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NHPP Models for Categorized Software Defects

Key Words: Bayesian inference, conditional multinomial, latent variables, software engineering

Abstract: We develop NHPP models to characterize categorized event data, with application
to modeling the discovery process for categorized software defects. Conditioning on the total
number of defects, multivariate models are proposed for modeling the defects by type. A latent
vector autoregressive structure is used to characterize dependencies among the different types.
We show how Bayesian inference can be achieved via MCMC procedures, with a posterior
prediction-based L-measure used for model selection. The results are illustrated for defects
of different types found during the System Test phase of a large operating system software
development project.

1. Introduction

Nonhomogeneous Poisson process (NHPP) models are commonly used to characterize event
data collected over time when the expected number of events per time unit is non-constant. In
particular, a number of different NHPP models have been developed for characterizing software
reliability based on the observed number of defects discovered over time. Some of these include
the models of Jelinski and Moranda [1], Goel and Okumoto [2] and Yamada, Ohba, and Osaki
[3]. In the context of software reliability, the NHPP growth curve model of Kuo and Yang (see
[4]) assumes that there is a Poisson distributed random number of defects N remaining in the
software at the start of the model time frame (t = 0), that no new defects are introduced at each
repair, and that the n failure times observed up to time t can be taken to be the first n order
statistics from N independent and identically distributed (i.i.d) observations having probability
distribution f(t). Singpurwalla and Wilson [5] provide a comprehensive reference for statistical
techniques useful for software reliability.

Almost all of the published literature on software reliability modeling has focused on char-
acterizing a product’s reliability based on all defects considered together, not distinguished by
type. However, discovered defects are usually classified into different categories, such as severity,
impact, or trigger event. Since different types of defects are expected to have different impacts
on the ultimate software reliability, it is enlightening to model defects as classified into differ-
ent types, in addition to the model that characterizes the overall defect discovery process. For
instance, the Orthogonal Defect Classification (ODC) scheme was developed at IBM to charac-
terize different types of defects found during the software development process. A few papers
have discussed the relationship between type of defect and reliability growth, and have developed
individual growth models to understand the evolution of defect types over time (see Chillarege
et al. [6] and Chillarege and Biryani [7]). Ray, Bhandari and Chillarege [8] discussed a reliability
growth model that can explicitly incorporate relationships for two defect types, the rationale
being that certain defects cannot be discovered until other defects of a different type are first
found. Ray, Liu and Ravishanker [9] described a software reliability characterization for typed
defects using a dynamic growth curve formulation, which allows model parameters to vary as a
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function of covariate information. In the case of categorized defects, the covariates used were
the volumes of defects found in previous time periods of a different type.

In this paper we propose a different approach. Instead of considering the types interacting
with each other simultaneously, we model the evolution of the proportion of different types of
defects through a latent variable model with autoregressive structure to characterize dynamic
interactions among the types. Although we motivate the model using categorized defects in the
context of software reliability, this type of model may also be of interest in other applications.
In survival analysis, for example, patients are routinely classified into different groups, with
interest centered on the number of events experienced over time by each group. In a business
context, it may be of interest to model the number of events of a particular type observed by a
company, where some dependencies exist between the proportions at a given time. An alternate
framework using a random coefficient autoregressive model was discussed in Singpurwalla and
Soyer[10].

The remainder of the paper is organized as follows. After a brief background discussion, we
introduce in Section 2 a bivariate NHPP model and its multivariate extension. In Section 3,
we present Bayesian modeling details that enable full statistical inference. As illustration, we
present estimation results for simulated data in Section 4, with application to actual software
development defect data in Section 5. Section 6 concludes.

2. Conditional Multinomial NHPP Models

Let Ytj represent the number of events observed in the interval [tj−1, tj) for j = 1, · · · , T . The
time intervals [tj−1, tj), j = 1, · · · , T typically represent equally spaced days, weeks, months,
etc., although they can, in general, be of varying lengths. The mean number of events mtj in
[tj−1, tj) is given by

mtj = θ(F (tj) − F (tj−1)), (1)

where θ is the expected total number of events, assumed to be finite, and F (tj) represents the
cumulative distribution function of the assumed time to event distribution.

A flexible distribution which can accommodate increasing or decreasing hazard rates is the
Weibull distribution

f(t) = αβtα−1 exp(−βtα), α > 0, β > 0, t > 0, (2)

which has decreasing, constant, or increasing hazard rate for α < 1,= 1, > 1, respectively; β
can be interpreted as the defect discovery rate, while α has been interpreted in relation to the
customer usage rate Kenney [11] The Weibull model reduces to an exponential model when
α = 1. Under a Weibull assumption, Equation (1) has form

mtj = θ(F (tj) − F (tj−1)) = θ[exp(−βtαj−1) − exp(−βtαj )]. (3)

Suppose that these events are categorized into K types, so that Y
(k)
tj

denotes the observed
number of events of type k, k = 1, · · · ,K. We assume that the probability for each of the
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K types of events, conditional on the total number of events within the time interval [tj−1, tj)
follows a multinomial distribution. That is, let p

(k)
tj

represent the probability of a Type k event

in [tj−1, tj), k = 1, · · · ,K. Given that Y
(k)
tj

is the number of events of Type k and Ytj is the
total number of all types of [tj−1, tj), it follows from well-known probability results (see Ross
[12]) that the joint probability of the observed number of categorized events in [tj−1, tj) is

P (Y (k)
tj

= y
(k)
tj

, k = 1, · · · , K) = P (Y (k)
tj

= y
(k)
tj

| Ytj =
K∑

k=1

y
(k)
tj

)P (Ytj =
K∑

k=1

y
(k)
tj

) (4)

=
(
∑K

k=1 y
(k)
tj

)!∏K
k=1 y

(k)
tj

!

K∏
k=1

p
y
(k)
tj

tj

e−mtj m

∑K
k=1 y

(k)
tj

tj

(
∑K

k=1 y
(k)
tj

)!
(5)

where mtj was given in (1).

The likelihood function for the model parameters is obtained as the product of the joint
probabilities in (5) over all time intervals. Let Y = {Ytj , j = 1, · · · , T} denote the total number
of observed events up to time T , and let Y (k) denote the number of events of Type k, k =
1, · · · ,K. Let ptj = (p(1)

tj
, · · · , p

(K)
tj

), p = {p(k)
tj

, k = 1, · · · ,K; j = 1, · · · , T} and suppose Ψ
denotes all the model parameters. The likelihood function for the observed data is

L(Y; Ψ) =
T∏

j=1

m
Ytj

tj
exp(−mtj )

Ytj !
, (6)

so that the logarithm of the observed-data likelihood is

log f(θ, β, α,p;Y) ∝ −
T∑

j=1

mtj +
T∑

j=1

Ytj log mtj +
T∑

j=1

K∑
k=1

Y
(k)
tj

log p
(k)
tj

, (7)

where p can be a function of time.

We discuss two multivariate model formulations for categorized events. The models described
in Section 2.1 assume that the probability of a Type k event is constant over time, and further
assumes no interaction between the probability of a Type k event and a Type l event for k �= l,
k, l = 1, · · · ,K. However, this assumption is restrictive, since it is reasonable to expect that cat-
egorized events are correlated both across categories and over time. For instance, certain defect
types might trigger, or at least considerably increase, the possibility of other types. In Section
2.2 we describe models that explicitly capture such dependence via a vector autoregressive model
for the logit transformations of the probabilities of categorized events.
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2.1. Constant Proportion Models

We assume that p
(k)
tj

= p(k) in [tj−1, tj), for j = 1, · · · , T . Then, the observed-data likelihood
in (7) simplifies as

log f(θ, β, α,p;Y) ∝ −
T∑

j=1

mtj +
T∑

j=1

Ytj log mtj +
K∑

k=1

Y (k)log p(k) (8)

Since
∑K

k=1 p(k) = 1, we only need to model the first K−1 probabilities. In addition to three pa-
rameters for the Weibull model for the total number of events, viz., θ, β, α, we have K−1 proba-
bilities, p(1), · · · , p(K−1), so that the vector of model parameters is Ψ = (θ, β, α, p(1), · · · , p(K−1)).
We refer to this as Model MV1.

In many applications, there are only two types of events, for which the model simplifies. Let
p
(1)
tj

and 1 − p
(1)
tj

respectively denote the probability of Type 1 events and Type 2 events in

[tj−1, tj). Assume that p
(1)
tj

remains constant for Type 1 events across all time intervals, i.e.,

p
(1)
tj

= p(1), for j = 1, · · · , T ; for simplicity of notation, we have dropped the superscript for
p(1). Assuming that the total number of events follows a Weibull NHPP, the observed-data log
likelihood function is

logf(θ, β, α, p;Y) ∝ −
T∑

j=1

mtj +
T∑

j=1

Ytj log mtj + Y (1)log p + Y (2)log (1 − p) (9)

where Ψ = (θ, β, α, p). We refer to this as Model BV1.

2.2. Stochastic Proportion Models

Let

p
(k)
tj

=
exp(q(k)

tj
)

1 +
∑K−1

k=1 exp(q(k)
tj

)
, k = 1, · · · ,K − 1

p
(K)
tj

=
1

1 +
∑K−1

k=1 exp(q(k)
tj

)
(10)

denote the multinomial logit transformation for ptj , where

q
(k)
tj

= logit(p(k)
tj

)

is the logit function. Assume that qtj = (q(1)
tj

, · · · , q
(K−1)
tj

)′ follows a stationary VAR(1) process,
i.e.,

qtj = Φ0 + Φ1 qtj−1 + εtj (11)
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where Φ0 is a (K − 1)× 1 vector, Φ1 is a (K − 1)× (K − 1) matrix, and εtj iid ∼ NK−1(0,Σε).

Suppose Q = (q′
1, · · · ,q′

T )′, x′
t = (1,q′

T−1), X = (x′
1, · · · ,x′

T )′, ε = (ε′1, , · · · , ε′T ), and Φ =
(Φ′

0,Φ1)′. The latent component can be compactly written as

Q = XΦ + ε

Using standard results in multivariate statistics (see Sun and Ni [13])

log f(q|Φ,Σε) ∝ −log (|Σε|T
2 ) − 1

2

∑
(q′

tj − x′
tjΦ)Σε

−1(q′
tj − x′

tj Φ)′.

Since f(Y,Q|∆1,∆2) = f(Y|∆1) · f(Q|∆2) for arbitrary parameters ∆1 and ∆2, the complete
data likelihood is

logf(θ, β, α,Φ,Σε;Y,Q) ∝ −
T∑

j=1

mtj +
T∑

j=1

Ytj log mtj −
T∑

j=1

Ytj log (1 +
K−1∑
k=1

exp(q(k)
tj

)) +

T∑
j=1

K−1∑
k=1

y
(k)
tj

q
(k)
tj

− log (|Σε|
T
2 ) − 1

2

∑
(qtj

′ − x′
tjΦ)Σε

−1(q′
tj − x′

tj Φ)′
(12)

Here, Ψ = (θ, β, α,Φ,Σε). We refer to this as Model MV2.

If there are only two types of events, the latent variable model is

qtj = φ0 + φ1qtj−1 + utj (13)

where utj ∼ iid N(0, σ2) and

qtj = logit(ptj ) = log(
ptj

1−ptj
), j = 1, · · · , T

is the standard logit transformation for ptj .
Here, we have assumed that the qtj ’s follow a stationary AR(1) model. Inclusion of an intercept

term φ0 in (13) implies allowing for ptj ’s to be different from 0.5. The AR(1) model is chosen for
its ability to capture simple dependencies both across categories and within a category over time,
but of course more complex dependencies could be modeled using higher order autoregressive
or moving-average models.

The complete-data likelihood is

log f(Y,q|θ, β, α, φ0, φ1, σ
2) = logf(Y|θ, β, α) + logf(q|φ0, φ1, σ

2),

so that

log f(Y,q|θ, β, α, φ0, φ1, σ
2) ∝ −

T∑
j=1

mtj +
T∑

j=1

Ytj log mtj +
T∑

j=1

y
(1)
tj

qtj

−
T∑

j=1

Ytj log(1 + exp(qtj )) − T log σ +
1
2

log(1 − φ2
1)

− 1
2σ2

{(1 − φ2
1)(qt1 −

φ0

1 − φ1
)2 +

T−1∑
j=1

(qtj+1 − φ0 − φ1qtj )
2} (14)
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Here, Ψ = (θ, β, α, φ0, φ1, σ
2). We refer to this as Model BV2.

Although maximum likelihood estimates of model parameters may be obtained via numerical
optimization, a Bayesian approach has the advantage of incorporating prior information about
model parameters, making inference on the latent variables, and providing reliable estimates
with small samples. We detail the Bayesian inference scheme for the proposed models in the
next section.

3. Bayesian inference

Bayesian inference is based on the posterior distribution of the model parameters, which is
proportional to the product of the likelihood function and the prior, as shown below for each
model. When the posterior distribution is not analytically tractable, Markov chain Monte Carlo
algorithms facilitate inference via simulated samples from the complete conditional distributions
of the parameters (see Gelfand and Smith [14] or Robert and Casella [15] for more details). For
brevity, we will use f(Λ| · · · ) to generically denote the complete conditional distribution of Λ,
given all other model parameters and the data.

The Weibull NHPP model parameters are reparametrized by letting c = log(θ), d = log(β) and
e = log(α). Under each of the models discussed in section 2, we assume normal priors for these
parameters, i.e., N(µc, σ

2
c ) for c, N(µd, σ

2
c ) for d, and N(µe, σ

2
e) for e. Under Model MV1, we

assume Jeffrey’s prior for p, which is the Dirichlet distribution DK(1
2 , · · · , 1

2). The corresponding
prior under Model BV1 is the Beta(1

2 , 1
2) distribution. Under Model MV2, the priors for Φ and

Σε are taken to be Jeffrey’s priors, so that π(Φ,Σε) ∝ 1/|Σε|2. For Model BV2, we assume a
N(µφ0 , σ

2
φ0

) prior for φ0, a N(µφ1, σ
2
φ1

) prior for φ1, and an inverse Gamma IG(s1, s2) prior for
σ2. The joint posterior distribution of the parameters, the complete conditional distributions
and the sampling algorithms under the constant proportion and the stochastic proportion models
are derived in Sections 3.1 and 3.2 below.

3.1. Posterior Analysis under Constant Proportion Models

Under Model MV1, the complete conditional distributions for the parameters describing the
Weibull NHPP growth curve are proportional to the joint posterior, and are

logf(c| · · · ) ∝ −
T∑

j=1

mtj +
T∑

j=1

Ytj log(mtj ) −
1

2σ2
c

(c − µc)2,

logf(d| · · · ) ∝ −
T∑

j=1

mtj +
T∑

j=1

Ytj log(mtj ) −
1

2σ2
d

(d − µd)2, and

logf(e| · · · ) ∝ −
T∑

j=1

mtj +
T∑

j=1

Ytj log(mtj ) −
1

2σ2
e

(e − µe)2 (15)
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The complete conditional distribution of p is a Dirichlet DK(Y (1)+ 1
2 , · · · , Y (K)+ 1

2) distribution.
Under Model BV1, the complete conditional distributions for c, d, and e are given by (15), while
that of p is the Beta(Y (1) + 1

2 , Y (2) + 1
2) distribution.

3.2. Posterior Analysis under Stochastic Proportion Models

For Model MV2, sampling of Φ and Σε within each Gibbs iteration proceeds as follows (see Sun
and Ni [13]). Let Φ̂M = (X′X)−1X′Q, Σ̂ε = S(Φ̂M )/T , where S(Φ̂M ) = (Q−XΦ̂M)′(Q−XΦ̂M).
The posterior of Φ is then N(Φ̂M , Σ̂ε

⊗
(X′X)−1). Letting Σε = {σij}, and S(Φ̂M ) = {sij}, the

posterior distribution of σii is inverse Gamma IG(T − 2K, sii).

Under Model BV2, the complete conditional distributions for c, d, and e are given by (15).
The complete conditional distribution of the latent vector q is

logf(q| · · · ) ∝
T∑

j=1

y
(1)
tj

qtj −
T∑

j=1

Ytj log(1 + exp(qtj )) −
1

2σ2
(1 − φ2

1)(qt1 −
φ0

1 − φ1
)2

− 1
2σ2

T−1∑
j=1

(qtj+1 − φ0 − φ1qtj )
2 (16)

which is dominated by a multivariate normal density. The Metropolis-Hastings algorithm is
used to generate samples of q from its complete conditional distribution using a multivariate
normal proposal. The complete conditional distribution of σ2 is an inverse gamma IG(a1, a2)
where

a1 = s1 +
1
2
T − 1, and

a2 = s2 +
1
2
{(1 − φ2

1)(qt1 −
φ0

1 − φ1
)2 +

T−1∑
j=1

(qtj+1 − φ0 − φ1qtj )
2}. (17)

The complete conditional distribution of φ0 is a normal distribution with mean and variance

Mean =
σ2

φ0
{qt1(1 + φ1) +

∑T−1
j=1 (qtj+1 − φ1qtj )} + σ2µφ0

σ2 + σ2
φ0

(1+φ1

1−φ1
+ T − 1)

Variance =
σ2σ2

φ0

σ2 + σ2
φ0

(1+φ1

1−φ1
+ T − 1)

(18)

where µφ0 and σ2
φ0

are respectively the prior mean and variance for φ0. The complete conditional
distribution for φ1 is the normal distribution with mean

Mean = σ̃2

(∑T−1
j=1 (qtj+1 − φ0)qtj

σ2
+

µφ1

σ2
φ1

)

8



where the variance σ̃2 is given by

Variance = σ̃2 =
σ2σ2

φ1

σ2 + σ2
φ1

T−1∑
j=1

q2
tj

where µφ1 and σ2
φ1

are the prior mean and variance for φ1. Straightforward draws for φ1 can
be made subject to the restriction that |φ1| < 1. Chib and Albert [16] provides a theoretical
justification for this sampling strategy.

Alternatively, using noninformative priors for φ0 and φ1, the complete conditional distributions
have the following forms. The f(φ0| · · · ) is a normal distribution with mean and variance given
respectively by

qt1(1 + φ1) +
∑T−1

j=1 (qtj+1 − φ1qtj)
1+φ1

1−φ1
+ T − 1

σ2

1+φ1

1−φ1
+ T − 1

Subject to the restriction |φ1| < 1, draws for φ1 are made from a normal distribution with mean
and variance ∑T−1

j=1 qtj (qtj+1 − φ0)∑T−1
j=1 q2

tj

σ2∑T−1
j=1 q2

tj

3.3. Prediction and Model Selection

Prediction and model selection are based on the predictive density. In general, if z denotes a
new observation and Y denotes the given data, the posterior predictive density has the form

f(z|Y) =
∫

f(z|Ψ)f(Ψ|Y)dΨ (19)

In cases when it is cumbersome to obtain an analytical form for this predictive density, it is
straightforward to compute it based on the converged MCMC samples {Ψ∗

j , j = 1, · · · , k} from
the posterior distribution of the parameters (see Gelfand [17]). Samples {Y ∗

j , j = 1, · · · , k} from
the posterior predictive density are obtained from f(Y |Ψ∗

j ). Marginally Y ∗
j is a sample from

f(Y |Yobs). The ith element y∗i,j of Y ∗
j is then a sample from f(yi|Yobs).

In our analysis, we have used k = 2500 iterations to compute predictive distributions. For each
iteration, we first generate a Poisson observation and then generate categorized defects under
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each model, giving the predictive samples. The 50% and 95% credible sets for the prediction
are based on the (25th, 75th) and (2.5th, and 97.5th) percentiles of this sample, respectively.

We address the question of model comparison via the L-measure (Ibrahim, Chen and Sinha
[18]). In general, given the posterior distribution π∗ based on data Y = (Y1, · · · , Yn)∗ and
unknown parameters Ψ, and samples Zi from the posterior predictive density, the L-measure is
defined as

L(π∗) =
n∑

i=1

Var(Zi|Y) +
w

1 + w

n∑
i=1

(µi − Yi)2 (20)

where µi = Eπ∗
(E[Zi|Ψ]), and w is a weighting constant usually taken as 1. The L-measure is

a sum of the predictive variance and a weighted bias term. Small values imply a good model,
and computation given MCMC output is straightforward.

4. Simulation Study

In this section, we investigate the efficacy of the proposed methods using simulated data.
Under each of models BV1, MV1, BV2, and MV2, we simulate 50 weeks of data from a multi-
nomial NHPP process using the parameter values listed in the last column of Tables 4.1 - 4.4,
respectively. We use the first 40 weeks of data for model fitting, leaving the last 10 for predictive
cross-validation.

Here, and in Section 5, we choose parameters of the prior distributions in a “semi-empirical”
fashion. Since it is likely that there will be few remaining undetected defects at a later stage of
testing, we take 120% of the sum of the defects for the fitting portion to serve as the mean of
the prior for θ. The prior for β is taken to be a small value, either 0.05 or 0.01, to indicate the
belief that the defect discovery rate is relatively small. The prior for α is set to be 1, essentially
assuming that the exponential model will be sufficient. For the AR(1) parameters under Model
BV2, we fit an AR(1) model to the empirical proportions and use the resulting estimates to
provide prior specifications for φ0, φ1, and σ2. The prior variances are chosen to be sufficiently
large to correspond to noninformative prior specifications. Specifically, the priors under Model
BV1 for c, d and e are respectively N(5.027, 100), N(−4, 1), and N(1, 1). Under Model MV1, the
priors for c, d and e are respectively N(5.026, 100), N(−4, 1) and N(1, 1). Under Model BV2,
the prior on c is N(4.944, 100), d is N(−4, 1), e is N(1, 1), φ0 is N(−1, 1), φ1 is N(0.9, 0.04), and
σ2 is Inverse Gamma IG(10, 2). Under Model MV2, the priors for c, d, and e are respectively
N(5.848, 100), N(−4, 1) and N(1, 1), while Jeffrey’s priors are employed for Φ and Σ.

We run 5000 iterations of the Gibbs sampler, with inference based on the last 2500 iterations.
Tables 4.1-4.4 present the posterior summaries, including the mean, standard deviation and the
95% credible interval for the parameters under each model.

—- Table 4.1 about here —-

—- Table 4.2 about here —-
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—- Table 4.3 about here —-

—- Table 4.4 about here —-

In all cases, the fit gives credible intervals containing the true parameter values, indicating the
feasibility of the proposed methods even for small data sets. Prior sensitivity studies revealed
that different choices of the prior means and the prior variances yield stable posterior estimates
as long as the prior variances are sufficiently large (diffuse prior information). Convergence was
monitored via BOA function suites (see [19]).

In the next section, we present an application to defects discovered during the System Test
phase of a large operating system development project and categorized according to type.

5. Illustration for Categorized Software Defects from an IBM Software Development
Project

5.1 Data Description
For illustration, we fit our model to defects discovered over a 45 week System Test period

for a large operating system software component, where the defects were classified using the
Orthogonal Defect Classification (ODC) scheme introduced in Chillarege et al. [6]. ODC iden-
tifies seven distinct defect types for standard Requirements/Design/Code activities, which in-
clude System Test. These are Assignment/Initialization, Checking, Algorithm/Method, Func-
tion/Class/Object, Timing/Serialization, Interface/O-O Messages, and Relationship. Here, we
focus on defect types Assignment/Initiation (AI), Checking (CH), Algorithm/Method (AG), and
Function/Class/Object(FC) only. Assignment/Initialization defects can briefly be described as
ones in which an incorrect of missing assignment is the cause of the error, while checking defects
are due to an incorrect or missing check in the code. Algorithm/Method defects are attributable
to an incorrect or missing algorithm step, while Function/Class/Object defects indicate incor-
rect or missing functionality relative to requirements. See Chillarege et al. [6] for more precise
definitions of each type. The paper of Ray et al. [8] investigated the relationship between AI and
CH defects, finding that discovery of CH defects is often predicated on discovery and removal
of initialization defects. Here, we investigate dependencies between all four defect types, with
investigation of AI and CH defects only used to illustrate the bivariate model.

In our example, we have a total of 122 AI defects, 59 CH defects, 91 AG defects, and 28 FC
defects, for a total of 300. Figure 5.1 shows the cumulative number of defects each week for the
four types of defects. We use data from the first 35 weeks for fitting, leaving the last 10 weeks
for predictive evaluation. The prior parameters are obtained as described in Section 4. Posterior
predictions are obtained following the method discussed in Section 3.3. We choose to explicitly
model AI, CH, and AG defects, letting the proportion of FC defects (and the dependence of
the AI, CH, and AG proportions on FC defects) be defined implicitly through the multinomial
proportion relationship.

—- Figure 5.1 about here —-
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5.2 Estimation Results
Results from fitting Models MV1, BV1, MV2 and BV2 to the data are shown in Tables 5.1 -

5.4, respectively. For Models BV1 and BV2, we fit to AI and CH defects only, with the total
defects the sum of AI and CH defects only. For Models MV1 and MV2, we fit to all four defect
types.

Several observations can be drawn from the results. First, for each of the fitted models, the
evolution of the total number of defects follows a Weibull model instead of exponential, as log(α)
is significantly larger than zero. The large value of α indicates a rapidly increasing hazard rate,
i.e. the rate at which defects are found increases quickly as ST progresses. Since the models are
additive for the total number of defects and the underlying type probabilities, it is not surprising
to find that the posterior estimates for the Weibull parameters, θ, β, and α are almost the same
for MV1 and MV2 and for BV1 and BV2. The top and bottom left-hand plots in Figure 5.2
show that the posterior predictions for the evolution of the cumulative total defects are slightly
larger than the actual, perhaps due to the use of a prior mean for c that is 20% larger than the
observed total up through 35 weeks.

Turning now to models for the individual defect type proportions, Table 5.1 shows results for
the constant proportion model MV1, while Table 5.3 shows results for the stochastic proportion
model MV2. From Table 5.3, we see little evidence of dependence between the log odds of AI
defects and the previous log odds for AI and CH defects (small values of φ11 and φ22), and
negative correlation with the log odds of AG defects. In other words, the higher the log odds
of AG defects found in the previous period, the lower the log odds of finding AI defects in the
current time period. On the other hand, the significantly positive values for φ21, φ22, and φ23

indicate that the log odds of CH defects is strongly dependent on the log odds of AI defects
in the previous time period (φ21 = 1.064), as well as moderately dependent on the log odds of
CH and AG defects in the previous period (φ22 = 0.304 and φ23 = 0.422). This agrees with
previous findings of Ray et al. [8], that many CH defects cannot be discovered until AI defects
are detected and removed. The log odds for AG defects tends to show little dependence on the
log odds for previously detected AI and CH defects, and strong negative dependence on the
log odds of AG defects in the previous time period, as evidenced by estimated autoregressive
parameters φ31 = 0.126, φ32 = 0.128 and φ33 = −0.688 respectively.

When considering only the relationship between AI and CH defects, captured in the BV2
model, the stochastic model results shown in Table 5.4 indicate little dependence between the
log odds of AI defects and the log odds of AI defects in the previous time period. However,
the estimated parameters are much more variable than those obtained using MV2. The large
estimated value of σ2 suggests considerable uncertainty in the evolution of the log odds over
time, especially in comparison to the σ2

1 value for MV2. This may be due to the fact that the
BV model fails to allow for possible relations with other defect types.

—- Table 5.1 about here —

—- Table 5.2 about here —

—- Table 5.3 about here —
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—- Table 5.4 about here —

The top and bottom right-hand plots in Figure 5.2 and the left- and right-hand plots in Figure
5.3 show the predicted number of defects by type for the constant and stochastic proportion
models, respectively. For Model MV1, the posterior predicted cumulative mean for each type of
defect is proportional to the percentage of observed defects. Given the fact that the predicted
overall mean is higher than the observed total, we see that all types are somewhat over-predicted.
Furthermore, the over-prediction is proportional to the percentages. For instance, AI defects
make up about 40% of the total defects. As a result, over-prediction is worst for AI defects.

The MV2 model provides more accurate predictions for AI and AG defects than the MV1
model, but much worse for CH and FC defects. The number of CH defects is grossly overesti-
mated using MV2. The predictions shown in Figure 5.3 for AI and CH defects are quite similar
using BV1 and BV2. Comparison of the constant and stochastic proportion models based on
L-measures (Table 5.5) indicates that the constant proportion models are to be preferred for
this data set, based on the overall predictive ability of the models.

Figure 5.3 also compares the posterior predictions for AI and CH defects with those obtained
from the dynamic GC model using covariates, as reported in Ray et al. [9]. The dynamic growth
curve (DGC) approach models each category of defects separately, using previously observed
defect volumes in other categories as covariates. In the MV proportion approach, the overall
mean, discovery rate β, and usage rate, α, are modeled for all types combined, independent of the
distribution of defects among categories. In the DGC approach, these parameters are modeled
for each category separately, and can all potentially be dependent on significant covariates. From
Figure 5.3, Models BV1 and BV2 appear to provide improved predictions over those obtained
using the DGC approach.

—- Figure 5.2 about here —

—- Figure 5.3 about here —

—-Table 5.5 about here —-

6. Conclusion

In this paper we have proposed a general class of models for characterizing the evolution
of K categories of event data over time, both for K = 2 and more generally for K > 2.
Bayesian inference procedures were outlined in detail and simulation investigations indicated
the feasibility of the methods. The model framework was found to be useful for characterizing
software reliability based on the defect discovery process for defects of different types. The
results of the particular application reported here suggest that there are significant interactions
between different types of defects. Information on these dependencies can provide additional
insight into the progress of the development process and aid decision making regarding readiness
for release.

13



The proposed models could be further developed by incorporating prior release information
into the modeling, e.g. in the formulation of priors. Another potential avenue for development
is the incorporation of exogenous predictors into the autoregressive framework. We leave these
investigations for future research.
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Table 4.1. Posterior Summary for Data Simulated under Model BV1

Parameter Mean Std. Dev 95% Credible Interval True Parameter
log(θ) 5.066 0.345 (4.751,6.425) 5
log(β) -3.188 0.326 (-4.293,-2.717) -3
log(α) 0.027 0.116 (-0.288, 0.207) 0

p 0.583 0.042 (0.499, 0.663) 0.6

Table 4.2. Posterior Summary for Data Simulated under Model MV1

Parameter Mean Std. Dev 95% Credible Interval True Parameter
log(θ) 5.175 0.322 ( 4.816,6.167) 5
log(β) -3.574 0.321 (-4.337,-2.995) -3
log(α) 0.046 0.136 (-0.257,0.287) 0

p1 0.431 0.043 (0.349,0.511) 0.4
p2 0.283 0.040 (0.208,0.364) 0.3
p3 0.205 0.036 (0.138,0.280) 0.2
p4 0.081 0.024 (0.039,0.136) 0.1

Table 4.3. Posterior Summary for Data Simulated under Model BV2

Parameter Mean Std. Dev 95% Credible Interval True Parameter
log(θ) 4.904 0.170 (4.676,5.324) 5
log(β) -2.819 0.248 (-3.319,-2.353) -3
log(α) -0.035 0.113 (-0.297, 0.157) 0

φ0 -0.178 0.118 (-0.434, 0.024) -0.2
φ1 0.643 0.150 (0.330, 0.908) 0.6
σ2 0.247 0.094 (0.129, 0.484) 0.25
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Table 4.4. Posterior Summary for Data Simulated under Model MV2

Parameter Mean Std. Dev 95% Credible Interval True Parameter
log(θ) 5.877 0.106 ( 5.703, 6.135) 5.75
log(β) -7.137 0.384 ( -7.857,-6.355) -7.5
log(α) 0.728 0.069 ( 0.569, 0.849) 0.8
Φ01 0.837 0.351 ( 0.103, 1.602) 1.179
Φ02 0.060 0.148 (-0.217, 0.394) 0.693
Φ03 0.179 0.318 (-0.530, 0.672) 0.916
σ2

1 0.765 0.358 ( 0.229, 1.547) 0.250
σ2

2 0.148 0.097 ( 0.025, 0.384) 0.250
σ2

3 0.711 0.563 ( 0.162, 2.283) 0.250
Φ111 0.086 0.169 ( -0.231, 0.471) 0.400
Φ112 0.094 0.162 ( -0.178, 0.479) 0
Φ113 0.108 0.198 ( -0.194, 0.591) 0
Φ121 0.186 0.382 ( -0.538, 0.811) 0
Φ122 0.147 0.244 ( -0.351, 0.536) 0.400
Φ123 0.092 0.344 ( -0.629, 0.732) 0
Φ131 0.043 0.202 ( -0.367, 0.444) 0
Φ132 0.136 0.242 ( -0.385, 0.524) 0
Φ133 0.089 0.267 ( -0.478, 0.569) 0.500

Table 5.1. Posterior Summary for IBM Categorized Defects under Model MV1

Parameter Mean Std. Dev 95%Credible Interval
log(θ) 5.805 0.027 (5.756,5.856)
log(β) -9.814 0.500 (-10.766,-8.816)
log(α) 1.146 0.051 (1.0414,1.238)
p(1) 0.4135 0.029 (0.357,0.470)
p(2) 0.1888 0.023 (0.144,0.234)
p(3) 0.3025 0.027 (0.252,0.354)
p(4) 0.0952 0.017 (0.064,0.132)

Table 5.2. Posterior Summary for IBM Categorized Defects under Model BV1

Parameter Mean Std. Dev 95% Credible Interval
log(θ) 5.302 0.051 (5.214,5.411)
log(β) -9.08 0.528 (-10.144,-8.103)
log(α) 1.053 0.060 (0.940, 1.171)
p(1) 0.686 0.035 (0.618, 0.753)
p(2) 0.314 0.035 (0.246, 0.385)
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Table 5.3. Posterior Summary for IBM Categorized Defects under Model MV2

Parameter Mean Std. Dev 95%Credible Interval
log(θ) 5.805 0.026 ( 5.755, 5.857)
log(β) -9.810 0.496 (-10.790,-8.859)
log(α) 1.146 0.050 ( 1.046, 1.242)
Φ01 3.007 0.558 ( 2.120,4.330)
Φ02 1.431 0.264 (1.010, 2.044)
Φ03 3.848 0.743 (2.657, 5.534)
σ2

1 0.648 0.186 ( 0.355, 1.156)
σ2

2 0.314 0.058 ( 0.133, 0.389)
σ2

3 1.533 0.125 ( 1.367, 1.898)
Φ111 0.129 0.030 ( 0.072, 0.197)
Φ112 -0.072 0.064 ( -0.195, 0.057)
Φ113 -0.325 0.028 ( -0.361,-0.242)
Φ121 1.064 0.057 ( 0.895, 1.144)
Φ122 0.304 0.020 ( 0.275, 0.365)
Φ123 0.422 0.167 ( 0.087, 0.744)
Φ131 0.126 0.062 ( -0.048, 0.217)
Φ132 0.128 0.094 ( -0.068, 0.310)
Φ133 -0.688 0.035 ( -0.755, -0.617)

Table 5.4. Posterior Summary for IBM Categorized Defects under Model BV2

Parameter Mean Std. Dev 95%Credible Interval
log(θ) 5.288 0.040 (5.2075,5.366)
log(β) -8.970 0.623 (-10.189, -7.735)
log(α) 1.040 0.072 (0.887, 1.173)

φ0 1.003 0.493 (0.097, 2.026)
φ1 0.079 0.361 (-0.664,0.6946)
σ2 2.604 1.088 (1.158, 5.360)

Table 5.5. L-Measure for Model Comparison

Models L-Measure
1 Model BV1 439.6
2 Model BV2 560.7
3 Model MV1 1288.7
4 Model MV2 1663.9
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Figure 5.1. Cumulative Categorized Defects
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Figure 5.2. Posterior Predictions for Models MV1 and MV2. Top left: Cumulative total pre-
dicted defects using MV1; Top right: Cumulative total predicted defects by type using MV1;
Bottom left: Cumulative total predicted defects using MV2; Bottom left: Cumulative total
predicted defects by type using MV2.

0 10 20 30 40

0
50

0
10

00
15

00

Weeks

C
um

ul
at

iv
e 

C
ou

nt
s

Observed Total
Predicted Mean
50% Lower Limit
50% Upper Limit
95% Lower Limit
95% Upper Limit

0 10 20 30 40

0
20

40
60

80
10

0
12

0
14

0

Weeks

C
um

ul
at

iv
e 

C
ou

nt
s

Observed AI
Predicted AI
Observed CH
Predicted CH
Observed AG
Predicted AG
Observed FC
Predicted FC

0 10 20 30 40

0
50

0
10

00
15

00

Weeks

C
um

ul
at

iv
e 

C
ou

nt
s

Observed Total
Predicted Mean
50% Lower Limit
50% Upper Limit
95% Lower Limit
95% Upper Limit

0 10 20 30 40

0
20

40
60

80
10

0
12

0
14

0

Weeks

C
um

ul
at

iv
e 

C
ou

nt
s

Observed AI
Predicted AI
Observed CH
Predicted CH
Observed AG
Predicted AG
Observed FC
Predicted FC

21



Figure 5.3. Posterior Predictions for Models BV1 (left) and BV2 (right), along with predictions
from Dynamic Growth Curve models of Ray et al. (2004).
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