicate
with P . In this case, node N simply chooses another node as the finger

node to replace P . Even if node N finds its finger node P dead in the
multicast process, it does not give up; it chooses another node S to replace
P and asks S to forward the notification. Also note that Equation 15 only
estimates the average of λg . Although the traffic is evenly distributed
across nodes, the traffic over different links vary dramatically. Links that
connect nodes and their short distance finger nodes carry higher traffic.

A good estimation of the accuracy of the routing tables needs to con-
sider the factors listed above as well as other factors such as timeout
and re-announcement, network delay, and probably changing system size
(e.g., a system whose size grows gradually). In Section 5, we use simu-
lation to evaluate a complete system that consider all these factors. Our
results show that the routing tables are maintained accurately and most
lookups are resolved in one hop.

In addition to the benefits of piggybacked “probes”, concentrating mul-
ticast traffic on the O(n log n) links between nodes and their finger nodes
also provides the opportunity for notification aggregation. When the fre-
quency of notifications is beyond a node’s forwarding capability, it can
aggregate notifications received over a time period, say 5 seconds, and
then send them in a single packet to its finger nodes. We recommend
notification aggregation only as the last resort, because it increases notifi-
cation delay and leads to less accurate routing tables.

3.2.5 Handling Extreme Dynamism
For typical workloads in which nodes have half to several hour node

lifetime (e.g., 2.9 hours in Gnutella [23]), Calot is able to maintain ac-
curate routing tables using low traffic. As the dynamism of the system
increases, the accuracy of the routing tables degrades. This is because
more nodes fail during the multicast process. For these extremely dy-
namic conditions, there are two directions to improve 1h-Calot: parallel
multicast or parallel lookup. Both come at the cost of increased traffic.

Parallel multicast propagates a notification through multiple trees con-
currently. For instance, when a new node N joins, in addition to announc-
ing its arrival through the tree rooted at itself, N also randomly chooses
j other nodes Si (i=1, · · · , j) and asks Si to disseminate a notification
through the trees rooted at Si. We call this method “redundant trees”.
Another alternative is “redundant flooding”, which floods a notification
through all the n log n links between nodes and their finger nodes (recall
that Calot uses these links to construct the n multicast trees). With this
method, a node that receives or initiates a notification simply sends the
notification to each and every of its O(log n) finger nodes. Nodes remem-
ber the notifications they forwarded lately to avoid forwarding the same
notification repeatedly. Each node receives a notification for O(log n)
times from different incoming links. Our simulation shows that “redun-
dant flooding” is more reliable than “redundant trees” that use O(log n)
trees, although they introduce the same level of traffic. This is because the
former covers more links than the latter.

Parallel multicast improves the accuracy of the routing tables. Parallel
lookup, on the other hand, tries to work with inaccurate routing tables.
The initiator N of a lookup searches its routing table for j nodes that are
the closest to the lookup key, and send them requests in parallel. Each of
the j nodes processes the lookup normally, either returning the object or
forwarding the lookup greedily.

Parallel multicast and parallel lookup can be used either independently
or together to handle extreme dynamism. For typical workloads, we rec-
ommend the basic Calot without these extensions because it is more effi-
cient in traffic and already maintains very accurate routing tables.

3.3 Traffic Analysis
In this section, we compare the total traffic in Calot with that in tra-

ditional DHTs [19, 22, 25, 28]. Results in Section 5 show that Calot
maintains accurate routing tables and resolves most lookups in one hop.
We assume one-hop routing for all lookups. Each second there are nf
lookups in total. Lookup messages have size s and are acknowledged by
packets of size 0.5s. The traffic to process nf lookups is

Lo ≈ (1 + 0.5)s · nf. (16)
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Next, we calculate the traffic for maintenance. Each second, n
l

new
nodes join. We estimate the notifications for node arrivals have size s
(see Footnote 3). We assume that notifications are delivered to every node
exactly once. The traffic to multicast notifications for node arrivals is

Mo1 = (1 + 0.5)s · n

l
n. (17)

The coefficient 0.5 is because messages are acknowledged by packets of
size 0.5s. On average, each node re-announces its existence once during
its lifetime. The traffic for re-announcements is

Mo2 = (1 + 0.5)s · n

l
n. (18)

Each new node obtains a complete n-entry routing table from its predeces-
sor. A routing entry includes a node P ’s IP address and some properties
such as P ’s bandwidth. It is not necessary to transmit P ’s identifier since
the identifier is simply the SHA-1 hashing of the IP address. Copying
routing tables is a bulk transfer; it does not incur per entry packet over-
head or acknowledgment. We estimate the traffic to transmit one entry is
0.25s bytes. The traffic for copying routing tables is

Mo3 = 0.25s · n

l
n. (19)

Each second, n
l

nodes leave the system. The notifications for node depar-
tures contain only the IP address of the leaving node and a propagation
range. We assume that the notifications have size s. The traffic to propa-
gate node departures is

Mo4 = (1 + 0.5)s · n

l
n. (20)

Every T=30 seconds, a node sends two heartbeats, one to its predecessor
and one to its successor. We assume that the heartbeat messages have size
0.5s. The traffic for heartbeats is

Mo5 = 0.5s · 2n

T
. (21)

The total traffic (maintenance plus lookup) in 1h-Calot is

Mo = Lo + Mo1 + Mo2 + Mo3 + Mo4 + Mo5

= s · n(1.5f +
1

T
+

4.75n

l
). (22)

Dividing Mo by Mdht in Equation 9, we get the relative total traffic Ro

between 1h-Calot and traditional DHTs:

Ro =
Mo

Mdht

≈ 6.3

fl
· n

log2 n
. (23)

The traffic in 1h-Calot is dominated by the multicast traffic for rout-
ing table maintenance. For systems with up to a few thousand nodes,
the maintenance traffic is well compensated by the savings from efficient
one-hop lookups. As a result, 1h-Calot actually introduces less total traf-
fic than traditional DHTs. The relative traffic Ro between 1h-Calot and
traditional DHTs decreases as node lifetime l or lookup rate f increases.
Ro grows with the system size (the n

log2 n
component), indicating that it

is not economical to use 1h-Calot for very large systems. This problem
is not unique to our design; it is inherent in any one-hop schemes [5, 7].
Membership update traffic in one-hop schemes grow quadratically with
the system size, due to more frequent membership changes in large sys-
tems and the fact that each change is notified to more nodes.

Figure 5 plots the relative traffic Ro in Equation 23. When n=1,024
nodes, l=2.9 hours, and f=0.1 lookups/second, 1h-Calot saves traffic by
30%; when lookup rate f increases to 0.5, 1h-Calot saves traffic by 70%.
In addition to the benefit of low traffic, 1h-Calot resolves lookups much
faster than traditional DHTs, one hop as opposed to O(log n) hops.

4. 2H-CALOT FOR TWO-HOP ROUTING
When the system size is very large, efficient one-hop routing is no

longer feasible. This is because the maintenance traffic in one-hop schemes
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Figure 5: Relative traffic between 1h-Calot and traditional DHTs (the
exact Ro in Equation 23).

grows quickly with O(n2) (see Equation 7 and 22). By contrast, the
maintenance traffic in two-hop schemes that use O(

√
n) routing tables

grows with O(n1.5) (see Equation 8). When n is large, the difference
between O(n2) and O(n1.5) is significant, for instance, when n=106,
n2/n1.5 = 1000. Figure 2(b) on page 4 shows that, even for very large
systems, the total traffic in “ideal” two-hop schemes is still lower than
traditional DHTs under typical workloads. Moreover, two-hops schemes
resolve lookups in two hops, much faster than traditional DHTs.

Our goal, therefore, is to design a practical two-hop protocol that ap-
proaches the performance of “ideal” two-hop schemes. The main chal-
lenge is to maintain the large O(

√
n) routing tables in the face of fre-

quent node arrivals and departures and to do two-hop routing with the
O(

√
n) routing tables in a peer-to-peer fashion. To this end, we propose

our 2h-Calot protocol. Unlike existing hierarchical two-hop protocols [7],
2h-Calot is purely peer-to-peer. Below we first present a basic version of
2h-Calot and then describe how to make it adaptive.

4.1 Protocol Description

4.1.1 The Basic Version of 2h-Calot
2h-Calot is a further development of 1h-Calot. It also organizes nodes

into a ring topology that corresponds to identifier space [0, 2160-1]. The
“basic” version of 2h-Calot partitions the ring into continuous regions of
equal size called slices (see Figure 6(a)), and runs a protocol similar to
1h-Calot inside each slice. A membership change that happens in a slice
is only propagated to nodes in the same slice. Inside a slice, nodes know
each other. 2h-Calot resolves a lookup in two hops. The first hop routes
the lookup between the source slice and the destination slice. The second
hop deliveries the lookup within the destination slice. Since nodes in the
same slice know each other, the second hop is trivial. The challenge is
to route between two arbitrary slices in one hop. For this purpose, each
computer runs two virtual nodes called sister nodes. Below we refer to
“virtual nodes” simply as “nodes”. To route a message between two slices,
2h-Calot tries to find a node in the source slice whose sister node sits in
the destination slice to forward the message. That is, sister nodes act as
gateways to connect different slices.

Suppose there are a large number of nodes Si (i=1,· · · ,j) in a slice
S. The sister nodes Pi of nodes Si are randomly distributed all over
the identifier space because the node identifiers are randomly generated.
Given an arbitrary destination slice D, with high probability, one of these
sister nodes Pi may sit in slice D. In other words, with high probability,
we can find a pair of sister nodes to connect slices S and D. Please refer
to Figure 6 for a detailed illustration.

We next derive a proper configuration for 2h-Calot. Let k denote the
total number slices, m denote the number nodes in each slice, and n de-
note the number of computers. k · m = 2n since each computer runs
two virtual nodes. We want the slices to be small such that the traffic for
membership updates inside slices is low. But we also want the slices to
be sufficiently large such that the probability of finding two sister nodes
to connect two random slices is high. Let

node/slice ratio: c = m
k

(24)
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Figure 6: Highlights of 2h-Calot. 2h-Calot organizes nodes into a ring
topology. Each computers runs two virtual nodes (nodes at the two ends
of a dashed link, e.g., nodes u1 and u2), and we refer to them (e.g., u1

and u2) as sister nodes. Each node joins the overlay independently as if it
were a “real” node. The identifiers of nodes are randomly generated. The
basic version of 2h-Calot partitions the identifier space into slices. Inside
a slice, everyone knows everyone else through a membership multicast
protocol similar to 1h-Calot. If there are a large number of nodes in each
slice, given two random slices S and D, we can ensure with high proba-
bility that there exist a pair of sister nodes u1 and u2 that connect S and
D. This is because the sister nodes of nodes in a slice are randomly dis-
tributed all over the identifier space. Suppose node s in slice S wishes to
route a message to the node in slice D that is responsible for key d. Node
s searches its routing table for a node u1 in the local slice S whose sister
node u2 resides in the destination slice D. Node s sends the message to
node u1. Nodes u1 and u2 are two virtual nodes running on the same
computer. Node u2 then directly forwards the message to the destination
since node u2 knows all nodes in slice D. In summary, sister nodes act as
gateways to route messages between slices in one hop. 2h-Calot is purely
peer-to-peer. Section 4.1.2 further explains how to make slices adaptive.

be the main configuration parameter for 2h-Calot. c is a constant that
defines the ratio between the number of nodes in a slice and the total
number of slices. Since c = m

k
and k · m = 2n, we have

nodes in a slice: m =
√

2cn (25)

total slices: k =
√

2n
c

. (26)

Let S and D denote two random slices. There are k slices in total. The
sister of a node is randomly distributed in the identifier space. For a node
in slice S, the probability that its sister node is in slice D is

p =
1

k
. (27)

Among the m nodes in slice S, on average c = m/k nodes have sister
nodes in slice D. The probability that exactly x nodes in slice S have
sister nodes in slice D follows a Binomial distribution:

P (X = x) =

(

m
x

)

px(1 − p)m−x ≈ e−c · cx

x!
(28)

P (X ≥ 1) = 1 − P (X=0) ≈ 1 − e−c (29)
P (X ≥ 2) = 1 − P (X=0) − P (X=1) ≈ 1 − e−c − ce−c. (30)

The approximation above exploits the fact that Binomial distribution ap-
proaches Poisson distribution when m is large.

P (X ≥ 1) is the probability that there exist at least one pair of sister
nodes to connect two random slices; P (X ≥ 2) is the probability that
there exist at least two pairs of sister nodes to connect two random slices.
Figure 6(b) plots P (X ≥ 1) and P (X ≥ 2). This figure shows that, with
high probability, we can find sister nodes to connect two random slices.
Therefore, the two-hop routing in Figure 6(a) can be accomplished. We

choose to use the configuration when c = m/k = 5.

c = 5 =⇒ m =
√

10n, k =
√

0.4n, (31)
P (X ≥ 1) ≈ 0.993, P (X ≥ 2) ≈ 0.960 (32)

With this configuration, the probability of finding more than one pair of
sister nodes to connect two slices is also high (0.960). This offers the
opportunity to consider network proximity when routing messages among
slices. If there exists more than one node to reach the destination slice, we
can choose the node that has the lowest latency to forward the message.

4.1.2 Making 2h-Calot Adaptive
Ideally, the number of nodes in a slice (m =

√
2cn) and the number

of slices (k =
√

2n/c) should automatically adapt as the system size n
changes. In existing solutions for two-hop routing [7, 8], nodes need to
unanimously agree upon the number k of slices, making it impossible to
do decentralized adaptation based on only local knowledge. Below we
show how to make 2h-Calot adaptive as the system grows or shrinks.

The key observation is that, the use of “slices” in 2h-Calot is completely
artificial. So long as a node knows a sufficient number of nodes randomly
distributed in the identifier space, given a message to any destination, it
can route the message in one hop to a place very close to the destination
by using one of those random nodes (the first hop). Further, so long as
each node knows a sufficient number of neighbors along the ring, the
message can be delivered to its destination in one hop when it is already
at a place very close to the destination (the second hop). So 2h-Calot can
do two-hop routing without using “slices”.

More specifically, the routing table of a node N includes its m
2

clock-
wise neighbors along the ring and m

2
counter-clockwise neighbors along

the ring. We refer to the continuous range in the identifier space that spans
over these m neighbors as node N ’s neighbor zone. Neighbor zones es-
sentially replace the role of slices in Figure 6(a). Unlike the fixed, global
slices, each node has its own neighbor zone centered at itself and nodes
need not know the neighbor zones of others. Below we always assume
that, whenever a node N knows about a node P , N automatically knows
about P ’s sister. So there are actually 2m nodes in a node’s routing table:
m nodes in its neighbor zone (the “neighbor set”) and their m sisters (the
“sister set”) that are randomly scattered in the identifier space.

The routing algorithm is the same as that in 1h-Calot. Given a lookup, a
node N greedily forwards the lookup to the node P that is, to N ’s knowl-
edge, the closest in absolute distance to the lookup key. Node P either
returns the object or further forwards the lookup greedily. When a node
N searches its routing table for a node P that is closest to the destination,
N doest not distinguish if P is from its “neighbor set” or its “sister set”.
Nodes have no notion of “slices” either. The only rule is greedy forward-
ing. With high probability, the first hop of a lookup forwards the lookup
to a node P that is in the “sister set” of the query initiator and is very
close to the destination; the second hop directly delivers the lookup to the
destination node, which is a node in node P ’s “neighbor set”.

4.1.3 Routing Table Maintenance
In this section, we describe the algorithm for routing table maintenance.

It is similar to the one for 1h-Calot but with a major difference: when
a node N joins or leaves, the multicast notification is only sent to N ’s
m
2

clockwise neighbors and m
2

counter-clockwise neighbors along the
ring, rather than all nodes in the system. Nodes do not know the exact
number n of computers in the system. They estimate n and m from local
knowledge. The processes for announcing node arrivals and departures
are similar. Below we use node arrival as example.

When a new computer N joins, it functions as two virtual nodes Nj

(j=0, 1). N0’s identifier is the SHA-1 hashing of N ’s IP address and N1’s
identifier is the SHA-1 hashing of N0’s identifier (i.e., double hashing
of N ’s IP). Nodes N0 and N1 execute the same protocol but function
independently as if they were “real” nodes. Below we use Nj to refer to
either of them. Node Nj joins the ring topology and obtains a copy of the
routing table from its predecessor P . Suppose the routing table includes
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a total of y neighbors of P , either clockwise or counter-clockwise. The
neighbors of node P are also neighbors of node Nj . Node Nj adds into
its routing table the y neighbors and node P .

Suppose the size of the continuous region of the identifier space spanned
by the y + 2 neighbors (including nodes P and Nj) is z. Node Nj esti-
mates the total number of computers in the system as

estimated total computers: n = 1
2

2160

z
(y + 2). (33)

The size of node Nj’s neighbor zone is estimated as b = 2160

k
, where

k =
√

2n/c. Suppose node Nj’s identifier is d. Nj’s neighbor zone is

estimated neighbor zone: K = [ d − 1
2
b, d + 1

2
b ]. (34)

(Note that the operations are in modulo 2160). Node Nj purges from its
routing table neighbors that are outside K. Different nodes may estimate
the sizes of their neighbor zones differently. Since the “slices” (neighbor
zones) are configured to be sufficiently large (c = m

k
= 5), the variance

in the estimation is well tolerated. With high probability, a node can for-
ward messages in one hop to any region in the identifier space through the
sisters of nodes in its neighbor zones.

Nodes Nj needs to multicast a notification about its arrival to all nodes
in its neighbor zone K. The multicast process is similar to that of 1h-Calot
but the notification is propagated both clockwise and counter-clockwise.
In 1h-Calot, the finger nodes of a node are defined as the successor nodes
of keys ri = k + 2i (i = 0, ..., 159). In 2h-Calot, the forward-finger
nodes of a node are defined as the successor nodes of keys ri = k +
2i (i = 0, ..., 158) and the backward-finger nodes are defined as the
predecessor nodes of keys ri = k − 2i (i = 0, ..., 158). In the identifier
space, the finger nodes of a node distribute at exponentially increasing
distance from the node, either clockwise or counter-clockwise.

The multicast process to cover nodes in node N ’s neighbor zone K =
[d− 1

2
b, d+ 1

2
b] works as follows. Node N splits K into a backward range

Kb = [d − 1
2
b, d] and a forward range Kf = [d, d + 1

2
b]. It multicasts

notifications through two different trees Tb and Tf to cover ranges Kb

and Kf separately. The tree Tf is constructed using the links between
nodes and their forward-finger nodes. The multicast process over tree Tf

is exactly the same as that in 1h-Calot (see Figure 4): node Nj selects its
forward-finger nodes within the forward range Kf as its children; each
child P of node Nj will help Nj to cover a sub-range Kp of range Kf by
asking its forward-finger nodes within the sub-range Kp to forward the
notification, and so forth. The multicast process in tree Tb that covers the
backward range Kb is the same as that in tree Tf except that the multicast
travels over links between nodes and their backward-finger nodes.

2h-Calot shares many features with 1h-Calot. For instance, parallel
multicast and parallel lookup can be used to handle extreme dynamism.
Like 1h-Calot, entries in the routing tables time out periodically and living
nodes re-announce their existence periodically. Before a re-announcement,
a node always re-estimates the system size n based on current information
in its routing table and updates its estimation of neighbor zone K accord-
ingly. The re-announcement will cover nodes in the updated neighbor
zone. This helps nodes with long lifetime to adapt as the system evolves.

4.1.4 2h-Calot vs. Other Two-hop Schemes
Existing solutions for two-hop routing also partition the overlay into

slices and nodes in the same slice know each other [7, 8]. There are several
major differences between 2h-Calot and these hierarchical solutions that
make 2h-Calot particularly attractive for practical use.

• 2h-Calot is extremely simple and purely peer-to-peer. Nodes know
their m neighbors along the ring. That’s it! Notification multicast
uses these m neighbors; routing also uses these m neighbors. There
are neither real “slices” nor real multicast “trees” to maintain; both
are conceptual. By contrast, existing hierarchical solution [7] parti-
tions the overlay into “units” and “slices”, and designates nodes as
“slice leaders”, “unit leaders”, “ordinary nodes”, and “slice repre-
sentatives”. Nodes have different roles and run different protocols.

• 2h-Calot distributes load evenly across nodes. Each pair of sister
nodes carry some traffic between two “slices”. By contrast, for
each slice, existing solutions select a few nodes to act as gateway
to carry all incoming traffic from other slices. The load is unevenly
distributed across nodes.

• 2h-Calot estimates neighbor zones from local knowledge and adapts
as the system evolves. By contrast, existing solutions use fixed
slices. All nodes need to agree upon the slice boundaries that are
determined at design time, and therefore cannot adapt easily.

4.2 Protocol Analysis
In this section, we compare the total traffic in 2h-Calot with that in

traditional DHTs [19, 22, 25, 28]. The analysis is similar to that for 1h-
Calot, but there are 2n virtual nodes for a system with n computers and
each notification is sent to only m =

√
2cn =

√
10n nodes.

Results in Section 5 show that 2h-Calot maintains very accurate rout-
ing tables and resolves most lookups in two hops. As an approximation,
we assume two-hop routing for all lookups. Each second there are nf
lookups in total. Lookup messages have size s and are acknowledged by
packets of size 0.5s. The traffic to process nf lookups is

Lt ≈ (1 + 0.5)s · 2nf. (35)

Next, we calculate the traffic for maintenance. Each second, 2n
l

new
nodes (or n

l
computers) arrive. Conceptually, the notification for a node

arrival includes its IP address, its identifier, its sister node’s identifier, and
a boundary and direction (clockwise or counter-clockwise) for the notifi-
cation to be propagated. We estimate the notification message have size
s. (Note that the identifiers and boundaries are simply SHA-1 hashings
of the IP addresses and we need not transmit them. See Footnote 3). We
assume that each notification is delivered to m nodes exactly once. The
traffic to multicast notifications for node arrivals is

Mt1 = (1 + 0.5)s · 2n

l
m. (36)

The coefficient 0.5 is because messages are acknowledged by packets of
size 0.5s. On average each node re-announces its existence once during
its lifetime. The traffic for re-announcements is

Mt2 = (1 + 0.5)s · 2n

l
m. (37)

Each new node copies a routing table from its predecessor. Conceptually,
the routing table includes m neighbors and the sisters of those m neigh-
bors. But we only need to transfer the IP addresses of the m comput-
ers since the 2m identifiers are just SHA-1 hashings of the IP addresses.
Copying routing tables is a bulk transfer; it does not incur per entry packet
overhead or acknowledgment. We estimate the traffic to transmit one en-
try of the routing is 0.25s. The traffic for copying routing tables is

Mt3 = 0.25s · 2n

l
m (38)

Each second, 2n
l

nodes leave the system. The notification for a node de-
parture contains only the IP address of the leaving node and a propagation
range. We assume that the notifications have size s. The traffic to propa-
gate node departures is

Mt4 = (1 + 0.5)s · 2n

l
m. (39)

Every T=30 seconds, a node sends two heartbeats, one to its predecessor
and one to its successor. We assume that the heartbeat messages have size
0.5s. There are 2n nodes in total. The traffic for heartbeats is

Mt5 = 0.5s · 4n

T
. (40)

The total traffic (maintenance plus lookup) for 2h-Calot is

Mt = Lt + Mt1 + Mt2 + Mt3 + Mt4 + Mt5

= s · n(3f +
2

T
+

9.5
√

10n

l
). (41)
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Figure 7: Relative bandwidth consumption between 2h-Calot and DHTs.
(a) Vary node lifetime (lookup rate f=0.1). (b) Vary lookup rate (node
lifetime l=2.9 hours).

Comparing Equations 22 and 41, we see that 2h-Calot is more scalable
than 1h-Calot. 2h-Calot’s traffic grows with n1.5 while 1h-Calot’s traffic
grows with n2.

Dividing Mt by Mdht in Equation 9, we get the relative total traffic Rt

between 2h-Calot and traditional DHTs:

Rt =
Mt

Mdht

≈ 12.7
√

10n

fl log2 n
. (42)

Like 1h-Calot, the traffic for 2h-Calot is dominated by membership up-
dates. The maintenance traffic, however, is well compensated by the sav-
ings from efficient two-hop lookups. As a result, under typical workloads,
2h-Calot still introduces less total traffic than traditional DHTs.

Figure 7 plots the exact Rt in Equation 42. When n=131,072 com-
puters and f=0.1 lookups/second, 2h-Calot saves traffic by 10%; when
lookup rate f increases to 0.5, 2h-Calot saves traffic by 61%. When the
lookup rate f further increases to 1, 2h-Calot saves traffic by 61% even
for a 1,048,576-node system. In addition to the benefit of low traffic,
2h-Calot resolves lookups much faster than traditional DHTs, two hop as
opposed to O(log n) hops.

When the load (lookup rate) is below medium, 2h-Calot introduces
more traffic than traditional DHTs. The is because the maintenance traf-
fic is not sufficiently compensated by the savings from the lookup traffic.
When the system is underutilized, it is not necessary to use that many
nodes to provide the services. We can dynamically downsize the system
to provide more responsive and more predictable services. KaZaA [10],
for instance, uses only a subset of super nodes to provide services.

1h-Calot and 2h-Calot are just the level-1 and level-2 of our Calot fam-
ily. Generally, a level-i Calot uses level-(i-1) Calots as building blocks
and resolves lookups in i hops. In a level-i Calot, each computer runs
2i−1 virtual nodes to connect remote “super slices”. Regardless of the
level of a Calot, it is still purely peer-to-peer as opposed to hierarchi-
cal. Higher level Calots are more efficient in traffic as the maintenance
traffic grows with O(n

1

i ). On the other hand, we consider 1h-Calot and
2h-Calot sufficient for most applications.

5. EXPERIMENTAL RESULTS
We built an event-driven simulator to evaluate 1h-Calot and 2h-Calot.

The simulator consists of 8,100 lines of C++ code and runs on Linux.
It simulates a complete system, including dynamic node arrival and de-
parture, timeout, and network delay. We do not simulate the UDP/IP level
packet details in order to scale to thousands of nodes. Limited by the 2GB
memory of our computers, we can simulate 1h-Calot with up to 2,000
nodes and 2h-Calot with up to 16,000 computers (32,000 virtual nodes).

Modeling network topology and latency is still an open research area.
We follow the approach [6] that focuses on ensuring the simulated net-
work latency follow the distribution of real network latencies in the Inter-
net. In our simulator, the network latencies between nodes are randomly
sampled from the King dataset [4], which is extracted from real measures
of the round-trip times (RTTs) between 2,048 DNS servers. We divide the
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Figure 8: Routing hops per lookup in 1h-Calot (the Y axis stars from 1).

RTTs by two to obtain one-way latencies. Excluding the empty entries in
the RTT matrix, the average one-way latency is 91ms.

Unless otherwise noted, the simulation works as follows. The sys-
tem starts with one node and continuously add nodes until the popula-
tion reaches n. From then on, node arrival is a Poisson process with rate
λe = n

l
. Node lifetime follows an exponential distribution with mean l.

The system population stabilizes around n as nodes join and leave. Af-
ter the system undergoes 10n membership changes, i.e., a total of 10n
nodes have joined or left the system, the simulator enters the evaluation
phase. It takes a snapshot of the routing tables and use them to evalu-
ate the routing performance, during which each node on average issues
1,000 random lookups. We choose to report the lookup performance at
the end of the simulation rather than the lookup performance averaged
over the entire simulation time. This choice reports lookup performance
more pessimistically because the routing tables are less accurate at the
end of the simulation compared with the time the system just started.

Our simulator models the lookups that a node issues during its lifetime
as a Poisson process with rate f . However, unless related statistics are
needed, the simulator does not fully execute the lookups issued before
the evaluation phase. We found this optimization important to make the
simulation time manageable when the system size is large. This optimiza-
tion makes the reported lookup performance more pessimistic because the
overlooked lookups can actually help detect and fix some inaccurate en-
tries in the routing tables.

Below we present results regarding various aspects of 1h-Calot and
2h-Calot, including traffic, routing performance, resilience in the face of
membership changes, and the ability to adapt as the system size evolves.

5.1 1h-Calot
We first present results on 1h-Calot. Figure 8 shows the average rout-

ing hops per lookup when varying node lifetime and system size. In Fig-
ure 8(a), the routing performance improves as node lifetime increases.
With one hour lifetime, the average routing hops is only 1.0008, indicat-
ing that the routing tables are very accurate. In Figure 8(b), the routing
performance improves as the system size increases, which seems counter-
intuitive but is actually consistent with our analysis in Section 3.2.4 (see
Equation 15). As the system becomes larger, there are more multicast
notifications and nodes communicate with their finger nodes more fre-
quently. Disruptions in multicast due to dead finger nodes happen at a
lower rate. The notifications reach nodes faster and more reliably, which
leads to more accurate routing tables and improved routing performance.

Figure 9 reports the average number of failed hops encountered per
lookup. (Note that a failed hop does not necessarily lead to a unresolvable
lookup. The system always retries alternative routing paths.) Both miss-
ing living nodes and stale dead nodes can lead to inaccurate routing tables,
among which the latter is particularly harmful as it significantly increases
lookup latencies. In our simulator, it takes a timeout that is 18 times of the
average one-way network latency to detect a failed hop before trying an
alternative. Figure 9(a) shows that the failed hops w reduce dramatically
as node lifetime increases. With half hour lifetime, w=0.0016; with one
hour lifetime, w=0.000052 (about 1 failed hop out of 20,000 lookups).
In Figure 9(b), the number of failed hops fluctuates due to the random-
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Figure 9: Failed routing hops per lookup in 1h-Calot.
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Figure 10: A 1,000-node 1h-Calot. (a) Delivery delay of multicast notifi-
cations. (b) The number of notifications that a node receives per second.

ness inherent in the simulation and the fact that the number of failed hops
is not monotonic with respect to system size (an approximate analysis is
omitted due to space limitation).

Figure 10(a) plots the cumulative distribution of the time that it takes to
deliver a membership change notification from the source to other nodes.
When the node lifetime is one hour, 98% of the nodes receive the notifica-
tion within one second after the membership change happens. This quick
and reliable distribution of membership changes is the key that 1h-Calot
can maintain accurate routing tables. When the node lifetime time re-
duces to 7.5 minutes, the delay of notifications is significantly longer, due
to disruptions in the multicast process caused by dead nodes. Only about
70% of nodes receive the notification within 2 seconds (we did not show
nodes that receive the notification after 2 seconds). Figure 10(b) reports
the average number of notification messages a node receives per second.
With 2 hour node lifetime (2.9 hours in Gnutella [23]), a node on average
receives 0.39 notifications per second. In 1h-Calot, all notifications that
a node forwards go through the O(log n) links to its finger nodes. When
the message rate is high, the node can aggregate notifications for the same
outgoing link and send them in a single packet.

Figures 8 and 9 show that the average routing performance is good. In
Figure 11, we plot the distribution of the lookup latency in a 1,000-node
system. With one hour node lifetime, the 95 percentile lookup latency is
only 220ms. For extremely short node lifetime (7.5 minutes), the lookup
latency is much higher. The saw-like curve is due to the timeout and
retrials that happen for multiple times during a lookup.

In Section 3.2.5, we proposed several methods to handle extreme dy-
namism. Figure 12 reports the results for the “redundant flooding” method,
which floods each notification through all O(n log n) links between nodes
and their finger nodes. Each node receives a notification for up to O(log n)
times. This redundancy improves reliability and also delivers notifications
faster because the delivery delay is the minimum delay of the redundant
paths. This figure shows that, with “redundant flooding”, 1h-Calot can
achieve good routing performance even when the node lifetime is very
short. When the lifetime is longer than or equal to half hour, the im-
provement in routing performance over the basic 1h-Calot is not signifi-
cant because the basic 1h-Calot already maintains very accurate routing
tables. We recommend “redundant flooding” for applications that need
low-latency lookups in very dynamic environments. Again, nodes can
aggregate notifications when the message rate is high.
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Figure 11: CDF of the lookup latency for a 1,000-node 1h-Calot.
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Figure 12: A 1,000-node 1h-Calot, using “redundant flooding” to handle
extreme dynamism. A notification is sent through O(n log n) links.

5.2 2h-Calot
1h-Calot and 2h-Calot share many features. Due to space limitation,

our evaluations of 2h-Calot will focus on the aspects unique to 2h-Calot.
Figure 13 plots the average routing hops in 2h-Calot, which are very

close to two, even slightly under two when the system size is small. This
is because 2h-Calot sometimes resolves lookups in one hop, when the des-
tination happens to sit in the query initiator’s neighbor zone and when the
destination happens to be the sister node of a node in the query initiator’s
neighbor zone. Comparing with 1h-Calot, 2h-Calot’s performance in this
figure is closer to the ideal case and less sensitive to node lifetime. This
is because a node’s neighbor zone contains a medium number of nodes,
e.g., 400 nodes for the configuration in Figure 13(a). Further, 2h-Calot
uses both forward-finger nodes and backward-finger nodes to disseminate
a notification through two disjoint trees, which is faster than using just
one tree in 1h-Calot. For Figure 13(a), the number of nodes in one tree is
200, equivalent to a small 1h-Calot system. Due to the limitation of 2GB
memory, 16,000 computers are the largest size we can simulate.

Figure 14 plots the failed routing hops per lookup. Like 1h-Calot, 2h-
Calot maintains very accurate routing tables. As a result, the failed hops
are very low. With 16,000 computers and one hour node lifetime, it en-
counters only one failed hop out of 2,000 lookups. Like 1h-Calot, the
failed hops in Figure 14(b) fluctuate as the population grows, due to the
randomness inherent in the simulation and the fact that failed hops is not
monotonic with respect to system size. Comparing Figure 14 and 9, we
see that the failed hops per lookup in 2h-Calot is higher than that in 1h-
Calot. This is because 2h-Calot resolves lookups in two hops and the
chance of encountering dead nodes is higher.

In Figure 15 and 16, we evaluate 2h-Calot’s ability to adapt as the sys-
tem size doubles over a short period of time. The simulation works as
follows. The system starts with one computer and continuously add com-
puters until the population reaches n=8,000 computers (16,000 virtual
nodes). From then on, computer arrival is a Poisson process with rate
λe = n

l
. Node lifetime follows an exponential distribution with mean

l=1 hour. The population stabilizes around n until a total of 10n com-
puters have joined or left. The system then enters the second phase to
grow the population. The computer arrival rate is increased by 10% to
λe = (1 + 1

10
)n

l
. The average population then starts to grow although

population fluctuation still exists due to the randomness. The arrival rate
λe stay at that level until the population reaches (1 + 1

10
)n for the first
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Figure 13: Average routing hops per lookup in 2h-Calot.
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Figure 14: Failed routing hops per lookup in 2h-Calot.

time. Then the arrival rate is increased again to λe = (1 + 2
10

)n
l

and stay
at that level until the population reaches (1 + 2

10
)n. Generally, the arrival

rate stays at level λe = (1 + i
10

)n
l

(i = 1, · · · , 10), until the population
reaches (1 + i

10
)n. The simulation ends when the population reaches 2n.

In 21 simulated hours, the population doubles from 8,000 to 16,000. This
fast growth is a stress test for 2h-Calot’s adaptation ability.

In 2h-Calot, nodes use Equation 33 to estimate the total number of com-
puters and use Equation 34 to estimate their neighbor zones. Figure 15
plots estimated total computers and the number of computers that nodes
keep in their routing tables (i.e., computers in nodes’ estimated neighbor
zones). Both are averaged over all nodes and are presented as functions of
the growing system size. Despite the fact that the estimations are derived
from local knowledge, they are very accurate and adapt automatically as
the system grows. In 2h-Calot, nodes need not have consistent views
about the “slices”. Each node has its own neighbor zone centered at itself
and the sizes of the neighbor zones are updated locally and dynamically
without affecting others. This is the key reason why 2h-Calot can adapt
while other two-hops schemes [7, 16, 21] cannot. Figure 16 plots the av-
erage number of routing hops and failed hops as the system grows. The
average hops are close to two and the failed hops are extremely low. These
results are similar to the previous results when the computer arrival rate is
constant, indicating that evolving system size is not a major adverse factor
for 2h-Calot, owing to its ability to adapt.

Our last experiment evaluates 2h-Calot’s sensitivity to its only major
parameter c, which decides the number of nodes in each neighbor zone
(m =

√
2cn). Table 2 shows the average routing hops per lookup as

a function of the parameter c. Consistent with the analysis in Equa-
tion 28, the probability of resolving lookups in two hops is high when
c ≥ 3. Larger c leads to higher traffic because each zone is larger and
each membership change is sent to more nodes. We choose c = 5, which
is sufficient to guarantee two-hop routing with high probability and also
gives some buffer zone to handle the dynamism as the population grows

c = m/k 1 2 3 4 5 6 7
avg. hops 2.431 2.131 2.035 1.999 1.984 1.976 1.972

Table 2: Routing hops per lookup in a n=16,000 machine system while
varying the parameter c that decides the number of nodes in each neigh-
bor zone (m=

√
2cn).
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Figure 15: Stress test for 2h-Calot’s adaptation ability as the population
grows from 16,000 to 32,000 computers. The node lifetime is one hour.
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Figure 16: Stress test for 2h-Calot’s adaptation ability as the population
grows from 8,000 to 16,000 computers. Average node lifetime is one hour.

or shrinks.
6. RELATED WORK

This paper makes contributions in suggesting the optimal routing table
size that maximizes the capacity of DHTs and in the designs of purely
peer-to-peer one-hop and two-hop protocols.

Recent works have extensively compared DHTs with routing tables of
size O(log n) [6, 13, 14, 27]. We instead introduce capacity as the uni-
form metric to compare DHTs with O(1) to O(n) routing tables. Xu et
al. [27] studied the tradeoff between routing table size and network diam-
eter. Several degree-diameter optimal DHTs have been proposed [9, 12,
14, 15]. Our work is built upon these works. We intend to answer the
question of “given many degree-diameter optimal DHTs, what’s the rout-
ing table size that maximizes the system capacity and how to implement
it in a practical, peer-to-peer fashion?”

The most relevant work in one-hop and two-hop routing is done by
Gupta et al.[7]. In their one-hop scheme, membership changes are propa-
gated through a single pre-determined hierarchy. The ring-topology over-
lay is partitioned into slices and each slice is further partitioned into units.
Each slice has a leader and each unit also has a leader. When a member-
ship change happens, a node sends a notification to its slice leader, which
forwards the notification to all other slice leaders. A slice leader forwards
a received notification to unit leaders in its slice, which propagate the
notification to ordinary nodes. Unlike our peer-to-peer 1h-Calot proto-
col, nodes in this scheme have different roles and run different protocols.
Slice leaders have much higher load than others and the system critically
relies on them to function. Gupta et al. recommended this protocol for
systems with up to a few million nodes. Under their recommended con-
figuration, a slice leader must keep track of and directly send notifications
to 5,000+ other slice leaders. Gupta et al. also proposed a hierarchical
two-hop scheme. Similarly, the ring is partitioned into slices and units.
Inside a slice, everyone knows everyone else. The slice leader of a slice
selects some representative nodes in that slice to carry all incoming traf-
fic to that slice. See Section 4.1.4 for a detailed comparison between this
protocol and 2h-Calot.

Beehive [17] replicates objects according to object popularity to achieve
O(1) lookups. There are applications in which the short lifetime of ob-
jects makes them unsuitable for replication; and there are applications that
have no objects to replicate at all, for instance, message indirection [24].
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The fundamental functionality of DHTs is routing. Calot addresses this
fundamental problem and has wider applications than Beehive.

Like 2h-Calot, Kelips [8] also maintains O(
√

n) routing tables to achieve
O(1) routing. Kelips uses gossip to disseminate membership changes.
Gossip is not efficient in traffic because a node may receive the same no-
tification for multiple times. More importantly, the gossip protocol takes
time O(

√
n log3(n)) to propagate a membership change throughout the

entire system—over an hour for systems with 105 or 106 nodes.
Mizrak et al. [16] proposed a hierarchical two-hop system, in which all

incoming traffic to a slice goes through the slice leader. HiScamp [5] is a
hierarchical protocol that uses gossip to propagate membership informa-
tion. Rodrigues et al. [21] proposed a system for one-hop routing. It is
based on the client-server architecture. Well-provisioned special servers
inform other nodes of the system configuration.

Compared with the works above, we believe 1h-Calot and 2h-Calot are
the first purely peer-to-peer one-hop and two-hop protocols.

7. CONCLUSIONS
In this paper, we compared DHTs with O(1) to O(n) routing tables

and suggested that, for typical workloads, large routing tables actually
lead to both low total traffic and low lookup hops. These good design
points translate into one-hop routing for systems of medium size and two-
hop routing for large systems. We proposed 1h-Calot and 2h-Calot for
one-hop and two-hop routing, respectively. They are purely peer-to-peer,
efficient in traffic, and resilient in the face of frequent node arrivals and
departures. Both 1h-Calot and 2h-Calot are extremely simple: multicast
maintains the routing tables; information in the routing table is then used
to guide multicast and routing. Compared with traditional DHTs that use
O(log n) routing tables, 1h-Calot and 2h-Calot save total traffic by up to
70% under typical workloads, while resolving lookups in one or two hops
as opposed to O(log n) hops.

We made the following contributions in this paper.

• We are among the first to compare heterogeneous DHTs with rout-
ing tables varying from O(1) to O(n). We are also among the first
to emphasize the capacity aspect of DHTs and use it as the the uni-
form metric to evaluate heterogeneous DHTs.

• We are among the first to emphasize the balance between mainte-
nance cost and lookup cost. We show that lookup rate is a critical
but historically overlooked parameter that shifts this balance.

• We are among the first to suggest that large routing tables actually
lead to both low total traffic and low lookup latency.

• We proposed 1h-Calot. It is purely peer-to-peer. By contrast, ex-
isting one-hop protocols are hierarchical. 1h-Calot multicasts node
arrivals and departures through O(n) different trees embedded in
the overlay. Unlike existing overlay multicast, the “trees” in 1h-
Calot are purely conceptual and require no explicit maintenance.

• We proposed 2h-Calot. It is adaptive and purely peer-to-peer. By
contrast, existing two-hop protocols are hierarchical and use fixed
slices that cannot adapt. 2h-Calot’s randomized algorithm exploits
virtual nodes running on the same computer to connect remote “slices”.

The low traffic and low hop features of 1h-Calot and 2h-Calot make
them attractive for most DHT applications, especially those that operate
under constant high load and require fast routing. We plan to use 1h-Calot
and 2h-Calot in our large-scale monitoring framework, which provides
real-time usage and performance data about software license, CPU, net-
work, and storage to facilitate job scheduling and anomaly detection in
advanced on-demand computing environments [29].

8. REFERENCES
[1] C. Blake and R. Rodrigues. High Availability, Scalable Storage, Dynamic

Peer Networks: Pick Two. In HotOS’03, May 2003.
[2] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and

A. Singh. Splitstream: High-bandwidth content distribution in a cooperative
environment. In SOSP, 2003.

[3] F. Dabek, M. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area
cooperative storage with CFS. In SOSP’01, October 2001.

[4] F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek, and R. Morris.
Designing a DHT for Low Latency and High Throughput. In NSDI, 2004.

[5] A. Ganesh, A.-M. Kermarrec, and L. Massoulié. HiScamp: self-organising
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