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Abstract

We present two new spectral-based methods for real-time detection of changes in autocorrelation
structure in a continuous-valued time series. Our methods are built on the idea that changes in
the autocorrelation are reflected by changes in the Fourier or wavelet-based spectrum and can
be detected by comparing estimated spectra of adjacent blocks of the series. To be effective for
slowly changing spectral structure, the methods are extended to allow information from more
than one past block to be used in determining if a change has occurred. Through simulation,
we evaluate the performance of our methods and find that they can provide reliable and quick
detection of changes in covariance structure in an online monitoring framework. We illustrate the
methods using electroencephalogram traces (brain waves) and run-time computer performance
metrics.

Keywords: Change point, Maximal Overlap Discrete Wavelet Transform (MODWT), Online Mon-

itoring, Periodogram, Scalogram.

1H. Choi is Ph.D. student at the Department of Statistics, University of Illinois at Urbana-Champaign. Email:
hchoi9@uiuc.edu.

2H. Ombao is Assistant Professor, Department of Statistics and Department of Psychology, University of Illinois
at Urbana-Champaign. Email: ombao@uiuc.edu. His research is supported, in part, by NSF DMS 0405243.

3Bonnie Ray is Research Staff Member, Mathematical Sciences Department, IBM T.J. Watson Research Center.
Email: bonnier@us.ibm.com

1



1 Introduction

In monitoring a sequence of correlated observations over time, a key issue is the quick detection

of any change in the underlying process structure, while controlling the rate of false alarms at a

fixed level. Quick detection of change(s) enables immediate decision making and dynamic control

of a system because it allows users to react quickly and make necessary adjustments in a timely

manner.

Much prior work on this problem has focused on methods for detecting changes in the mean

and/or variance structure of a time series, most often using a time domain approach. For example,

Inclan (1993) and Inclan and Tiao (1994) discuss time domain methods for detecting multiple

changes in the variance of a time series, with application to series of stock returns. Online methods

for detecting changes in a process have received less attention. For retrospective change point

detection, Kluppelberg and Mikosch (1996) present a test based on the cumulative integrated

periodogram. Ombao, Heo and Stoffer (2004) present a parametric approach to online change

point detection for time series, based on fitting autoregressive (AR) models to blocks of a series

and comparing adjacent blocks using likelihood-based methods. Although AR models can capture a

wide-range of process behavior, the results of the methodology are likely to be poor if the structure

differs significantly from the assumed AR process. Nonparametric methods, such as those based

on spectral properties of the process, have not been examined in the online setting.

The main contribution of this paper are the online change point detection methods that are

based on the Fourier and wavelet spectra, which are decompositions of variance across frequency

and scale, respectively. By partitioning the series into short blocks, so that stationarity within a

block can be safely assumed, we develop spectral-based methods for comparing the process behavior

across blocks, to determine whether a change has occurred. As mentioned above, an advantage

of the spectral-based methods is that they do not assume a particular process structure, such as

AR, and thus can be effective for series with non-ARMA spectral structure. For improved power

in detecting slowly changing second-order properties, we also show how our procedure can be

extended to use spectral information from more than one previous block without undue additional

computational burden.

2



The remainder of the paper is organized as follows: In Section 2, we discuss Fourier and wavelet

analyses, which are the foundation of our proposed methods, and provide a summary of relevant

prior work. In Section 3, we outline our proposed methodology, including a procedure for sequential

testing relevant for the online framework, and provide illustrations to illuminate the ideas. Section

4 summarizes the results of a simulation study to compare the power of the various tests under

different change scenarios. Section 5 presents applications to monitoring of computer performance

metrics and the behavior of earthquake and explosion seismic waves records. Section 6 concludes.

Some simulation details are included in an appendix.

2 Statistical Background

2.1 Fourier-based spectral method

Let {Xt} be a weakly stationary random process that has an absolutely summable autocovariance

function γ(·). The spectrum of the process is defined to be f(ω) =
∑∞

τ=−∞ γ(τ) exp(−i2πωτ),

where ω ∈ (−1
2 , 1

2 ]. The spectrum provides information concerning the second-order properties of

the process as represented in the frequency domain. The periodogram, an estimate of the spectrum

computed from a stretch of time series X1, . . . , XT (T is assumed to be even, for simplicity) is

defined at the Fourier frequencies ωk = k
T , k = − (

T
2 − 1

)
, . . . , T

2 to be

I(ωk) = (1/T )

∣∣∣∣∣
T∑

t=1

Xt exp(−i2πωkt)

∣∣∣∣∣

2

.

To test whether an observed time series was generated from a process having a specified spectrum

f0(ω), Jenkins and Watts (1968) introduced the “cumulative periodogram test”, based on the

observation that the cumulative sum of the ratio of the periodogram value at frequency ωk relative

to the (true) spectral value at frequency ωk follows a uniform distribution. Coates and Diggle (1986)

extended this idea to compare the spectra of two independent time series under the assumption

that their underlying second-order properties are the same.

Consider two independent time series {Xg,t : t = 1, . . . , T ; g = 1, 2} from which we compute

the periodograms I1(ωk), I2(ωk), respectively. We concentrate on the periodogram only at the

principal Fourier frequencies ωk, k = 1, . . . , m (where m = T
2 −1) and consider only the non-negative

frequencies, since the spectrum is symmetric around zero. We also ignore the periodogram at k =
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0, T
2 , since the periodogram at these indices contains information on the mean level of the process

and power at the Nyquist frequency, which are typically not of interest. At the principal Fourier

frequencies, it is well known that the ratios Ii(ωk)
fi(ωk) ’s are asymptotically independently and identically

distributed observations having distribution χ2
2
2 . See, e.g., Brillinger (1981) and Shumway and

Stoffer (2000). Thus the ratios of the periodograms are distributed approximately independently

as

Rk =
I1(ωk)
I2(ωk)

1
θk
∼ F2,2, where θk =

f1(ωk)
f2(ωk)

. (2.1)

The null hypothesis that the two time series have the same spectra can be formulated as H0 : θk = 1

for all k.

Coates and Diggle (1986) proposed nonparametric methods to examine the above hypothesis.

Of these, the CUSUM method, motivated by the work of Jenkins and Watts (1968), was shown to

have highest power in the situations examined. Under H0, the set of values z1,k = log(1+1/Rk) and

z2,k = log(1+Rk) are asymptotically independent random samples from an exponential distribution

with mean one. Then Uj =
∑j

k=1 zg,k/
∑m

k=1 zg,k, g = 1, 2, j = 1, · · · , m − 1 is the order statistic

from a uniform distribution. The CUSUM method uses the Kolmogorov Smirnov (KS) statistic to

test for departure of the Uj from a uniform distribution. A limitation of this method is that the

achieved significance level depends on the labeling of the two time series, which define z1,k and z2,k.

To address this issue, Coates and Diggle (1986) apply their test twice, i.e., on each of the ratios Rk

and 1/Rk. They do not discuss adjustment of the level of their test for multiple testing.

If interest is centered only on differences in spectral shape, with no concern about changes

purely in the magnitude of the spectra (changes in variance), the normalized periodogram can be

used for testing instead, as the sum of the periodogram values is a consistent estimator of the

process variance.

In a follow-up paper to Coates and Diggle (1986), Diggle and Fisher (1991) suggested an alter-

native method for comparing the spectra of two time series, by examining a quantile-quantile plot of

the two normalized cumulative sample periodograms or, more formally, using a two-sample KS test

with critical values obtained using a randomization method. The latter method, while addressing

the issue of arbitrary labeling, is not computationally feasible in a online monitoring framework due

to the reliance on randomization for obtaining critical values. One major contribution of this paper
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is a method that takes into account ratios Rk and 1/Rk simultaneously and hence addresses the

arbitrary labeling issue in a natural manner, while lending itself feasible in the online monitoring

setting.

2.2 Wavelet-based spectral method

As an alternative to frequency-based decomposition of time series variance, a more recent approach

has been to use wavelets to decompose the variance across different time scales. Consider a time

series which is a union of disjoint stationary blocks. Percival (1995) outlined the connection between

the variance of the stationary block, the spectrum and the wavelet variance via the following:

Var(Xt) =
∫ 1

2

− 1
2

f(ω)dω = 2
∞∑

j=1

∫ 1

2j

1

2j+1

f(ω)dω =
∞∑

j=1

v2(2j)

where the wavelet variance associated with the scale λj = 2j is

v2(λj) ≈ 2
∫ 1/λj

1/(2λj)
f(ω)dω.

Our goal is to develop a method that can detect a change in the wavelet variance across time blocks.

One may view the wavelet variance as a decomposition of variance across a partitioning of the

frequency interval (0, 1
2 ], which is

⋃∞
j=1(1/(2λj), 1/λj ]. This suggests that a reasonable estimator for

v2(λj) would involve wavelet coefficients that correspond to the scale λj . In this paper, we estimate

the wavelet variance v2(λj) using the maximum overlap discrete wavelet transform (MODWT),

described in Percival and Walden (2000, Chapter 5) as the coefficients of scaled and shifted mother

wavelets that share maximal overlap or support in time. In other words, the time shifts used

to construct MODWT coefficients are smaller than those used in the discrete wavelet transform

(DWT). Percival (1995) demonstrated that the estimator that is based on MODWT has a smaller

asymptotic variance than that based on DWT.

We now set some notation. Let Xt, t = 1, . . . , T be the time series of interest; h̃j,τ = hj,τ/2j/2

is the jth level MODWT scaling filter, where hj,τ , j = 1, . . . , J = log2(T ) and τ = 0, . . . , Nj − 1 be

the wavelet basis function corresponding to level j and shift τ ; Nj = (2j − 1)(Lj − 1) + 1 is the

total number of coefficients at scale j; and Lj is the length of the wavelet filter for level j. The
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MODWT wavelet coefficients at level j and shift τ are defined to be

w̃j,τ =
Lj−1∑

`=0

h̃j,`X(t−τ)mod T
.

The wavelet coefficients at scale λj are nominally associated with frequencies in the interval

( 1
2j+1 , 1

2j ].

An unbiased estimator of v2(λj) based on MODWT coefficients is given by the scalogram

v̂2(λj) =
1

Ñj

N−1∑

k=Lj−1

w̃2
j,k, (2.2)

where Ñj = T − Lj + 1. The asymptotic distribution of the scalogram is given by

v̂2(λj) ∼ v2(λj)
ηj

χ2
ηj

, (2.3)

where ηj is the empirical degrees of freedom (Percival and Walden, 2000). For small sample sizes,

setting ηj = max{Ñj/2j , 1} provides reasonable, if slightly optimistic, confidence bounds on the

estimated scalogram. We refer the reader to Percival and Walden (2000, Chapter 8) for a detailed

derivation of this result. We also note the close parallel to results on the asymptotic didstribution

of the (Fourier) periodograms. See, e.g., Shumway and Stoffer (2000).

Scalograms have received wide attention in the statistical literature due to their wide applicabil-

ity and the solid theoretical foundation provided by Percival and Walden (2000). We highlight some

of the applications relevant to this paper. Whitcher, Byers, Guttorp and Percival (2002, Chapter

7) proposed a method for retrospectively testing homogeneity of variance in a long memory time

series. Their method detects the time of unknown variance changes using the MODWT. Maharaj

(2002) clusters non-stationary time series based on similarity of their scalograms by testing the

ratio of the sum of squared wavelet coefficients of the two time series. Determination of similarity

is made using randomization tests applied to scalograms, analogous to the work of Diggle and

Fisher (1991) with periodograms. However, these methods have not been adapted to the online

monitoring setting. Thus, another major contribution of this work is the development of a method

for detecting, in an online setting, a change in the wavelet variance structure of the time series,

including a comparison of the developed method to that proposed in the Fourier framework.
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3 Testing for Change in the Autocorrelation and Autocovariance
Structure

For online monitoring of changes in correlation structure of a time series, we propose two different

methods. The first is based on ratios of periodograms but overcomes the problem of labeling two

time series in Coates and Diggle (1986). The second is a wavelet scalogram-based method. Each

of the methods use test statistics whose asymptotic distributions assume that the adjacent blocks

are close to being independent. Here, we describe and illustrate the methods, while Section 4

summarizes simulation results showing the efficacy of the two methods for a variety of different

change scenarios.

3.1 Gamma Distribution-based Symmetric Ratio method

For detecting changes in the variance decomposition using Fourier-based methods, we propose using

a symmetric ratio (SR) statistic, Sk, which is based on the ratio Rk, as defined in (2.1), and its

inverse 1/Rk.

Theorem 3.1. Define Sk = max {log(1 + Rk), log(1 + 1/Rk)} − log 2. Under the assumption that

Rk is distributed as an F (2, 2) random variable, it follows that Sk is distributed as an Exponential(1)

random variable.

Proof. Under the null of no difference in spectral structure, as in (2.1), Rk follows an F2,2 distri-

bution, which guarantees log(1 + Rk) and log(1 + 1/Rk) each have exponential distributions with

mean of one. To derive the distribution function of Sk, we note that log(1+Rk) ≥ log(1+1/Rk) if

and only if Rk ≥ 1 if and only if log(1 + Rk) > log 2. We now proceed with the proof. First, define

Sk = max{log(1 + Rk), log(1 + 1/Rk)} − log 2. Next, denote the cdf of Sk to be F (r) = P (S ≤ r).

It is obvious that when r ≤ 0, F (r) = 0. For r > 0

FS(r) = P (log(1 + Rk) ≥ log 2)P (log(1 + Rk)− log 2 < r| log(1 + Rk) ≥ log 2) +

P (log(1 + 1/Rk) ≥ log 2)P (log(1 + 1/Rk)− log 2 < r| log(1 + 1/Rk) ≥ log 2)

= P (0 ≤ log(1 + Rk)− log 2 < r) + P (0 < log(1 + 1/Rk)− log 2 < r)

= 1− exp(−r).
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The symmetric ratio statistic is attractive because it is asymptotically distributed as an Exponential(1)

random variable. This allows the user to objectively choose a threshold by specifying the probability

of type I error of any test.

Using the approximate independence of periodogram ordinates at the Fourier frequencies, the

{Sk} form a set of (m− 1) independent exponential random variables, each with mean one. Then

TS =
∑m−1

k=1 Sk follows a Gamma distribution with shape parameter α = m−1 and scale parameter

β = 1. Large values of Ts indicate departures from H0. Note that the SR statistic avoids the

arbitrary labeling issue. Changes in time series behavior in a particular frequency band can be

identified by aggregating Sk only over the frequency band of interest, with appropriate degrees of

freedom adjustment.

The distinction between the CUSUM and the SR methods can be understood in this way.

Differences between the two time series are manifested in different amplitudes at different frequency

bands. The CUSUM method derives its power from the aggregation of small deviations of the

transformed periodogram values from a uniform distribution. As such, the technique will be most

effective for those processes having power concentrated in a particular frequency band. However,

as noted above, the power of the test will depend on which series is used to form the numerator

of Rk. The CUSUM method will emphasize deviations either from the right- or left-hand left tail

behavior of an Exp(1) distribution, depending on this labeling. The use of a CUSUM method to

look for deviations of Sk from a uniform distribution will not be as effective; taking the maximum

at each k does not preserve the ordering of the deviations, which tends to decrease the departure

of the statistic, Uj =
∑j

i=1 Si/
∑m

i=1 Si, from a uniform distribution. Hence, we propose using the

distributional properties of TS =
∑m−1

k=1 Sk as the basis of our test statistic.

For time series having power spread over different frequency bands, such as for a series with

a discrete spectrum, the CUSUM method provides little benefit. By considering the maximum

of the transformed ratio and its inverse in the form of the SR statistic, we always capture the

maximum deviation from the null hypothesis. By not using a Kolmogorov-Smirnov statistic, we

lose the cumulative effect when the power is concentrated in a particular frequency band, but gain
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power in situations where the time series has power spread over different frequency bands. The

simulation results discussed in Section 4 bear out this behavior.

3.2 Scalogram Method

As an alternative to Fourier-based change-point detection methods, we also consider a method

based on the wavelet decomposition of variance components, as captured by the scalogram at each

level j = 1, . . . , J = log2(T ), where the scalogram is defined in (2.2).

The steps in the scalogram approach are as follows:

1. For each level j, construct scalograms σ̂2
1(λj) and σ̂2

2(λj) from two independent time series

{Xg,t}, t = 1, · · · , T ; g = 1, 2

2. Take the ratio r(λj) =
cσ2
1(λj)
cσ2
2(λj)

. Then, under the null hypothesis of equal scalograms for

each block, r(λj) follows an Fηj ,ηj distribution, where ηj can be approximated as ηj =

max{Ñj/2j , 1}, with Ñj as in Section 2.2.

3. For each scale j, use r(λj) to test for departure from the null of equal scalograms across the

two blocks. Note that a two-tailed test is used.

4. Adjust the p-values for multiple comparisons across scales.

Note that each level of the scalogram provides information on the variance components in a

different frequency band and at different times. If we are interested in the behavior of the series over

all frequency levels, all of the scalograms should be tested simultaneously. A standard Bonferroni

method can be used to correct for multiple testing. However, we use the correction method of

Benjamini and Hochberg (1995), which is less stringent compared to the Bonferroni method, and

therefore tolerates more false positives. In Benjamini and Hochberg’s method, the p-value of each

test is ranked from largest to smallest. The largest p-value is left unchanged and each successively

smaller p-value is multiplied by the total number of tests and divided by its rank, i.e. the adjusted

p-value is p( n
n−i), i = 1, . . . , n − 1. If the resulting value is less than the significance level of the

test, the null of equal autocorrelation structure is rejected. For detecting changes in scalograms,

we found that the Benjamini and Hochberg correction method gave a test that was more powerful

without an unduly large false positive rate as compared to the method of Bonferroni.
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Scalograms are typically not normalized. Thus, unless each block is normalized to have unit

variance before the wavelet filter is applied, the scalogram-based change-point detection method

will detect changes in variance as well as changes in correlation structure.

3.3 Sequential Test Procedure for Online Change Point Detection

Ideally, information from more than one previous block should be used to compare to the current

block, for improved power. However, in an online setting, it is important to avoid unnecessary

computation, such as recomputation of the periodogram (scalograms) for the entire series consisting

of (n− 1) prior blocks for which a difference in autocorrelation structure cannot be rejected. This

suggests using a multiple testing approach, where the problem is to determine if the nth time block

is different from the previous (n − 1) blocks given that all previous (n − 1) blocks share common

spectrum.

A formulation of the testing problems is as follows: let H1, · · · ,Hn−1 be a collection of (n−1) null

hypotheses, where Hi is the hypothesis that block (n−i) and block n have the same autocorrelation

structure. This formulation constitutes a multiple testing situation and an adjustment is needed

to obtain correct significance levels for the test. For this situation, we consider that recent blocks

contain more relevant information concerning changes in process structure, and use a Bonferroni

correction with exponentially decreasing significance levels to adjust for multiple testing. More

specifically, we use α∗i = αwi for testing Hi, where wi = 1/2i

1−1/2n−1 , such that the
∑n−1

i=1 α∗i = α. We

first test Hn−1 at significance level α∗n−1. If Hn−1 is rejected, a change in correlation structure is said

to have occurred. Otherwise, we proceed to test Hn−2 at significance level α∗n−2. Testing continues

until a rejection is obtained or all (n − 1) tests have been performed, in which case the current

block cannot be said to be different from the previous blocks in terms of autocorrelation structure.

The sequential testing procedure should have power similar to that of the method based only on

comparing most recent block to previous block, as α∗n−1 for testing Hn−1 is only slightly smaller

than an unadjusted α value. An advantage of the sequential testing procedure is the potentially

enhanced ability to (eventually) detect changes for process with slowly evolving autocorrelation

structures, which might be otherwise hard to detect if the differences between successive blocks is

small. We explore this capability in more detail in the next section.
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3.4 Illustrations

To illustrate the proposed methods, we generated a time series of length T = 128 from a piecewise

stationary process xt having change point at t = 65, with xt defined as

xt =
{ −0.9xt−1 + εt, 1 ≤ t ≤ 64

0.9xt−1 + εt, 65 ≤ t ≤ 128

Thus, the first block of n = 64 consists of a process with power concentrated at high frequencies,

while the second block has power concentrated at low frequencies. The top plot of Figure 1 shows the

time series with a vertical line indicating the change point. The middle plot shows the normalized

periodogram for each block, while the bottom plot shows the scalogram for each block. There

is a clear visual difference between the periodograms and the scalograms for each block. The

simulations and data analysis reported in this paper are based on a Haar wavelet basis to compute

the scalogram although in theory one may use other wavelet filters.

Time Series

Time

 

−4
−3

−2
−1

0
1

2
3

1 16 32 48 64 80 96 112 128

Normalized Periodogram

Frequency

 

0 π 4 π 2 3π 4 π 0 π 4 π 2 3π 4 π

0.0
0

0.1
0

0.2
0

0.3
0

Scalogram

Level

 

1 2 3 4 5 6 1 2 3 4 5 6

0
50

10
0

15
0

20
0

Figure 1: Time series, periodogram, and scalogram for a simulated AR(1) process with change in
AR coefficient at t = 64

The top and middle left plots of Figure 2 show the transformed ratios of the normalized peri-

odograms for the two blocks, z1,k = log(1+Rk) and z2,k = log(1+1/Rk), while the top and middle

right plots show the corresponding CUSUM statistics based on these zi,k, relative to a uniform
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Figure 2: Left hand plots show transformed ratio statistics and maximum of transformed ratio
statistics based on two blocks of size n = 64 for series of Figure 1, while right hand plots show
corresponding CUSUM statistics based on the transformed ratios, relative to that for uniformly
distributed random variables.

distribution. The departure from a uniform distribution is larger using z1,k in this example. The

bottom left plot shows Sk = max{log(1 + Rk), log(1 + 1/Rk)} − log 2, the basis of the SR statistic,

while the bottom right plot shows what happens if the CUSUM statistic is used with Sk. We see

that taking the maximum of the two transformed ratios results in smaller overall departure from a

uniform distribution in this case, as discussed in Section 2, due to the increase in the denominator

term. Note that our method does not use the CUSUM approach, rather, we use a test statistic

that has an (asymptotic) gamma distribution. Using the SR statistic, the null hypothesis of same

spectral structure is rejected with p = 0.00356. The scalogram method rejects with p ∼ 0.00000.

Alternatively, consider a process of length T = 128 having in first block of size n = 64 a

discrete spectrum that takes value one at all frequencies except for a randomly selected 5% of them

(3 frequencies in the case illustrated, ωk = 5, 20, 30), where it takes value 32. At time t = 65,

the process switches to follow a white noise process. See Appendix A for detailed discussion on

simulating a process with a discrete spectrum. Figures 3 and 4 show plots analogous to those
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in Figures 1 and 2 for this situation. We see that the CUSUM method is much less powerful in

detecting deviations from uniform distribution when the differences in spectral behavior are spread

among different frequency bands. The SR statistic gives a p-value of 0.037 for this case. The

scalogram method rejects the null with p = 0.002, while the CUSUM method can’t reject the null,

having p-value = 0.521.

Time Series
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Figure 3: Time series, periodogram, and scalogram plots for simulated process having peak in
variance components at discrete frequencies 5, 20, 30, changing to a white noise process at t = 65.

Now consider a slowly evolving AR(1) process xt = atxt−1 + εt, t = 1, · · · , 576, where εt are

i.i.d. standard normal and at = −0.8+0.2× [t/64]. The top, middle, and bottom plots of Figure 5

show the gradual change in the process as reflected in the series values, the normalized periodogram

of each block, and the scalogram of each block.

In order to detect changes in a process as quickly as possible, we focus on small blocks, making

it potentially harder to detect small changes due to a small number of observations. The sequential

testing procedure discussed in Section 3.3 can increase the power of the test since more information

is essentially aggregated across time blocks. For the example of Figure 5, applying the CUSUM

or SR test methods only to adjacent blocks results in no detection of a change in autocorrelation

structure. Applying the sequential test procedure, a change point is detected between blocks 8 and
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Figure 4: Left hand plots show transformed ratio statistics and maximum of transformed ratio
statistics based on two blocks of size n = 64 for series of Figure 3, while right hand plots show
corresponding CUSUM statistics based on the transformed ratios, relative to that for uniformly
distributed random variables.

9 using the SR statistic, and between blocks 6 and 7 using the scalogram method.

The next section summarizes results of more broad scale simulation studies to assess the capa-

bility of the proposed change point detection methods under scenarios similar to the three discussed

above.

4 Simulation Study

We conducted three simulation experiments, each with 1000 replicated time series of length T =

1024. Each series was divided into blocks of length n = 64, for a total of 16 blocks (15 tests).

This block size was chosen so as to balance the trade-off between the ability to more accurately

identify the change point (small block size) and higher power (larger block size). In practice, the

choice of block size will depend on the particular application. The CUSUM, SR, and scalogram

methods, with and without sequential testing, were applied to each set of blocks. In each case, we

report the percentage of times (out of 1000) that a change was detected at a block boundary using
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Figure 5: Time series, blocks periodograms, and block scalograms for a single realization from a
slowly changing AR(1) process

a significance level of 5%. The CUSUM and SR statistics are based on normalized periodograms

in all cases.

4.1 Abruptly Changing Process with Discrete Spectra

Consider a time series, {Xt : t = 1, · · · , 1024}, which is a piecewise stationary process with change

points at t = 250 and 510

Xt =





X1,t, 1 ≤ t ≤ 250,
X2,t, 1 ≤ t ≤ 510,
X3,t, 511 ≤ t ≤ 704,

(4.1)

In this example, we assume that the spectrum of each block is discrete. A discrete process, Yt, has

a discrete Cramèr representation

Yt =
T/2∑

k=T/2−1

Ak exp(i2πkt/T )

where the random coefficient is decomposed into a product of a fixed and random part Ak = αkzk.

The fixed quantity, αk, is restricted to be real-valued and symmetric about k = 0 whereas zk is

complex-valued random variable with mean 0 and unit variance (for purposes of identifiability).
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They zk’s are uncorrelated over k despite the special relationship αk = α∗k for negative k < 0

(where b∗ denotes the complex-conjugate of b). See Appendix A for a description of generating

periodogram data from such processes.

In the first block of the model 4.1, αk = 1 for all k. That is, the spectrum for the first block

is flat (without any peaks). In the second block, there are 3 peaks which are selected randomly

and αk = 25 at these peaks. In the third block, αk = 28 also at the 3 frequencies that are selected

randomly which may differ from the peaks at the second block. Table 1 shows change detection

results for series generated to have such structure. The results indicate that the CUSUM method

has little power in detecting such changes. Both the SR and the scalogram methods are more

sensitive to the changes than the CUSUM method. We observe that at the methods have a higher

rate of detection at the second change-point than the first change-point. This is because in the first

change point there are really only 3 frequencies at which the discrete spectra differ. On the other

hand, at the second change point, there could be as much as 6 frequencies at which the spectra

differ. Moreover, we note that the updating procedure improves the power to detect the changes

to some degree in all cases.

Table 1: Results for discrete spectrum process having an abrupt change
CUSUM SR Scalogram

Update w/o with w/o with w/o with
1 2.0 2.0 5.3 5.3 1.3 1.3
2 3.4 2.5 4.3 4.4 0.8 0.6
3 4.3 3.7 4.4 4.9 1.1 0.6
4 10.8 9.6 26.2 26.3 94.1 94.7
5 2.8 4.9 1.2 5.5 0.4 5.9
6 2.9 3.3 1.6 3.0 0.7 2.3
7 2.1 2.3 1.7 2.1 0.7 1.1
8 3.3 2.8 2.2 2.4 0.5 0.5
9 2.2 2.3 1.7 1.7 0.4 0.6
10 3.0 2.3 1.7 1.3 0.5 0.5
11 8.4 7.5 3.9 3.0 12.9 17.1
12 47.3 56.4 93.3 95.5 100 100
13 2.9 4.4 0.3 9.2 1.1 1.6
14 2.5 2.9 0.3 2.2 1.2 1.3
15 2.6 1.9 0.0 0.7 0.8 0.7
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4.2 Slowly changing AR(1) process

In practice, a random process may change slowly over time. Consider a slowly changing AR(1)

process, yt = αtyt−1 + εt, where αt = 1.8
[

eβ(t−512)/1024

1+eβ(t−512)/1024 − 1
2

]
. As αt changes from -0.9 to 0.9, the

process changes from a high frequency one to a low frequency one. As β increases, the changes

around t = 512 become sharper; the asymptote of αt is 0.9 as t increases and -0.9 as t decreases. A

similar process was investigated in Ombao et al (2001) although their method was a retrospective

segmentation of a non-stationary time series based on the SLEX (localized Fourier) transform.

Table 2 gives the results of the change point detection methods applied to this process when β = 50.

The coefficient αt changes very quickly around t = 512. As expected, there is a higher probability

of detecting a change for blocks around the t = 512. The scalogram method has moderate power

in detecting the slowly changing high frequency structure, but little power in detecting the slowly

changeing low frequency structure. The SR method performs slightly better than the CUSUM

method for this process.

Table 2: Results for Smoothly Changing AR(1) Process
CUSUM SR Scalogram

Update w/o with w/o with w/o with
1 7.4 7.4 11.1 11.1 21.4 21.4
2 6.5 6.2 10.7 11.0 20.6 23.8
3 6.3 7.5 11.1 12.9 20.3 24.9
4 5.9 7.1 11.8 13.1 20.9 24.8
5 6.1 7.8 10.3 11.1 21.6 26.0
6 7.0 8.4 10.3 12.3 19.2 24.3
7 30.0 40.6 28.6 42.4 54.7 66.2
8 97.0 97.6 72.9 86.8 84.9 86.3
9 29.7 30.4 28.5 35.3 2.0 9.0
10 6.5 12.3 10.5 19.3 0.9 2.5
11 7.5 9.6 10.0 13.5 0.9 1.0
12 5.3 6.6 9.9 12.7 0.9 0.8
13 5.9 7.7 8.2 9.7 1.5 0.7
14 6.6 8.0 9.7 10.4 1.4 0.9
15 6.7 7.7 10.5 12.6 1.1 0.8

In summary, we see that both the SR and the scalogram methods improve upon the CUSUM

method. The updating procedure results in additional gains in power, particularly in the case of a

process having slowly changing correlation structure. The SR method is preferred if only changes in
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spectral shape are of interest. The power of the scalogram method appears to be highly dependent

on the underlying spectral structure.

5 Data Illustrations

5.1 Analysis of Brain Waves

We analyze an electroencephalogram (EEG) signal recorded at the left temporal channel during

an epileptic seizure. The signal was recorded at a sampling rate of 100 Hz (100 observations per

second). This signal is a subset of that used in Ombao et al (2001, 2005) who developed the

Auto-SLEX method which retrospectively determines changes in the electrical activity of the brain

during an epileptic seizure. To illustrate our methods, we analyze only a short segment (T = 1024)

of the original EEG series around the time of seizure onset using blocks of size n = 64, for a

total of 15 blocks. Our interest lies in detecting changes in the micro-structure of the EEG that

might be predictive of seizure onset, rather than detecting only the seizure onset. The dotted

lines in the top plots of Figure (6) indicate detected changes using the SR (left) and scalogram

(right) methods, with sequential testing. The time of seizure onset (as determined by the study

neurologist) is indicated by the heavy dashed line. We see that in the left temporal channel, the

SR method detects changes before the onset of seizure as well as onset of the seizure itself. The

scalogram method detects the onset of seizure, as well as another change after seizure onset. The

bottom plots of Figure (6) show that power seems to be concentrated at slightly higher frequency

bands after seizure onset. These results are comparable to those of Ombao et al (2001, 2005) in

that similar change points are detected around seizure onset. However, it is worth noting that the

SR method was able to detect changes in the brain electrical activity even before seizure onset.

Indeed, it is typically the case that changes in the brain occur even before one observes physical

manifestations of an episode such as loss of consciousness, loss of balance, etc. These results suggest

that our methods can be potentially useful for monitoring EEGs in an online setting.

5.2 Analysis of Computer Performance Metrics

The ability to understand the behavior of a computer program and dynamically adapt to changing

patterns of program behavior at run-time is increasingly important for improving performance.
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Figure 6: Top plots: Observed EEG for the Left Temporal Channel, with detected change points
using SR (left) and scalogram (right) methods. Bottom plots: Periodogram (left) and scalogram
(right) for each block of size n = 64.

For improving memory performance, one approach is to predict different segments of a program

that have recurring data locality during a program’s execution. Code-based methods mark loops

and functions as phases and estimate their behavior through profiling (see, for example, Hsu and

Kemer, 2003). However, this approach cannot react when the same procedure or loop accesses

different data during a single execution. One would like to determine changes in program behavior

dynamically based on metrics generated at run-time, such as Instructions per Cycle, a measure

of overall performance, cache miss rate, a measure of memory performance, or branch prediction

accuracy. When a change in phase is detected, elements of the program can be dynamically adapted

to meet the changing needs based on observed past behavior for the same phase. For instance, data

layout can be reorganized to reduce cache miss rates or improve prefetching efficiency. Existing run-

time approaches typically divide program execution into fixed-length intervals and use behavior in

past intervals to predict the behavior in future intervals. The behavior is characterized using simple

metrics such as cache miss rates, which can be determined at run-time with minimal computational

overhead (Balasubramonian, Albonesi, and Dwarkadas, 2000). A method that uses a mix of the

two approaches is based on one-time profiling of a program using data collected during runs with

training inputs. The program is instrumented by inserting phase markers into the code. When the

instrumented program runs, it uses the first few executions of a phase to predict all later executions

(Shen, Zhong, and Ding, 2004). In both approaches, the determined phases are dependent on the
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particular training inputs used, although this does not seem to be a limiting factor in many practical

applications. The harder problem is predicting behavior in programs in which later occurrences of

a phase may have dramatically different behavior from the first few occurrences.

Here, we apply the methods of Section 3 to evaluate their usefulness for detecting changes in

behavior (phase transitions) of computer processor metrics generated during run-time of a program.

Changes in periodic structure, as captured by spectral peaks, are especially of interest, motivating

our spectral-based approach. Additionally, Fourier and wavelet transforms on block sizes that are

powers of two are very computationally inexpensive.
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Figure 7: Top plots: Portion of trace (n = 1024) for branch mispredict rates (recorded every 10ms)
during run-time execution of a specific program using a particular processor architecture

The top row of plots in Figure 7 shows an approximately one second portion of the series of

branch mispredict rates measured every 10ms for a particular program running on Power3 processor

architecture. The solid lines indicate the detected change points based on the SR method with

normalized periodograms (top left) and the scalogram method (top right), using blocks of length

n = 64 with α = 0.05. The corresponding block periodograms and scalograms are shown in the

bottom row of plots. In most cases, both methods appear to detect those phase transitions that

match with visual assessment by systems researchers, although the scalogram method appears to

miss a couple of the changes detected by the periodogram method. Note, however, that the series

20



appears to have changes in mean level within a block, violating the assumption of stationarity. A

change in mean within a block impacts the second-order properties of the process, which may then

manifest as a change in estimated spectrum compared to a previous block with the same underlying

correlation structure but a constant mean. This suggests that the methods introduced here can

be used to detect changes in mean as well as changes in correlation structure. On the other hand,

changes in level may be of no inherent interest and thus our methods would indicate spurious

change points in this case. One approach to handle this might be to use a simple, wavelet-based

detrending method for each block before the spectral test is computed. We will investigate this

further in future research.

Of course, to completely address the goal of phase prediction, i.e. predicting phase behavior, it

is necessary to go beyond simply detecting changes in phase as characterized by changing spectral

behavior. One approach to the prediction problem would be to match the spectral behavior of the

block at which a change is detected to the behavior of past segments determined to be stationary

using, for example, the spectral classification methods of Shumway (1982), Shumway (2003) or

Huang, Ombao and Stoffer (2004). The program elements would then be dynamically adapted

based on observed behavior in the most closely matching past phase. This adaptation would remain

in place until the next change point was detected. Additional investigation of the phase prediction

problem is beyond the scope of this paper. Here, we have simply used computer processor run-time

metrics to illustrate the change-point detection approaches of Section 3.

6 Conclusion

We developed two non-parametric methods for detecting changes in autocorrelation structure of a

time series in an online monitoring framework. The methods are spectral-based, detecting changes

in the decomposition of variance over frequency or scale, without explicit reference to a parametric

model for the spectral behavior. Thus they are more flexible than parametric approaches, which

can be quite sensitive to deviations from the parametric assumptions.

The first method, based on Fourier decomposition of spectral variance, overcomes the limitation

of Coates and Diggle (1986) on time series labeling. This reduces computational effort in an online

framework. The second method is based on the wavelet variance. A multiple testing approach is
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used to test for changes in behavior across multiple scales. Both methods are easy to implement,

using computationally efficient FFT and MODWT algorithms, respectively. The introduced se-

quential testing procedure allows for incorporation of information from prior blocks for improved

power, while at the same time controlling the level of the test.

The issue of how to choose an appropriate block size is one that is application dependent,

weighing the trade-offs between quick detection and computational efficiency. As mentioned in

Section 4, a potential issue with both tests is that when the trend is not removed from each

stationary block, the distributional properties of the periodograms and scalograms may be affected.

We are currently deriving the theory for the asymptotic distributions and for how the test statistic

may be utilized for detecting changes in the trend (in addition to the second order structure). Other

extensions to the current work include investigation of methods appropriate for detecting changes

in correlation structure for multivariate time series.

Appendix A

First, consider a discretized Cramér representation of a stationary time series to be

Xt =
1√
T

T/2∑

k=−(T/2−1)

Ak exp(i2πkt/T )

where Ak is the coefficient that corresponds to the sinusoid having k cycles over the entire duration

of T observations. Note that Ak is random variable that possesses these properties: (i.) At

k = 0, T/2, Ak is real-valued with mean 0 and variance fk; (ii.) for k = 1, . . . , T/2− 1, A−k = A∗k

where A∗ denotes the complex conjugate of A; (iii.) For each k, the real and imaginary parts

of Ak are uncorrelated and identically distributed with mean 0 and variance fk/2 and (iv.) for

k = 0, . . . , T/2, all the real parts and imaginary parts of Ak are uncorrelated (within k and between

k’s). Moreover, the spectrum fk is symmetric about 0, i.e., f−k = fk. For our purposes, fk will be

flat except for a few k’s where the peaks occur. Denote Ω ⊂ {−(T/2 − 1), . . . , T/2} to be the set

of indices where the peaks occur. Then, the discrete spectrum fk can now be defined to be

fk =
{

δk, k ∈ Ω
1, k /∈ Ω,

where δk À 1. To simulate a time series, we outline the following steps:
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1. Generate a white noise time series Z = [Z1, . . . , ZT ] from a distribution with mean 0 and

variance 1.

2. Compute the vector of Fourier coefficients of Z and denote it by d = (dk), k = −(T/2 −
1), . . . , T/2.

3. Compute the vector A = (Ak) where Ak =
√

fk dk.

4. Compute the inverse Fourier transform of A to obtain the time series X = [X1, . . . , XT ].
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