
RC23522 (W0502-068) February 11, 2005
Computer Science

IBM Research Report

Adaptive Techniques for Scheduling Distributed Data
Intensive Applications: Experiments on a Production Grid

Kavitha Ranganathan
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Ian Foster
Department of Computer Science

University of Chicago
Chicago, IL  60637

and
Math and Computer Science Division

Argonne National Laboratory
Argonne, IL  60439

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It  has been issued as a Research
Report for early dissemination of its contents.  In view of the transfer of copyright to the outside publisher, its distribution  outside of IBM prior to publication should be limited to peer communications and specific
requests.  After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties).  Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598  USA  (email:  reports@us.ibm.com).  Some reports are available on the internet at  http://domino.watson.ibm.com/library/CyberDig.nsf/home .



Adaptive Techniques for Scheduling Distributed Data 
Intensive Applications: 

Experiments on a Production Grid 
 

Kavitha Ranganathan1 and Ian Foster 2,3 

1 IBM T.J.Watson Research Center, Hawthorne, NY 10523, USA 
2Department of Computer Science, University of Chicago, Chicago, IL 60637, USA 

3Math and Computer Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA 

 

Abstract 
Efficient job and data management in Data Grids is 
complicated by various factors like unreliable resources, 
fluctuating load and multi-administrative challenges. We 
have proposed an architecture for this scenario, where 
agents distributed across the Grid, cooperate to schedule 
both jobs and data with the goal of minimizing execution 
times, maximizing throughput, and/or minimizing data 
movement. We have deployed our proposed resource 
management architecture along with a suite of related 
job and data scheduling algorithms, on a 27-site wide-
area Grid laboratory, Grid3. Here, we report the results 
of detailed experiments in this environment, using a 
range of scientific application workloads. We find that 
intelligent data scheduling is essential for certain 
scenarios. However, when faced with heterogeneous 
workloads, adaptive scheduling strategies (that can alter 
between data-centric and compute-centric approaches) 
are crucial for achieving good performance. We also 
discuss insights gained (1) while implementing our 
architecture on Grid3 and (2) by comparing our 
experimental results on this Grid laboratory to results 
obtained via simulations. 

 

1 Introduction 
Grids allow geographically dispersed computing 
resources to be harnessed as and when the demand 
arises. So called “Data-Grids” [9, 11] allow 
distributed users to share large amounts of data and 
run data-intensive applications at geographically 
remote compute resources.  

While storage and network costs have improved, 
the massive amounts of data that need to be shared 
and harvested (petabytes in some cases) emphasize 

the need for Grid-wide intelligent data and storage 
management. Also, given the dynamic and transient 
nature of the Grid, it seems likely that Data Grids 
will require a robust and decentralized resource 
management infrastructure. In previous work [17, 
18] we have proposed one such architecture, in 
which Data Schedulers at each site collect 
information about the usage of local data and 
autonomously replicate popular files across the 
Grid. We also conducted extensive simulation 
studies on a Grid simulator ChicagoSim [17], to 
analyze the performance of various job and data 
scheduling strategies under this architecture. We 
found that, for the application considered, data-
centric scheduling was very effective. 

However, since we expect various users to submit 
tasks to the same Grid, a scheduler will presumably 
be faced with scheduling a heterogeneous mix of 
applications. The most effective scheduling strategy 
may differ from application to application so even 
from task to task within an application.  

In this paper we consider a range of scientific 
workloads, with the aim of identifying different 
regimes of applications. The goal is to identify the 
best scheduling strategies for a particular regime. 
This classification then enables us to adapt the 
scheduling strategy to the characteristics of the job 
in question. 

We implemented our proposed resource 
management architecture on a wide-area production 
Grid and laboratory: the 30-site, 3000-CPU Grid3 
system [23]. Using this testbed, we evaluate a suite 
of data-replication and job-scheduling strategies, 
using representative workloads from three scientific 



applications CMS [21], ATLAS [1] and fMRIDC 
[22]. The three applications vary widely in their 
workload characteristics (compute times for jobs, 
data requirements etc) and hence allow us to 
evaluate our algorithms under a range of realistic 
conditions. 

We find that intelligent data scheduling coupled 
with a suitable job placement strategy is very 
successful in reducing turnaround times for certain 
workloads. This corroborates earlier simulation 
results. However, we also find that one scheduling 
strategy does not work well for all the workloads 
we considered. Moreover, in the case where a 
workload contains a mix of job transformations, our 
adaptive technique is able to dynamically switch 
from one strategy to another, leading to effective 
resource utilization. 

Finally we compare experimental results obtained 
on this laboratory to simulation results obtained by 
closely modeling Grid3 characteristics on 
ChicagoSim. Based on this comparison, we discuss 
insights gained for Grid simulation and for wide-
area resource management in general.  

2 Grid Characteristics 
Resource (data, storage, processor) management is 
a well-researched problem in such areas as cluster 
computing, web caching, and operating systems. 
However, a number of assumptions are no longer 
valid in a geographically dispersed, open 
collaboration like a Grid. We discuss three 
distinguishing characteristics of Data Grids, and 
how they influence requirements for resource 
management. 

Separate administrative domains - The need for 
decentralized control. The sites that comprise a 
Grid will typically constitute distinct administrative 
domains. For example, Table 1 lists some of the 
sites in Grid3 (names denote affiliations). Each site 
allocates resources to jobs according to its own 
local policies. Hence, for sites to be willing to share 
their resources in a Grid collaboration, local 
policies should have dominance over any global 
policies, pointing to a decentralized approach. Thus 
the resource management framework should enable 
decentralized control. 

Table 1:  Location and capacity of selected Grid3 sites.  

Site Name Location 
(State) 

Number 
of CPUs 

BNL_ATLAS NY 20 

CalTech-Grid3 CA 12 

UFlorida-PG FL 80 

IU_ATLAS_Tier2 IN 64 

UBuffalo-CCR NY 80 

UCSanDiegoPG CA 42 

UFlorida-Grid3 FL 42 

UM_ATLAS MI 11 

Vanderbilt TN 12 

ANL_HEP TS 1 

CalTech-PG CA 66 

  

Variance in resource availability - The need for 
techniques robust to partial and inaccurate 
information. A Grid resource may be shared by 
different users and subgroups and hence may 
fluctuate in its availability and capability. Figure 2 
shows the availability of two Grid3 sites (in terms 
of number of idle CPUS) over a period of one 
week. As the figure shows, IU_ATLAS_Tier2 had 
60 idle CPUs on one day and only around a quarter 
of that the next day. Hence resource allocation 
entities have to work with the assumption that the 
resource status information used for decisions will 
be at best an estimate and will quickly be out of 
date. Approaches that use current resource status or 
“Grid weather” to map out an overall schedule for 
hundreds of jobs which might run for weeks, might 
face a drastically different Grid environment in a 
matter of hours or even minutes. 

Unlike traditional scheduling systems, Grid 
resource managers cannot assume that they have 
complete control over all the resources or that 
resources are always available. 

Data transfer latencies - The need for data 
scheduling. Geographically distributed Grid 
resources may be connected by oversubscribed 
WANS as compared to high-speed LAN 
connections. In addition, many applications are 
expected to be data intensive [13], with input 



datasets in the order of Gigabytes. In these 
conditions, data transfer times and network latency 
can be significant, compelling resource 
management decisions to consider the amount of 

 
Figure 1: Locations of Grid3 Sites 
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Figure 2: Fluctuations in availability of two Grid3 sites 
over a week. 

network traffic they generate. Thus, intelligent data 
management plays an important role in areas (like 
job scheduling) that were not traditionally 
concerned with data scheduling. 

3 Resource Management Architecture  
We now briefly describe the resource management 
architecture that we had proposed in [17] and our 
implementation of this architecture across 27 sites 
of our testbed. 

The Grid is composed of individual sites and users 
at each site submit execution jobs that could be run 
on any resource at any site. Individual users submit 
jobs to External Schedulers (ES). An ES then 
submits the job to the local-scheduler of a particular 
site in the Grid. There can be multiple ESs, each 
with its own job-to-site mapping algorithm(s).  

One advantage of allowing for multiple ESs is that 
it provides for decentralized control: any 
administrative domain can maintain its own ES and 
thus control the policies used to submit jobs to 
different resources. A second advantage is that 
multiple ESs can avoid a central bottleneck and 
single point of failure. 

Figure 3 contrasts the scenarios of multiple ES’s 
versus one Global Scheduler. In our testbed, a Local 
Scheduler’s policy is decided by that particular 
site’s administration.  

We evaluate various online scheduling algorithms 
for an ES, where jobs are dynamically dispatched to 
remote sites according to some criteria. The aim is 
to balance load across different available resources 
while ensuring quick response times for jobs. 

We use the Euryale workload management toolkit 
(developed at the University of Chicago), inside 
which we implement our different External 
Scheduler functionalities. An Euryale agent runs at 
each submit host in the Grid, thus giving rise to 
multiple independent External Schedulers. Once the 
job-placement algorithm of the External Scheduler 
decides where to send a job, the job is dispatched to 
the appropriate remote site. The job dispatch 
function is performed by a combination of Condor-
G job queuing [12] and Globus Toolkit GRAM 
secure job submission, as provided by the 
GriPhyN/PPDG Virtual Data Toolkit. 

We have also implemented Data Managers and 
place one Data Manager at each site. This 
component manages the storage at each site and 
decides which files to retain locally and for how 
long and which files to replicate to other sites. A 
Data Manager is composed of three entities (Figure 
4) : 



Popularity Manager: The popularity manager keeps 
track of the usage of each file in the data store. 
When a job requests a locally available file, the 
popularity manager updates that files usage count. 
To ensure that recent file accesses are given more 
weight than old ones, the usage count of each file is 
periodically decayed. 

Data Scheduler (DS): The Data Scheduler uses the 
usage data maintained by PopMan to guide the 
replication of popular files to remote sites in the 
Grid. This strategy can prevent the creation of 
bottlenecks caused by multiple jobs competing for 
the same input file.  

Cache Manager (CM): The Cache Manager also 
uses the data maintained by the Popularity Manager 
to decide which files to delete from the local 
storage when there is contention for space. 

The External Scheduler and Data Scheduler also 
need Grid-wide status information for their decision 
making process. For our implementation we use the 
MonaLisa [15] site status service for load at a site, 
and the Replica Location Service (RLS) [8] of the 
Globus Toolkit [10] for file location and tracking. 

4 Environment and Workloads 
We discuss in turn the experimental configuration 
and workloads used for our experiments. 

4.1 Experimental Configuration 
Our wide-area testbed consisted of 11 sites (as 
shown in Table 1), with an aggregate of 430 CPUs. 
At any point in time, these resources were also 
being used by various other users, hence the 
environment was less controlled than a simulated 
one. Since this is a characteristic property of Grid-
computing, we got the opportunity to test our 
architecture and algorithms in a more realistic and 
unpredictable setting. For our initial experiments, 
we used one External Scheduler, but we also plan to 
evaluate the effects of multiple External Schedulers 
submitting jobs to the same resources. 

Before each experimental run, we first purge each 
site’s cache/data-storage and then populate the 
caches by randomly distributing data-files for that 
workload to the different sites until all the caches 
are full. (The cache manager ensures that there are 
no duplicate files at any site.) Then we start the 
External Scheduler and the Data Managers for each 
site.  

We measure two metrics: the total turnaround times 
for jobs and network bandwidth consumption. The 
turnaround time for a job is often a concern for the 
end user where as effective bandwidth utilization is 
more of a concern for the system administrator. 
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Figure 3: Grid Scheduling Architecture with (a) Multiple External Schedulers (b) One Global Scheduler 



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Components of a Data Manager 

 

The total turnaround time is the difference between 
two timestamps: the first timestamp occurs when 
the job is submitted at the External Scheduler. The 
second timestamp occurs, once the job has finished 
executing and the message reaches the submit host 
where the External Scheduler runs. Hence, the total 
turnaround time includes latencies due to file 
transfers, time spent in job queues at sites, and the 
actual execution time. 

4.2 Application Workloads  
We used workloads from three scientific 
applications that vary significantly in their 
workload characteristics.  

The first workload is modeled on the values 
expected for the CMS application [13] (i.e. the 
amount of processing power needed per unit of 
data, and the size of input datasets). CMS (Compact 
Muon Solenoid) is a high-energy physics 
experiment targeted for production by 2006. 

We test two possible kinds of file-access patterns 
within this workload - a uniform pattern where all 
files are used an equal number of times and a non-
uniform pattern where some files are used more 
often than others. We use a Zipf function [24] to 

model the non-uniform scenario. Each job in this 
workload requires one input file of 100 MB to be 
present at a site, before a job can start at that site. 
Each job runs for 300D seconds, where D is the size 
of the input file in gigabytes. Each workload 
contains 100 such jobs.  

The second workload is based on the Functional 
Magnetic Resonance Data Centre (fMRIDC). This 
is a publicly accessible repository that allows 
members of the neuroscientific community to easily 
share and analyze neuroimaging data. Each job in 
our workload processes a unique input file of 
around 20 MB and runs for around 5 minutes. We 
consider 100 such independent jobs per workload.  

The final application we use is ATLAS [1] which 
focuses on Monte Carlo simulations of high-energy 
proton-proton collisions. There are two kinds of 
ATLAS jobs in a workload : a long running Simulx 
(runs for around 2 hours, requires a few megabytes 
of data as input and generates around half a 
gigabyte of data) and Reconx which uses the output 
generated by Simulx and runs for a shorter duration 
of around 10 minutes. Again each workload 
contains 100 jobs each : 50 Simulx and 50 Reconx 
jobs. 
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5 Algorithms for Job and Data 
placement 

In our architecture, the External Scheduler (ES) 
decides the job-to-site mapping and the Data 
Scheduler (DS) is in charge of dynamically 
identifying and replicating popular files to remote 
sites. We now briefly describe the various ES and 
DS strategies we evaluated.  

ES-Random: Randomly select a site, such that the 
expected number of jobs assigned to each site is the 
same. 

ES-LeastLoaded: Select a site that currently has the 
least load. Here we use the number of idle nodes as 
a measure of the load at a site.  

ES-RandLeastLoaded: Randomly select a site from 
the top ‘n’ least-loaded sites. This variation of ES-
LeastLoaded aims to minimize herd behavior 
caused by multiple entities acting independently. 

ES-AtData: The job is sent to the site that contains 
the largest amount of input data needed for that job. 

ES-Adaptive: A cost function is used to rank 
candidate sites according to two different criteria. It 
might be helpful to trade-off between moving jobs 
to data, data to jobs or both to a third site, 
depending on the job characteristics. If an 
application workload consists of different job types, 
we want the ES strategy to adapt to the particular 
job in question. 

The following function calculates points for a 
candidate site S1: 

Points(S1) = (c1 * Data-Present(S1) + c2 *  
IdleNodes(S1))         Where 

Data-Present = amount of data for a job already 
present at the site 

IdleNodes = Number of idle nodes at the site 

c1 and c2 are application dependant constants. Note 
that depending on the values of c1 and c2 Es-
Adaptive may revert to either ES-AtData or ES-
LeastLoaded. 

The DS maintains historical information about local 
file usage. When a sites job load exceeds a 
threshold, it identifies popular files to be replicated. 
The question then is, where should a certain popular 

file be replicated ? We now detail some possible 
placement strategies for a Data Scheduler. 

DS-Caching : No purposive replication occurs, but 
data that is fetched for a particular job is cached for 
future use.  

DS-Random : Randomly select a site to be the new 
host for a replica. 

DS-LeastLoaded : Place the replica at a site that has 
the least job load. 

DS-RandLeastLoaded : Similar to DS-LeastLoaded, 
except with some randomization to alleviate herd-
behavior. 

6 Experimental Results from Testbed 
As detailed earlier, we use three workloads and we 
discuss results for each in turn. Note that where no 
DS algorithm is mentioned DS-Caching was used 
as the default. Sites were allowed to cache up to 
20% of the total data. 

6.1 CMS Application 
For the CMS workloads, we discuss the results for 
four strategies ES-Random, ES-RandLeastLoaded, 
ES-AtData and ES-AtData+DS-RandLeastLoaded. 
ES-Local performed significantly worse than the 
others and ES-LeastLoaded is always outperformed 
by ES-RandLeastLoaded. To avoid clutter, we do 
not include these two strategies in the charts. Also, 
since there is only one kind of transformation (job) 
in the entire workload, we did not test ES-Adaptive 
which essentially can recognize different 
transformations and adjust accordingly.  

Figure 5 contain results for the experiments with 
CMS workload. The grey bars are the testbed 
experiment results (discussed below) and the light 
grey bars are the simulation results (discussed in 
Section 7). 

Figures 5c and 5d show the results for the uniform 
access pattern case. ES-AtData (2) helps lower the 
turnaround time considerably, by reducing the I/O 
to/from sites. On an average, when ES-
RandLeastLoaded plus DS-Caching was used (4), 
jobs spent 23% of their turnaround time waiting for 
input data. 
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Figure 5: Testbed (dark grey) and simulation (light grey) results for non-uniform access pattern (a) turnaround time 
in seconds (b) bandwidth consumption (MB) and uniform access pattern (c) turnaround times (d) bandwidth 
consumption. (1) ES-Random (2) ES-AtData (3) ES-AtData + DS-RandLeastLoaded (4) ES-RandLeastLoaded 

 

Note that in this particular case dynamic 
replication does not help improve the performance 
of ES-AtData (the average turnaround time when 
using ES-AtData is 459 seconds as opposed to 
463 for ES-AtData + DS-RandLeastLoaded). The 
good performance of ES-AtData is partially 
because all files are equally popular in this 
workload. If some files are more popular than 
others, then ES-AtData causes some sites to get 
more jobs than others (see the next scenario 
below). 

Uniform file popularity also explains why 
dynamic replication is not particularly helpful in 
this situation. The Data Scheduler is unable to 
identify correctly potential ‘hot’ files that can then 
be replicated to other sites.  

The performance in the non-uniform case (zipf 
file-access distribution) is depicted in Figures 5a 
and 5b. When ES-AtData is used along with the 
Data Scheduler (ES-AtData + DS-

RandLeastLoaded), the scenario improves 
drastically (with around a 35% decrease in 
turnover time). Not surprisingly, in terms of 
network bandwidth (Figure 5b) ES-AtData + DS-
RandLeastLoaded consumes much less than ES-
Random and ES-RandLeastLoaded, since the only 
files transferred are the “hot” files, triggered by 
dynamic replication.  

6.2 fMRI Application 
Next, we ran the fMRI workload repeatedly across 
the Grid, using different ES strategies for each 
run. To recall, the fMRI workload consists of a 
large number of short jobs (an average job spans 5 
minutes), that need moderately small amounts of 
input data (round 20 MB). This data is already 
spread across the Grid at various locations.  
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Figure 6: Turnaround times and bandwidth consumption (data transferred) for different ES strategies, when using the 

fMRI workload. 

Since each input data is processed just once, no 
interesting file distribution patterns are present. 
Hence, the Data Scheduler does not come into play 
as no popular files are identified. Again, since the 
workload in consideration is homogeneous we did 
not test ES-Adaptive for this case. We tested three 
strategies: ES-AtData, ES-RandLeastLoaded and 
ES-Random. Figure 6 reports the turnaround times 
and network bandwidth consumption respectively.  

As seen in Figure 6, ES-AtData does not perform 
substantially better than ES-Random. Note that 
there is still some data traffic while using ES-
AtData because some jobs get re-planned due to site 
failure or unavailability. Since there is only one 
copy of each data file on the Grid, the job then has 
to be moved to a site which does not contain the 
data, hence triggering a data transfer. 

The results can be explained as follows. The input 
data needed for a particular fMRI job is too little to 
amount to significant savings by using ES-AtData. 
In other words the ratio of the job run time to input 
data size does not warrant data flow conservation. 
Since the data files are already scattered randomly 
across the different sites, the only gain in Using ES-
AtData is the savings in file-transfer time. Hence 
ES-AtData is marginally better than ES-Random. 

Dispatching jobs to where they are likely to get idle 
CPU cycles works much better than considering the 
location of the input files and hence our results 
suggest that ES-RandLeastloaded is the best option 
in this case.  

6.3 ATLAS Application 
Next, we present results for experiments with the 
ATLAS workload. To recall, the ATLAS workload 
is interesting as it consists of two kinds of jobs, a 
long running simulx and a shorter but data-intensive 
reconx. Note that, again all files in this workload 
are uniformly popular, so using the Data Scheduler 
to replicate hot files does not trigger any activity. 
Hence, we only compare the ES strategies. Since 
we are faced with a non-homogeneous workload, 
we also tested ES-Adaptive. Figure 7 illustrates the 
performance of the three strategies, separated for 
the two kinds of jobs. 

As Figure 7 shows, the turnaround time (for both 
kinds of jobs) is longest for ES-AtData. ES-
LeastLoaded and ES-Adaptive are much better for 
simulx jobs but ES-Adaptive has the lowest 
turnaround time for reconx jobs. In terms of 
bandwidth utilization, ES-LeastLoaded is 
responsible for moving large amounts of data while 
the other two strategies minimize data movement. 
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Figure 7: Turnaround times and bandwidth consumption (data transferred) for the ATLAS workload.

The behavior of the strategies can be explained as 
follows: As all the input data initially resides at a 
single site, using only ES-AtData results in all jobs 
being send to that particular site, resulting in very 
high turnaround times. Naturally, ES-AtData does 
not generate any network traffic. ES-LeastLoaded is 
more successful in distributing jobs across the Grid, 
but incurs high overheads in terms of the amount of 
data that have to be moved around for the data-
intensive reconx jobs. 

ES-Adaptive is successful in incorporating the best 
of both worlds. It recognizes the difference in the 
characteristics of the two kinds of jobs and changes 
the placement strategy accordingly. When a simulx 
job has to be scheduled (which is compute intensive 
but not data intensive) ES-Adaptive reverts to ES-
LeastLoaded and send the job to a site that is more 
available than others. However, when it encounters 
a  reconx, which is data-intensive, Adaptive reverts 
to ES-AtData and sends the job to where the input 
file for that job resides. Thus it manages to decrease 
both the turnaround time as well as bandwidth 
utilization, by being able to adapt to the kind of job 
(transformation) being processed.  

Note that if the data had initially been distributed 
across the Grid, then the improvement in terms of 
turnaround time by using ES-LeastLoaded or ES-
Adpative would still be present but less in scale. 

 

7 Testbed and Simulation Compared  
We ran the exact same CMS workloads described 
above on our simulator ChicagoSim [17], using 
similar parameters to those found in our test-bed 
(number of sites, storage allowed at each site, idle 
CPUs at each site etc). Figure 5 plots these results 
for two different workloads : uniform and non-
uniform access patterns. As seen in the graph, the 
tesbed and simulator results have a high degree of 
correspondence (for both the turnaround times and 
bandwidth consumed). This suggests that 
ChicagoSim was reasonably successful in 
recreating a Grid environment using simulations. 

One discrepancy that occurred in the two 
methodologies is the turn-around time. There is an 
overall consistent lag of around 2-3 minutes 
between the actual turn-around time and the 
simulated one (the simulated turn-around times 
being shorter). The cause turned out to be the 
(un)responsiveness of the local-schedulers at each 
site. The local schedulers in our simulations were 
programmed to immediately pick up a job allocated 
to their site, as soon as there was some availability 
at the site. In actuality, each scheduler periodically 
looks for new jobs to schedule. This creates a lag 
between when a job is submitted and when it is 
picked up for execution by the Local Scheduler, 
even if nodes at that site were available. Depending 
on the implementation of each Local Scheduler, this 
lag could be substantial. We then introduced a 



similar lag in the simulator (Figure 3) and this to an 
extent bridged this discrepancy.  

8 Insights into Resource Management 
We now discuss some insights gained in the process 
of conducting experiments on Grid3. 

Access to local policies: Various administrative 
domains work with different policies regarding who 
can and cannot use their resources and under what 
circumstances certain resources may be available. 
The planning or scheduling entities need access to 
these policy constraints for effectively dispatching 
jobs. One problem commonly encountered in our 
experiments was the perceived starvation of jobs 
even though the site in question purported to have a 
large number of available compute cycles. Often, 
the reason was the local site scheduling policy of 
preferring jobs from certain categories of users. 
Without access to the internal policies of a site, 
adding certain sites to a Grid may actually be 
detrimental to overall job turnaround times and 
workload completion. Another solution would be to 
have an explicit agreement between the resource 
consumer and provider, stating the nature of 
resources that will be provided.  

Replanning of jobs: Another crucial aspect to 
workload completion is replanning of jobs, given 
the uncertain and fluctuating participation of sites. 
A certain site may be unavailable or unresponsive 
to certain jobs for a variety of reasons: site 
maintenance, in which case it is unavailable to any 
job, network failure, local scheduling policy 
(mentioned above), congestion, failure of other 
components etc. Even though each of these 
occurrences may be rare in themselves, since a Grid 
is composed of a large number of sites and entities, 
a significant number of these will be 
unavailable/unresponsive at any given time. This 
leads to a large number of jobs being unable to run 
or complete successfully at the site they are initially 
sent to. We noticed instances of up to 30% of jobs 
being replanned in our Grid. Hence, the scheduling 
architecture should be able to seamlessly replan 
delayed or failed tasks to other sites.  

Late Binding: A related issue is to enable late-
binding of jobs to sites, so that the scheduling entity 
can look at current Grid weather before binding a 

job to a site. Again, dynamic and erratic resource 
behavior prevents early-binding approaches (for 
example: finding an optimal scheduler for the entire 
workload) from being very successful.  

Lag in responsiveness of entities: While modeling 
distributed entities it is helpful to remember that in 
real life, every additional component in the chain 
adds a certain amount of lag time. For example, in 
our architecture a job travels through the Site 
selector, to the Condor agent at the submit host till 
it is picked up by the local scheduler of a site. Each 
of these components introduces some lag in the job-
travel time 

9 Related Work 
We discuss a few projects that deal with data 
management issues in the context of Grids. 

Various projects have explored job scheduling and 
data replication research in Grid environments. 
Most have used simulated environments to evaluate 
various approaches and solutions. Examples include 
SimGrid [7], GridSim [6], OptorSim [5], and 
ChicagoSim [18]. While simulators are helpful in 
providing insights and enabling experiments in 
futuristic scenarios, they necessarily must make 
assumptions about key aspects such as dynamic 
resource availability that may not match the 
conditions found in an actual Grid. 

Stork [14] uses a scheduler to manage data 
placement activities on a Grid. The aim is to 
schedule, monitor and manage data movement 
activities automatically. The project recognizes the 
need to make data management a more efficient 
transaction in a Grid environment, and can be used 
in conjunction with our efforts on minimizing 
transfers to increase resource utility. 

Thain et al. [20] propose to link jobs and data by 
defining I/O communities that bind execution and 
storage sites. Similar applications can join the same 
community and use the same storage sites, and their 
corresponding compute units, thus reducing usage 
of wide-area resources. Our approach is related to 
this idea of sending jobs to the place where the 
required input date exists, but additionally, if one 
site gets overloaded, we dynamically replicate files 
to another data store. 



Shoshani et al. use Storage Resource Managers 
(SRM) [19] to manage storage at an individual site. 
We use a similar construct to manage storage at 
individual sites, except that we facilitate dynamic 
replication of files across sites. 

The Storage Resource Broker (SRB) [16] client-
server middleware provides a uniform interface for 
accessing heterogeneous data-stores across a Grid. 
Our implementation of the Data Manager (that 
facilitates cache management, usage tracking and 
dynamic replication for data-stores of different 
sites) is an initial prototype, the features of which 
could be built into a toolkit like the SRB for grid-
wide use. 

10 Conclusions and Future Work  
We have examined the problem of scheduling jobs 
and data movement in the context of data-intensive 
workloads in large, distributed collaborative 
settings.  

First we briefly described a decentralized and 
scalable resource management architecture for this 
scenario and described our implementation of this 
architecture across the Grid3 laboratory of 30 sites 
in the U.S. and Korea. The architecture places 
intelligent data-management modules at each site, 
which asynchronously manage and replicate data 
and facilitates dynamic job-placement. Next we 
tested a suite of data and job scheduling strategies 
using various scientific application workloads. 

We found that no one particular scheduling strategy 
worked well across all applications. A data-centric 
approach (dynamic data scheduling combined with 
placing jobs at data locations) proved effective in 
some cases like the CMS application. But in other 
cases (such as the fMRI workload), there were 
either no interesting file-access patterns that could 
be exploited, or the jobs were not sufficiently data-
intensive to warrant moving jobs to data. In this 
case, a compute-intensive approach worked better.  

We also tested an adaptive strategy on a 
heterogeneous workload (ATLAS) which was 
effective in identifying varying tasks and changing 
the scheduling strategy from data to compute 
centric and vise-versa.  

Our results strengthen the case for adaptive 
techniques that can change the scheduling strategy 
on the fly, depending on what kind of jobs are 
currently being handled. In essence this entails 
being able to classify tasks into different regimes 
and adopting the strategy that is recommended for 
that regime (identifying the recommended strategy 
for a particular application was the focus of this 
paper). In future work, we hope to map many more 
applications to these different regimes. 

Note that, a particular strategy still needs fine-
tuning for a particular environment (for example the 
constant factors in the adaptive strategy).To take 
this approach one step further, we could have a 
feedback loop that monitors how well a strategy 
worked for that particular regime. This would then 
help the External Scheduler automatically fine-tune 
the recommended strategy for different regimes, 
depending on past performance data. 

We also compared results obtained on the testbed to 
simulations with similar parameters. There was a 
high degree of correspondence in the results. 
However, for the testbed, we noticed a significant 
lag between when a job is submitted to a site and 
when it is recognized and picked up by the Local 
Scheduler of that site, even if the site was 
completely idle.  

We hope that our experiences in resource 
management in a realistic Grid environment and 
with actual applications will both help identify 
suitable approaches for scheduling and also help 
various modeling efforts to better understand such 
environments. 
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