
RC23522 (W0502-068) February 11, 2005
Computer Science

IBM Research Report

Adaptive Techniques for Scheduling Distributed Data
Intensive Applications: Experiments on a Production Grid

Kavitha Ranganathan
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Ian Foster
Department of Computer Science

University of Chicago
Chicago, IL 60637

and
Math and Computer Science Division

Argonne National Laboratory
Argonne, IL 60439

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Adaptive Techniques for Scheduling Distributed Data
Intensive Applications:

Experiments on a Production Grid

Kavitha Ranganathan1 and Ian Foster 2,3

1 IBM T.J.Watson Research Center, Hawthorne, NY 10523, USA
2Department of Computer Science, University of Chicago, Chicago, IL 60637, USA

3Math and Computer Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA

Abstract
Efficient job and data management in Data Grids is
complicated by various factors like unreliable resources,
fluctuating load and multi-administrative challenges. We
have proposed an architecture for this scenario, where
agents distributed across the Grid, cooperate to schedule
both jobs and data with the goal of minimizing execution
times, maximizing throughput, and/or minimizing data
movement. We have deployed our proposed resource
management architecture along with a suite of related
job and data scheduling algorithms, on a 27-site wide-
area Grid laboratory, Grid3. Here, we report the results
of detailed experiments in this environment, using a
range of scientific application workloads. We find that
intelligent data scheduling is essential for certain
scenarios. However, when faced with heterogeneous
workloads, adaptive scheduling strategies (that can alter
between data-centric and compute-centric approaches)
are crucial for achieving good performance. We also
discuss insights gained (1) while implementing our
architecture on Grid3 and (2) by comparing our
experimental results on this Grid laboratory to results
obtained via simulations.

1 Introduction
Grids allow geographically dispersed computing
resources to be harnessed as and when the demand
arises. So called “Data-Grids” [9, 11] allow
distributed users to share large amounts of data and
run data-intensive applications at geographically
remote compute resources.

While storage and network costs have improved,
the massive amounts of data that need to be shared
and harvested (petabytes in some cases) emphasize

the need for Grid-wide intelligent data and storage
management. Also, given the dynamic and transient
nature of the Grid, it seems likely that Data Grids
will require a robust and decentralized resource
management infrastructure. In previous work [17,
18] we have proposed one such architecture, in
which Data Schedulers at each site collect
information about the usage of local data and
autonomously replicate popular files across the
Grid. We also conducted extensive simulation
studies on a Grid simulator ChicagoSim [17], to
analyze the performance of various job and data
scheduling strategies under this architecture. We
found that, for the application considered, data-
centric scheduling was very effective.

However, since we expect various users to submit
tasks to the same Grid, a scheduler will presumably
be faced with scheduling a heterogeneous mix of
applications. The most effective scheduling strategy
may differ from application to application so even
from task to task within an application.

In this paper we consider a range of scientific
workloads, with the aim of identifying different
regimes of applications. The goal is to identify the
best scheduling strategies for a particular regime.
This classification then enables us to adapt the
scheduling strategy to the characteristics of the job
in question.

We implemented our proposed resource
management architecture on a wide-area production
Grid and laboratory: the 30-site, 3000-CPU Grid3
system [23]. Using this testbed, we evaluate a suite
of data-replication and job-scheduling strategies,
using representative workloads from three scientific

applications CMS [21], ATLAS [1] and fMRIDC
[22]. The three applications vary widely in their
workload characteristics (compute times for jobs,
data requirements etc) and hence allow us to
evaluate our algorithms under a range of realistic
conditions.

We find that intelligent data scheduling coupled
with a suitable job placement strategy is very
successful in reducing turnaround times for certain
workloads. This corroborates earlier simulation
results. However, we also find that one scheduling
strategy does not work well for all the workloads
we considered. Moreover, in the case where a
workload contains a mix of job transformations, our
adaptive technique is able to dynamically switch
from one strategy to another, leading to effective
resource utilization.

Finally we compare experimental results obtained
on this laboratory to simulation results obtained by
closely modeling Grid3 characteristics on
ChicagoSim. Based on this comparison, we discuss
insights gained for Grid simulation and for wide-
area resource management in general.

2 Grid Characteristics
Resource (data, storage, processor) management is
a well-researched problem in such areas as cluster
computing, web caching, and operating systems.
However, a number of assumptions are no longer
valid in a geographically dispersed, open
collaboration like a Grid. We discuss three
distinguishing characteristics of Data Grids, and
how they influence requirements for resource
management.

Separate administrative domains - The need for
decentralized control. The sites that comprise a
Grid will typically constitute distinct administrative
domains. For example, Table 1 lists some of the
sites in Grid3 (names denote affiliations). Each site
allocates resources to jobs according to its own
local policies. Hence, for sites to be willing to share
their resources in a Grid collaboration, local
policies should have dominance over any global
policies, pointing to a decentralized approach. Thus
the resource management framework should enable
decentralized control.

Table 1: Location and capacity of selected Grid3 sites.

Site Name Location
(State)

Number
of CPUs

BNL_ATLAS NY 20

CalTech-Grid3 CA 12

UFlorida-PG FL 80

IU_ATLAS_Tier2 IN 64

UBuffalo-CCR NY 80

UCSanDiegoPG CA 42

UFlorida-Grid3 FL 42

UM_ATLAS MI 11

Vanderbilt TN 12

ANL_HEP TS 1

CalTech-PG CA 66

Variance in resource availability - The need for
techniques robust to partial and inaccurate
information. A Grid resource may be shared by
different users and subgroups and hence may
fluctuate in its availability and capability. Figure 2
shows the availability of two Grid3 sites (in terms
of number of idle CPUS) over a period of one
week. As the figure shows, IU_ATLAS_Tier2 had
60 idle CPUs on one day and only around a quarter
of that the next day. Hence resource allocation
entities have to work with the assumption that the
resource status information used for decisions will
be at best an estimate and will quickly be out of
date. Approaches that use current resource status or
“Grid weather” to map out an overall schedule for
hundreds of jobs which might run for weeks, might
face a drastically different Grid environment in a
matter of hours or even minutes.

Unlike traditional scheduling systems, Grid
resource managers cannot assume that they have
complete control over all the resources or that
resources are always available.

Data transfer latencies - The need for data
scheduling. Geographically distributed Grid
resources may be connected by oversubscribed
WANS as compared to high-speed LAN
connections. In addition, many applications are
expected to be data intensive [13], with input

datasets in the order of Gigabytes. In these
conditions, data transfer times and network latency
can be significant, compelling resource
management decisions to consider the amount of

Figure 1: Locations of Grid3 Sites

0

10

20

30

40

50

60

70

80

22-Jan 23-Jan 24-Jan 25-Jan 26-Jan 27-Jan 28-Jan

A
ve

ra
ge

 n
um

be
r

of
 Id

le
 C

P
U

s

FNAL_CMS

IU_ATLAS_Tier2

Figure 2: Fluctuations in availability of two Grid3 sites
over a week.

network traffic they generate. Thus, intelligent data
management plays an important role in areas (like
job scheduling) that were not traditionally
concerned with data scheduling.

3 Resource Management Architecture
We now briefly describe the resource management
architecture that we had proposed in [17] and our
implementation of this architecture across 27 sites
of our testbed.

The Grid is composed of individual sites and users
at each site submit execution jobs that could be run
on any resource at any site. Individual users submit
jobs to External Schedulers (ES). An ES then
submits the job to the local-scheduler of a particular
site in the Grid. There can be multiple ESs, each
with its own job-to-site mapping algorithm(s).

One advantage of allowing for multiple ESs is that
it provides for decentralized control: any
administrative domain can maintain its own ES and
thus control the policies used to submit jobs to
different resources. A second advantage is that
multiple ESs can avoid a central bottleneck and
single point of failure.

Figure 3 contrasts the scenarios of multiple ES’s
versus one Global Scheduler. In our testbed, a Local
Scheduler’s policy is decided by that particular
site’s administration.

We evaluate various online scheduling algorithms
for an ES, where jobs are dynamically dispatched to
remote sites according to some criteria. The aim is
to balance load across different available resources
while ensuring quick response times for jobs.

We use the Euryale workload management toolkit
(developed at the University of Chicago), inside
which we implement our different External
Scheduler functionalities. An Euryale agent runs at
each submit host in the Grid, thus giving rise to
multiple independent External Schedulers. Once the
job-placement algorithm of the External Scheduler
decides where to send a job, the job is dispatched to
the appropriate remote site. The job dispatch
function is performed by a combination of Condor-
G job queuing [12] and Globus Toolkit GRAM
secure job submission, as provided by the
GriPhyN/PPDG Virtual Data Toolkit.

We have also implemented Data Managers and
place one Data Manager at each site. This
component manages the storage at each site and
decides which files to retain locally and for how
long and which files to replicate to other sites. A
Data Manager is composed of three entities (Figure
4) :

Popularity Manager: The popularity manager keeps
track of the usage of each file in the data store.
When a job requests a locally available file, the
popularity manager updates that files usage count.
To ensure that recent file accesses are given more
weight than old ones, the usage count of each file is
periodically decayed.

Data Scheduler (DS): The Data Scheduler uses the
usage data maintained by PopMan to guide the
replication of popular files to remote sites in the
Grid. This strategy can prevent the creation of
bottlenecks caused by multiple jobs competing for
the same input file.

Cache Manager (CM): The Cache Manager also
uses the data maintained by the Popularity Manager
to decide which files to delete from the local
storage when there is contention for space.

The External Scheduler and Data Scheduler also
need Grid-wide status information for their decision
making process. For our implementation we use the
MonaLisa [15] site status service for load at a site,
and the Replica Location Service (RLS) [8] of the
Globus Toolkit [10] for file location and tracking.

4 Environment and Workloads
We discuss in turn the experimental configuration
and workloads used for our experiments.

4.1 Experimental Configuration
Our wide-area testbed consisted of 11 sites (as
shown in Table 1), with an aggregate of 430 CPUs.
At any point in time, these resources were also
being used by various other users, hence the
environment was less controlled than a simulated
one. Since this is a characteristic property of Grid-
computing, we got the opportunity to test our
architecture and algorithms in a more realistic and
unpredictable setting. For our initial experiments,
we used one External Scheduler, but we also plan to
evaluate the effects of multiple External Schedulers
submitting jobs to the same resources.

Before each experimental run, we first purge each
site’s cache/data-storage and then populate the
caches by randomly distributing data-files for that
workload to the different sites until all the caches
are full. (The cache manager ensures that there are
no duplicate files at any site.) Then we start the
External Scheduler and the Data Managers for each
site.

We measure two metrics: the total turnaround times
for jobs and network bandwidth consumption. The
turnaround time for a job is often a concern for the
end user where as effective bandwidth utilization is
more of a concern for the system administrator.

ES ES ES

LS LS

Sites
LS LS

GS

Compute
Units

Schedulers

Users

Job
Flow

(a) (b)

Figure 3: Grid Scheduling Architecture with (a) Multiple External Schedulers (b) One Global Scheduler

Figure 4: Components of a Data Manager

The total turnaround time is the difference between
two timestamps: the first timestamp occurs when
the job is submitted at the External Scheduler. The
second timestamp occurs, once the job has finished
executing and the message reaches the submit host
where the External Scheduler runs. Hence, the total
turnaround time includes latencies due to file
transfers, time spent in job queues at sites, and the
actual execution time.

4.2 Application Workloads
We used workloads from three scientific
applications that vary significantly in their
workload characteristics.

The first workload is modeled on the values
expected for the CMS application [13] (i.e. the
amount of processing power needed per unit of
data, and the size of input datasets). CMS (Compact
Muon Solenoid) is a high-energy physics
experiment targeted for production by 2006.

We test two possible kinds of file-access patterns
within this workload - a uniform pattern where all
files are used an equal number of times and a non-
uniform pattern where some files are used more
often than others. We use a Zipf function [24] to

model the non-uniform scenario. Each job in this
workload requires one input file of 100 MB to be
present at a site, before a job can start at that site.
Each job runs for 300D seconds, where D is the size
of the input file in gigabytes. Each workload
contains 100 such jobs.

The second workload is based on the Functional
Magnetic Resonance Data Centre (fMRIDC). This
is a publicly accessible repository that allows
members of the neuroscientific community to easily
share and analyze neuroimaging data. Each job in
our workload processes a unique input file of
around 20 MB and runs for around 5 minutes. We
consider 100 such independent jobs per workload.

The final application we use is ATLAS [1] which
focuses on Monte Carlo simulations of high-energy
proton-proton collisions. There are two kinds of
ATLAS jobs in a workload : a long running Simulx
(runs for around 2 hours, requires a few megabytes
of data as input and generates around half a
gigabyte of data) and Reconx which uses the output
generated by Simulx and runs for a shorter duration
of around 10 minutes. Again each workload
contains 100 jobs each : 50 Simulx and 50 Reconx
jobs.

Data
Store

Popularity
Manager

Usage
Record

Data
Scheduler

Cache
Manager

Job

Data
Mover

To other sites

Site Boundary

5 Algorithms for Job and Data
placement

In our architecture, the External Scheduler (ES)
decides the job-to-site mapping and the Data
Scheduler (DS) is in charge of dynamically
identifying and replicating popular files to remote
sites. We now briefly describe the various ES and
DS strategies we evaluated.

ES-Random: Randomly select a site, such that the
expected number of jobs assigned to each site is the
same.

ES-LeastLoaded: Select a site that currently has the
least load. Here we use the number of idle nodes as
a measure of the load at a site.

ES-RandLeastLoaded: Randomly select a site from
the top ‘n’ least-loaded sites. This variation of ES-
LeastLoaded aims to minimize herd behavior
caused by multiple entities acting independently.

ES-AtData: The job is sent to the site that contains
the largest amount of input data needed for that job.

ES-Adaptive: A cost function is used to rank
candidate sites according to two different criteria. It
might be helpful to trade-off between moving jobs
to data, data to jobs or both to a third site,
depending on the job characteristics. If an
application workload consists of different job types,
we want the ES strategy to adapt to the particular
job in question.

The following function calculates points for a
candidate site S1:

Points(S1) = (c1 * Data-Present(S1) + c2 *
IdleNodes(S1)) Where

Data-Present = amount of data for a job already
present at the site

IdleNodes = Number of idle nodes at the site

c1 and c2 are application dependant constants. Note
that depending on the values of c1 and c2 Es-
Adaptive may revert to either ES-AtData or ES-
LeastLoaded.

The DS maintains historical information about local
file usage. When a sites job load exceeds a
threshold, it identifies popular files to be replicated.
The question then is, where should a certain popular

file be replicated ? We now detail some possible
placement strategies for a Data Scheduler.

DS-Caching : No purposive replication occurs, but
data that is fetched for a particular job is cached for
future use.

DS-Random : Randomly select a site to be the new
host for a replica.

DS-LeastLoaded : Place the replica at a site that has
the least job load.

DS-RandLeastLoaded : Similar to DS-LeastLoaded,
except with some randomization to alleviate herd-
behavior.

6 Experimental Results from Testbed
As detailed earlier, we use three workloads and we
discuss results for each in turn. Note that where no
DS algorithm is mentioned DS-Caching was used
as the default. Sites were allowed to cache up to
20% of the total data.

6.1 CMS Application
For the CMS workloads, we discuss the results for
four strategies ES-Random, ES-RandLeastLoaded,
ES-AtData and ES-AtData+DS-RandLeastLoaded.
ES-Local performed significantly worse than the
others and ES-LeastLoaded is always outperformed
by ES-RandLeastLoaded. To avoid clutter, we do
not include these two strategies in the charts. Also,
since there is only one kind of transformation (job)
in the entire workload, we did not test ES-Adaptive
which essentially can recognize different
transformations and adjust accordingly.

Figure 5 contain results for the experiments with
CMS workload. The grey bars are the testbed
experiment results (discussed below) and the light
grey bars are the simulation results (discussed in
Section 7).

Figures 5c and 5d show the results for the uniform
access pattern case. ES-AtData (2) helps lower the
turnaround time considerably, by reducing the I/O
to/from sites. On an average, when ES-
RandLeastLoaded plus DS-Caching was used (4),
jobs spent 23% of their turnaround time waiting for
input data.

0

200

400

600

800

1 2 3 4

0

2000

4000

6000

8000

1 2 3 4

0

200

400

600

800

1 2 3 4

0

2000

4000

6000

8000

1 2 3 4

(a) (b)

(c) (d)

Figure 5: Testbed (dark grey) and simulation (light grey) results for non-uniform access pattern (a) turnaround time
in seconds (b) bandwidth consumption (MB) and uniform access pattern (c) turnaround times (d) bandwidth
consumption. (1) ES-Random (2) ES-AtData (3) ES-AtData + DS-RandLeastLoaded (4) ES-RandLeastLoaded

Note that in this particular case dynamic
replication does not help improve the performance
of ES-AtData (the average turnaround time when
using ES-AtData is 459 seconds as opposed to
463 for ES-AtData + DS-RandLeastLoaded). The
good performance of ES-AtData is partially
because all files are equally popular in this
workload. If some files are more popular than
others, then ES-AtData causes some sites to get
more jobs than others (see the next scenario
below).

Uniform file popularity also explains why
dynamic replication is not particularly helpful in
this situation. The Data Scheduler is unable to
identify correctly potential ‘hot’ files that can then
be replicated to other sites.

The performance in the non-uniform case (zipf
file-access distribution) is depicted in Figures 5a
and 5b. When ES-AtData is used along with the
Data Scheduler (ES-AtData + DS-

RandLeastLoaded), the scenario improves
drastically (with around a 35% decrease in
turnover time). Not surprisingly, in terms of
network bandwidth (Figure 5b) ES-AtData + DS-
RandLeastLoaded consumes much less than ES-
Random and ES-RandLeastLoaded, since the only
files transferred are the “hot” files, triggered by
dynamic replication.

6.2 fMRI Application
Next, we ran the fMRI workload repeatedly across
the Grid, using different ES strategies for each
run. To recall, the fMRI workload consists of a
large number of short jobs (an average job spans 5
minutes), that need moderately small amounts of
input data (round 20 MB). This data is already
spread across the Grid at various locations.

0

200

400

600

800

1000

1200

1400

Random LeastLoaded AtData

T
ur

na
ro

un
d

T
im

e
(s

ec
s)

0

400

800

1200

1600

2000

Random LeastLoaded AtData

D
at

a
T

ra
ns

fe
rr

ed
 (

M
b)

Figure 6: Turnaround times and bandwidth consumption (data transferred) for different ES strategies, when using the

fMRI workload.

Since each input data is processed just once, no
interesting file distribution patterns are present.
Hence, the Data Scheduler does not come into play
as no popular files are identified. Again, since the
workload in consideration is homogeneous we did
not test ES-Adaptive for this case. We tested three
strategies: ES-AtData, ES-RandLeastLoaded and
ES-Random. Figure 6 reports the turnaround times
and network bandwidth consumption respectively.

As seen in Figure 6, ES-AtData does not perform
substantially better than ES-Random. Note that
there is still some data traffic while using ES-
AtData because some jobs get re-planned due to site
failure or unavailability. Since there is only one
copy of each data file on the Grid, the job then has
to be moved to a site which does not contain the
data, hence triggering a data transfer.

The results can be explained as follows. The input
data needed for a particular fMRI job is too little to
amount to significant savings by using ES-AtData.
In other words the ratio of the job run time to input
data size does not warrant data flow conservation.
Since the data files are already scattered randomly
across the different sites, the only gain in Using ES-
AtData is the savings in file-transfer time. Hence
ES-AtData is marginally better than ES-Random.

Dispatching jobs to where they are likely to get idle
CPU cycles works much better than considering the
location of the input files and hence our results
suggest that ES-RandLeastloaded is the best option
in this case.

6.3 ATLAS Application
Next, we present results for experiments with the
ATLAS workload. To recall, the ATLAS workload
is interesting as it consists of two kinds of jobs, a
long running simulx and a shorter but data-intensive
reconx. Note that, again all files in this workload
are uniformly popular, so using the Data Scheduler
to replicate hot files does not trigger any activity.
Hence, we only compare the ES strategies. Since
we are faced with a non-homogeneous workload,
we also tested ES-Adaptive. Figure 7 illustrates the
performance of the three strategies, separated for
the two kinds of jobs.

As Figure 7 shows, the turnaround time (for both
kinds of jobs) is longest for ES-AtData. ES-
LeastLoaded and ES-Adaptive are much better for
simulx jobs but ES-Adaptive has the lowest
turnaround time for reconx jobs. In terms of
bandwidth utilization, ES-LeastLoaded is
responsible for moving large amounts of data while
the other two strategies minimize data movement.

0

3000

6000

9000

12000

15000

18000

AtData LeastLoaded Adaptive

T
u

rn
ar

o
u

n
d

 T
im

e
(s

ec
) Simulx

Reconx

0

200

400

600

800

1000

AtData LeastLoaded Adaptive

D
at

a
tr

an
sf

er
ed

 (
M

B
)

Simulx

Reconx

Figure 7: Turnaround times and bandwidth consumption (data transferred) for the ATLAS workload.

The behavior of the strategies can be explained as
follows: As all the input data initially resides at a
single site, using only ES-AtData results in all jobs
being send to that particular site, resulting in very
high turnaround times. Naturally, ES-AtData does
not generate any network traffic. ES-LeastLoaded is
more successful in distributing jobs across the Grid,
but incurs high overheads in terms of the amount of
data that have to be moved around for the data-
intensive reconx jobs.

ES-Adaptive is successful in incorporating the best
of both worlds. It recognizes the difference in the
characteristics of the two kinds of jobs and changes
the placement strategy accordingly. When a simulx
job has to be scheduled (which is compute intensive
but not data intensive) ES-Adaptive reverts to ES-
LeastLoaded and send the job to a site that is more
available than others. However, when it encounters
a reconx, which is data-intensive, Adaptive reverts
to ES-AtData and sends the job to where the input
file for that job resides. Thus it manages to decrease
both the turnaround time as well as bandwidth
utilization, by being able to adapt to the kind of job
(transformation) being processed.

Note that if the data had initially been distributed
across the Grid, then the improvement in terms of
turnaround time by using ES-LeastLoaded or ES-
Adpative would still be present but less in scale.

7 Testbed and Simulation Compared
We ran the exact same CMS workloads described
above on our simulator ChicagoSim [17], using
similar parameters to those found in our test-bed
(number of sites, storage allowed at each site, idle
CPUs at each site etc). Figure 5 plots these results
for two different workloads : uniform and non-
uniform access patterns. As seen in the graph, the
tesbed and simulator results have a high degree of
correspondence (for both the turnaround times and
bandwidth consumed). This suggests that
ChicagoSim was reasonably successful in
recreating a Grid environment using simulations.

One discrepancy that occurred in the two
methodologies is the turn-around time. There is an
overall consistent lag of around 2-3 minutes
between the actual turn-around time and the
simulated one (the simulated turn-around times
being shorter). The cause turned out to be the
(un)responsiveness of the local-schedulers at each
site. The local schedulers in our simulations were
programmed to immediately pick up a job allocated
to their site, as soon as there was some availability
at the site. In actuality, each scheduler periodically
looks for new jobs to schedule. This creates a lag
between when a job is submitted and when it is
picked up for execution by the Local Scheduler,
even if nodes at that site were available. Depending
on the implementation of each Local Scheduler, this
lag could be substantial. We then introduced a

similar lag in the simulator (Figure 3) and this to an
extent bridged this discrepancy.

8 Insights into Resource Management
We now discuss some insights gained in the process
of conducting experiments on Grid3.

Access to local policies: Various administrative
domains work with different policies regarding who
can and cannot use their resources and under what
circumstances certain resources may be available.
The planning or scheduling entities need access to
these policy constraints for effectively dispatching
jobs. One problem commonly encountered in our
experiments was the perceived starvation of jobs
even though the site in question purported to have a
large number of available compute cycles. Often,
the reason was the local site scheduling policy of
preferring jobs from certain categories of users.
Without access to the internal policies of a site,
adding certain sites to a Grid may actually be
detrimental to overall job turnaround times and
workload completion. Another solution would be to
have an explicit agreement between the resource
consumer and provider, stating the nature of
resources that will be provided.

Replanning of jobs: Another crucial aspect to
workload completion is replanning of jobs, given
the uncertain and fluctuating participation of sites.
A certain site may be unavailable or unresponsive
to certain jobs for a variety of reasons: site
maintenance, in which case it is unavailable to any
job, network failure, local scheduling policy
(mentioned above), congestion, failure of other
components etc. Even though each of these
occurrences may be rare in themselves, since a Grid
is composed of a large number of sites and entities,
a significant number of these will be
unavailable/unresponsive at any given time. This
leads to a large number of jobs being unable to run
or complete successfully at the site they are initially
sent to. We noticed instances of up to 30% of jobs
being replanned in our Grid. Hence, the scheduling
architecture should be able to seamlessly replan
delayed or failed tasks to other sites.

Late Binding: A related issue is to enable late-
binding of jobs to sites, so that the scheduling entity
can look at current Grid weather before binding a

job to a site. Again, dynamic and erratic resource
behavior prevents early-binding approaches (for
example: finding an optimal scheduler for the entire
workload) from being very successful.

Lag in responsiveness of entities: While modeling
distributed entities it is helpful to remember that in
real life, every additional component in the chain
adds a certain amount of lag time. For example, in
our architecture a job travels through the Site
selector, to the Condor agent at the submit host till
it is picked up by the local scheduler of a site. Each
of these components introduces some lag in the job-
travel time

9 Related Work
We discuss a few projects that deal with data
management issues in the context of Grids.

Various projects have explored job scheduling and
data replication research in Grid environments.
Most have used simulated environments to evaluate
various approaches and solutions. Examples include
SimGrid [7], GridSim [6], OptorSim [5], and
ChicagoSim [18]. While simulators are helpful in
providing insights and enabling experiments in
futuristic scenarios, they necessarily must make
assumptions about key aspects such as dynamic
resource availability that may not match the
conditions found in an actual Grid.

Stork [14] uses a scheduler to manage data
placement activities on a Grid. The aim is to
schedule, monitor and manage data movement
activities automatically. The project recognizes the
need to make data management a more efficient
transaction in a Grid environment, and can be used
in conjunction with our efforts on minimizing
transfers to increase resource utility.

Thain et al. [20] propose to link jobs and data by
defining I/O communities that bind execution and
storage sites. Similar applications can join the same
community and use the same storage sites, and their
corresponding compute units, thus reducing usage
of wide-area resources. Our approach is related to
this idea of sending jobs to the place where the
required input date exists, but additionally, if one
site gets overloaded, we dynamically replicate files
to another data store.

Shoshani et al. use Storage Resource Managers
(SRM) [19] to manage storage at an individual site.
We use a similar construct to manage storage at
individual sites, except that we facilitate dynamic
replication of files across sites.

The Storage Resource Broker (SRB) [16] client-
server middleware provides a uniform interface for
accessing heterogeneous data-stores across a Grid.
Our implementation of the Data Manager (that
facilitates cache management, usage tracking and
dynamic replication for data-stores of different
sites) is an initial prototype, the features of which
could be built into a toolkit like the SRB for grid-
wide use.

10 Conclusions and Future Work
We have examined the problem of scheduling jobs
and data movement in the context of data-intensive
workloads in large, distributed collaborative
settings.

First we briefly described a decentralized and
scalable resource management architecture for this
scenario and described our implementation of this
architecture across the Grid3 laboratory of 30 sites
in the U.S. and Korea. The architecture places
intelligent data-management modules at each site,
which asynchronously manage and replicate data
and facilitates dynamic job-placement. Next we
tested a suite of data and job scheduling strategies
using various scientific application workloads.

We found that no one particular scheduling strategy
worked well across all applications. A data-centric
approach (dynamic data scheduling combined with
placing jobs at data locations) proved effective in
some cases like the CMS application. But in other
cases (such as the fMRI workload), there were
either no interesting file-access patterns that could
be exploited, or the jobs were not sufficiently data-
intensive to warrant moving jobs to data. In this
case, a compute-intensive approach worked better.

We also tested an adaptive strategy on a
heterogeneous workload (ATLAS) which was
effective in identifying varying tasks and changing
the scheduling strategy from data to compute
centric and vise-versa.

Our results strengthen the case for adaptive
techniques that can change the scheduling strategy
on the fly, depending on what kind of jobs are
currently being handled. In essence this entails
being able to classify tasks into different regimes
and adopting the strategy that is recommended for
that regime (identifying the recommended strategy
for a particular application was the focus of this
paper). In future work, we hope to map many more
applications to these different regimes.

Note that, a particular strategy still needs fine-
tuning for a particular environment (for example the
constant factors in the adaptive strategy).To take
this approach one step further, we could have a
feedback loop that monitors how well a strategy
worked for that particular regime. This would then
help the External Scheduler automatically fine-tune
the recommended strategy for different regimes,
depending on past performance data.

We also compared results obtained on the testbed to
simulations with similar parameters. There was a
high degree of correspondence in the results.
However, for the testbed, we noticed a significant
lag between when a job is submitted to a site and
when it is recognized and picked up by the Local
Scheduler of that site, even if the site was
completely idle.

We hope that our experiences in resource
management in a realistic Grid environment and
with actual applications will both help identify
suitable approaches for scheduling and also help
various modeling efforts to better understand such
environments.

Acknowledgements
We thank Mike Wilde, Jens Voeckler, and Catalin
Dumitrescu for assisting us with the use of Grid3
for our experiments. We also thank Asit Dan for his
feedback and suggestions. This research was
supported by the National Science Foundation’s
GriPhyN project under contract ITR-0086044.

References
1. Atlas: http://atlas.web.cern.ch/Atlas.
2. iVDGL : International Virtual Data Grid Laboratory

www.ivdgl.org.
3. Particle Physics Data Grid www.ppdg.net.

4. Avery, P. and Foster, I. The GriPhyN Project: Towards
Petascale Virtual Data Grids, 2001. www.griphyn.org,
2001.

5. Bell, W.H., Cameron, D.G., Capozza, L., Millar, A.P.,
Stockinger, K. and Zini, F., Simulation of Dynamic Grid
Replication Strategies in OptorSim. in 3rd Int'l IEEE
Workshop on Grid Computing (Grid'2002), (Baltimore,
2002).

6. Buyya, R. and Murshed, M. GridSim: A Toolkit for the
Modelling and Simulation of Distributed Resource
Management and Scheduling for Grid Computing. The
Journal of Concurrency and Computation: Practice and
Experience (CCPE), 14 (13-15).

7. Casanova, H., Legrand, A. and L.Marchal, Scheduling
Distributed Applications: the SImGrid Simulation
Framework. in IEEE International Symposium on Cluster
Computing and the Grid (CCGrid' 03), (2003).

8. Chervenak, A. and al, e., A Framework for Constructing
Scalable Replica Location Services. in SC'02: High
Performance Networking and Computing, (2002).

9. Chervenak, A., Foster, I., Kesselman, C., Salisbury, C. and
Tuecke, S. The Data Grid: Towards an Architecture for
the Distributed Management and Analysis of Large
Scientific Data Sets. Journal of Network and Computer
Applications: Special Issue on Network-Based Storage
Services, 23 (3). 187-200.

10. Foster, I. and Kesselman, C. Globus: A Metacomputing
Infrastructure Toolkit. International Journal of
Supercomputing Applications, 11 (2). 115-128.

11. Foster, I. and Kesselman, C. The Grid: Blueprint for a
New Computing Infrastructure (Second Edition). Morgan
Kaufmann, 2004.

12. Frey, J., Tannenbaum, T., Foster, I., Livny, M. and
Tuecke, S., Condor-G: A Computation Management
Agent for Multi-Institutional Grids. in Tenth IEEE
Symposium on High Performance Distributed Computing
(HPDC10), (San Francisco, California, 2001).

13. Holtman, K., CMS Requirements for the Grid. in
International Conference on Computing in High Energy
and Nuclear Physics (CHEP2001),, (Beijing, 2001).

14. Kosar, T. and Livny, M., Stork: Making Data Placement a
First Class Citizen in the Grid. in 24th IEEE Int.
Conference on Distributed Computing Systems
(ICDCS2004), (Tokyo, Japan, 2004).

15. Legrand, I.C., Monalisa - Monitoring Agents using a
Large Integrated Service Architecture. in International
Workshop on Advanced Computing and Analysis
Techniques in Physics Research, (Tsukuba, Japan, 2003).

16. Rajasekar, A., Wan, M. and Moore, R., MySRB & SRB -
Components of a Data Grid. in The 11th International
Symposium on High Performance Distributed Computing
(HPDC -11), (Edinburgh, 2002).

17. Ranganathan, K. and Foster, I., Decoupling Computation
and Data Scheduling in Distributed Data-Intensive
Applications. in International Symposium of High
Performance Distributed Computing, (Edinburgh, 2002).

18. Ranganathan, K. and Foster, I. Simulation Studies of
Computation and Data Scheduling Algorithms for Data
Grids. Journal of Grid Computing, 1 (1).

19. Shoshani, A., Sim, A. and Gu, J. Storage Resource
Managers: Essential Components for the Grid. in
J.Nabrzyski, J.Schopf and J.Weglarz eds. Grid Resource
Management : State of the Art and Future Trends, 2003.

20. Thain, D., Bent, J., Arpaci-Dusseau, A., Arpaci-Dusseau,
R. and Livny, M., Gathering at the Well: Creating
Communities for Grid I/O. in Supercomputing, (Denver,
CO, 2001).

21. Compact Muon Solenoid –
http://cmsinfo.cern.ch/welcome.html

22. fMRIDC http://www.fmridc.org
23. Foster, I. and others, The Grid2003 Production Grid:

Principles and Practice. IEEE International Symposium on
High Performance Distributed Computing, 2004, IEEE
Computer Science Press.

24. Breslau, L and others. Web caching and zipf-like
distributions: Evidence and Implications. In Proceedings
of IEEE Infocom Conference (New York, NY 1999).

