
RC23528 (W0502-098) February 17, 2005
Computer Science

IBM Research Report

Discovering Analysis Components in Unstructured
Information Management Architecture

Lev Kozakov, Yurdaer Doganata, Tong-Haing Fin, Youssef Drissi
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Discovering analysis components in
unstructured information management architecture

Lev Kozakov, Yurdaer Doganata, Tong-Haing Fin and Youssef Drissi
IBM T.J.Watson Research Center

19 Skyline Drive
Hawthorne, NY, 10532, U.S.A.

kozakov@us.ibm.com

Keywords: unstructured information management, analysis framework, analysis component, component repository

Abstract

Modern intelligence analysis solutions make extensive
use of unstructured information management technolo-
gies and applications. Developing and deploying appli-
cation in the area of unstructured information manage-
ment is costly and requires domain specific knowledge.
Existing analysis components are difficult to integrate
and reuse due to interoperability problems. In this paper
we present the automated component discovery system
for analysis components, based on IBM’s Unstructured
Information Management Architecture. The analysis
components are packaged and submitted to the reposi-
tory for registering and testing. The compliant analysis
components are made available for search, download
and use. The system facilitates sharing and reusability
of analysis components within the architecture frame-
work, as well as planning of analysis solutions and
building analysis applications.

1. Introduction
Intelligence analysis requires utilization and integration
of many specialized analysis technologies to process the
content which may or may not have a structure. These
technologies include statistical and rule-based Natural
Language Processing (NLP), Information Retrieval (IR),
Machine Learning, Ontologies, Automated Reasoning
and Knowledge Sources. Solutions to intelligence analy-
sis problems are generally developed by highly special-
ized scientists and engineers in different platforms and
computational environments (see, for instance, [6],[5]).
In many cases, these solutions are built independently by
using different incompatible techniques which makes the
integration highly costly and reusability very difficult.

Although there has been a considerable effort in building
analysis components by many domain experts and scien-
tist, the techniques that would enable reusability through
discovery of existing components are not extensively
used. One of the reasons why an effective analysis com-

ponent discovery system has not been available was the
lack of a common framework where the interoperability
of compliant components is ensured. The release of
IBM’s Unstructured Information Management Architec-
ture (UIMA) made such a component discovery system
possible and significant for rapid development of intelli-
gence analysis solutions. The main characteristics of
UIMA are outlined in the next section.

In order to enable the reusability and help rapid devel-
opment of intelligence analysis solutions, a component
repository and discovery system has been built for
UIMA. This system, which allows component submis-
sion, registry, discovery and testing, is the focus of this
paper.

One of the challenges of such as a system is to create a
set of utilities that facilitate the packaging of software
artifacts into a single file with the capability of being
deployed on a remote machine. Once the analytics are
packaged into components, another challenge is to set the
run-time requirements of these components after they are
deployed and integrated into a bigger solution. In this
paper the necessary steps to ensure reusability of UIMA
components is discussed and the implementation of our
UIMA component repository solution is presented.

Providing access to a repository of UIMA components
and enable component discovery through search and
navigation opens up the possibility of building applica-
tions through semantic declarations. The solution devel-
opers determine the functions that they need to accom-
plish the task. Then, they use the interface to search the
component repository to discover the available compo-
nents that they could use to build the solution. Designing
a solution builder out of available components is not
within the scope of this paper but considered as part of
the future work.

In a more general context, component-based software
development (CBSD) concept focusing on building large

software systems by integrating previously-existing soft-
ware components has been a challenge since 87 (see [1]).
The effectiveness of existing approaches have been lim-
ited due to lack of mature technologies, standard applica-
tion programming interfaces, architectural guidelines and
real time performance guarantees. In the area of unstruc-
tured information management, the availability of UIMA
is expected to overcome the difficulties encountered gen-
erally in CBSD systems.

In the next sections, we will review UIMA and then out-
line the major concepts behind the automated component
discovery system for UIMA compliant analysis compo-
nents. Then, we will describe in details the realization of
each of the concepts in our system. At the end, we will
briefly summarize the benefits of this system, as well as
the future work.

1.2. Background
IBM’s Unstructured Information Management Architec-
ture (UIMA) is a software framework that was designed
to enable the integration of analysis components (see
[3],[7]). It supports creating; composing and deploying a
broad range of analysis capabilities and linking them to
structured information services such as database and
search engines services. Rapid integration across tech-
nologies and platforms is made possible by employing a
variety of different deployment options ranging from
tightly-coupled to highly parallel and fully distributed.

The interoperability of the analysis components in a solu-
tion is accomplished by using a common analysis struc-
ture (CAS) where each component reads from and writes
to by using by using published API. The CAS is the pri-
mary data structure which UIMA analysis components
use to represent and share analysis results (see [4], [8] -
chapter 20). It contains:
• The artifact - this is the object being analyzed such

as a text document or audio or video stream. The
CAS projects one or more views of the artifact. Each
view is referred to as a Subject of Analysis.

• A type system description – indicating the types,
subtypes, and their features.

• Analysis metadata – "standoff" annotations describ-
ing the artifact or a region of the artifact.

• An index repository to support efficient access to and
iteration over the results of analysis.

UIMA Architecture defines the following high level
components, namely Collection readers, CAS initializers
and CAS processors (see [8] - chapter 5). Collection
readers read documents from some source, for example a
file system or a database. Each document is returned as a
CAS that may then be processed by CAS processors.
CAS initilalizers further process the documents and
populate a CAS from a raw document. For example, if
the document is HTML, a CAS Initializer might store a
detagged version of the document in the CAS and also

create inline annotations derived from the tags. For ex-
ample, <p> tags might be translated into inline Para-
graph annotations in the CAS. CAS Processors take a
CAS as input and return a CAS as output. There are two
types of CAS Processors: Analysis Engines and CAS
Consumers. An Analysis Engine is a program that ana-
lyzes artifacts (e.g. documents) and infers information
about them, and which implements the UIMA Analysis
Engine interface Specification. CAS Consumers receive
each CAS in the collection after it has been processed by
an Analysis Engines. The CAS Consumer may then per-
form collection-level analysis and construct an applica-
tion-specific aggregate data structure.

The objects used to store the results of the analysis are
called types and the collection of related types form type
systems and they are often shared across the analysis en-
gines. Types are reusable assets that can be imported by
the developers into their new components.

The UIMA applications are composed by using these
UIMA components as the building blocks whose interop-
erability are assured by UIMA APIs. This enables rapid
application development where UIMA compliant solution
modules can be plugged-in to build a solution.

 In an environment where components are shared and
reused, there is a need for a UIMA component repository
where different users can browse, search, submit, test and
make UIMA components available for others to use. The
repository provides for a list of tested components for the
solution developers and saves them a great deal of devel-
opment and testing time.

2. Conceptual system overview
The automated component discovery system for UIMA
compliant analysis components is based on mainly the
following three concepts:

A. Packaging the component code and its resources

The component code and the resources are packaged
into Processing Engine ARchive (PEAR) file, which
is then used for storing in the repository, download-
ing and installing into a local environment and dis-
tribution. The structure of PEAR accommodates
some mandatory descriptor files along with user
files. PEAR packaging enables automated installa-
tion and verification of UIMA compliant analysis
components.

B. Searchable repository for analysis components.

PEAR files, encapsulating analysis components, are
submitted by their developers to a centralized reposi-
tory. Each component has a unique ID, specified in
its PEAR file and enforced by the repository. When a
PEAR file is received, the encapsulated component
code and its resources are automatically installed in
the local repository environment to verify the com-

ponent serviceability. Based on the results of this
verification, the submitted component can be regis-
tered by the repository. The repository provides a
wide range of search and discovery operations based
on the metadata associated with registered compo-
nents. In addition, developers can test their compo-
nents in the repository environment, using standard
document collections provided by the repository or
their own collections. The repository provides both
interactive and automatic testing capabilities. The
testing result reports can be published in the reposi-
tory as the basis for component rating.

C. Deploying and running components

Analysis applications, running in the UIMA envi-
ronment, communicate with one or more analysis
components using unified UIMA framework API.
However, each analysis component may require its
own run-time environment configuration, i.e. envi-
ronment settings like CLASSPATH, PATH, etc. The
run-time environment configuration, required by the
analysis component, is specified in the PEAR pack-
age that encapsulates the component code and re-
sources. The system provides the application con-
tainer to configure the run-time environment for de-
ploying and running analysis components in UIMA
compliant applications.

In the next three sections we discuss in details the reali-
zation of these concepts, starting from the PEAR packag-
ing and continuing to the searchable component reposi-
tory and to the process of deploying and running analysis
components. The general architecture diagram of the
automated component discovery system is shown in Fig-
ure 2.

3. Packaging and installing components
PEAR (Processing Engine ARchive) is the packaging
standard for UIMA analysis components. PEAR packages
are used for storing and distribution of analysis compo-
nents, enabling sharing and reuse among other UIMA
components or applications. A PEAR package encapsu-
lates the component code and resources required to in-
stantiate and run the component automatically. It also
contains several elements that specify the component
metadata required for registering, searching, installing,
deploying and running the component in the UIMA
framework environment. The PEAR package also allows
applications and tools to automatically configure run-
time environment for verification, deployment and invo-
cation of the encapsulated UIMA analysis component.

The PEAR package is a structured tree of folders and
files, including the following elements: The metadata
folder and some optional folders. The metadata folder
contains the PEAR installation descriptor which specifies
the information required to install and run the component
and the properties files. The PEAR properties files spec-

ify the metadata required to register and search the com-
ponent. The PEAR also contains descriptor files, source
codes, binaries, configuration files, data files, other user-
defined files and resources. Three deployment types can
be specified for the analysis component within the PEAR
as follows:

Standard deployment: The analysis component is in-
stalled in the local environment; the component in-
stance is deployed within the application process.

Service type deployment: The analysis component is
installed in the local environment; the component in-
stance is deployed as a UIMA supported local service;
the component deployment is done within the applica-
tion process.

Network type deployment: The analysis component is
installed in a remote environment; the component in-
stance is deployed as a UIMA supported network ser-
vice; the component deployment is done by the com-
ponent owner). In this case, the PEAR package does
not have to contain files required for component in-
stallation, but must contain the network component
descriptor (see [8] - sections 4.1.4, 6.5).

Developers create their PEAR packages using the PEAR
Packager Eclipse plugin tool (see[8] - Chapter 9). Once
the package structure is created, the tool can assist in
populating the package with the analysis component
files. The PEAR Packager provides a convenient multi-
step wizard GUI for creating and editing the PEAR in-
stallation descriptor. At the end of the process, the wizard
creates the PEAR file and provides an easy way to submit
this file to the centralized component repository.

As described earlier in the paper, PEAR packaging en-
ables fully automated installation of the encapsulated
analysis components. This means that once a PEAR file
is received, the encapsulated analysis component may be
automatically installed in the local environment. It is
similar to installing J2EE applications from WAR files,
except for the fact that analysis components are not lim-
ited to Java code, and PEAR packaging provides wider
selection of deployment options.

The PEAR installation starts from unpacking the PEAR
file in a given directory. Then, the installer loads the
XML installation descriptor and checks the local envi-
ronment (OS, installed toolkits) against the specifica-
tions. At the next step, the installer looks at the specifica-
tions of required delegate components and other external
resources and makes sure all the external references are
satisfied. This step may require communications with the
component repository in order to automatically download
and install required resources. At the last step, the in-
staller performs the verification of component service-
ability by creating an instance of the analysis component

using the UIMA API. The PEAR installer module is
available both as a standalone GUI application (see [8] -
chapter 10) and a Java library for use in applications.

4. Using component repository
PEAR files encapsulating UIMA analysis components,
submitted by different groups of developers, are stored in
the centralized component repository. The repository, at
the first place, plays traditional roles of a component
warehouse and directory where developers of UIMA
analysis components can register their creations and dis-
cover creations of others. Once a PEAR file, encapsulat-
ing certain analysis component, is received, the reposi-
tory extracts the component metadata and registers the
component. At the next step, the PEAR package is in-
stalled in the repository environment to verify the com-
ponent serviceability. If the installation and verification
steps are completed successfully, the repository formally
'accepts' the submitted component, otherwise the reposi-
tory 'rejects' the component, and the author is notified of
the installation or verification errors.

The search and discovery capabilities of the repository
are based both on the component metadata included in
the metadata folder of the PEAR file (like component ID,
category, description, owner name, etc.) and on the com-
ponent specifications, especially its type system and ca-
pabilities, containing in the UIMA descriptors. Type sys-
tems (see [8] - sections 4.6.3, 4.6.4, 2.3.2) play the cen-
tral role in building the component repository. The re-
pository backend service extracts component type system
information from submitted PEAR files and generates a
hierarchical type system tree (see Figure 1) that helps
users to get orientation in the variety of available compo-
nents. The repository provides component discovery ser-
vices based on available analysis type systems, as well as
component capabilities, namely input and output analysis
types. In addition to this, the repository allows develop-
ers importing registered analysis types and type systems
as reusable assets.

Another important feature of the automated component
repository is its open component testing and evaluation
lab. The system supports both interactive and batch com-
ponent testing and evaluation modes. In the interactive
mode, the developers can run their analysis components,
accepted by the repository, using one of the common re-
pository clients described later in this section. In the
batch mode, the developers specify the desired test con-
figuration, and submit the specified test configuration to
the component testing and evaluation lab. The testing lab
installs all analysis components, specified in the test con-
figuration, and performs the required test. The system
provides various document collections along with a set of
auxiliary UIMA components like collection readers and
CAS consumers that can be effectively used for testing
and evaluation of analysis components. The developers
also can use their own document collections, collection

readers and CAS consumers, if available resources do not
satisfy their needs.

Figure 1. Type system tree fragment

The testing and evaluation lab module utilizes UIMA Col-
lection Processing Engine or CPE (see [8] - chapter 5) to
run the required test. The CPE configuration is generated
automatically based on the specified test configuration as
well as the component specific deployment and run-time
configuration parameters, specified in the PEAR installation
descriptor. During the test, the system uses the CPE API to
collect important run-time statistics, like component
throughput, number of documents processed, number of
failures, etc.

The testing and evaluation lab module utilizes UIMA
Collection Processing Engine or CPE (see [8] - chapter 5)
to run the required test. The CPE configuration is gener-
ated automatically based on the specified test configura-
tion as well as the component specific deployment and
run-time configuration parameters, specified in the PEAR
installation descriptor. During the test, the system uses
the CPE API to collect important run-time statistics, like
component throughput, number of documents processed,
number of failures, etc. The test outcome along with the
collected statistics is included in the component test re-
port card that may be published in the repository DB and
sent back to the component owner. Component test report
cards may be used for component rating and comparison
of different analysis components.

As soon as more components and type systems are regis-
tered and available, finding appropriate components with
the right capabilities becomes a difficult task. The auto-
mated repository and discovery system has a cli-
ent/server-based architecture and supports web access. It
provides two different kinds of clients for accessing the
components and the type systems in the repository: the
web browser-based client and the Eclipse-based client.
The browser-based client is suitable for users who would
like to access the repository without installing any soft-
ware. The Eclipse-based client is more oriented to devel-
opers who need more functions to be used with their
Eclipse IDE (see [2]). With the repository clients, users
can register, view, and discover components and type
systems as described in the previous section. To support
various repository clients, the repository provides a
common API for accessing and searching the components
and type systems. This API makes it possible to imple-
ment the repository and discovery system on top of a
wide variety of database-structured systems without
changing any of the repository's other components.

5. Deploying and running components
UIMA applications use one or more UIMA analysis compo-
nents to perform desired analysis of input information. De-
pending on the selected deployment mode (see section 3),
required analysis components may be installed in a local
environment (i.e. local file system) or in a remote box, and
may run in separate processes, as services, or in the same
process as the application itself. In all cases, the code of

analysis components and their resources are distributed as
PEAR files that contain the specifications of the deployment
mode and operations (e.g. running specified script for start-
ing a service), as well as the specifications of required run-
time environment variables settings. Note, that many analy-
sis components require more than just the traditional
CLASSPATH settings, e.g. PATH settings for loading de-
pendent native libraries or other settings for loading re-
sources, such as dictionaries, etc.

The automated component discovery system provides the
UIMA application container service for deploying the
analysis components from their PEAR packages, config-
uring the run-time environment and running UIMA com-
pliant applications. The application container reads the
specifications in the PEAR installation descriptor and
combines them with the default PEAR environment set-
tings, such as adding all JAR files in the lib directory to
the CLASSPATH, and adding the bin directory to the
PATH. Once the run-time environment is properly con-
figured, the application can instantiate all required analy-
sis components using standard UIMA API. The UIMA
application container service is available as Java library
that can be used in customer's code.

Eclipse
IDE

Component
registration

Repository
DB

DB
Services

Repository
API

Testing
Lab

Web
browser

Application
container

PEAR
installerUIMA

app.
UIMA
app.UIMA
app.

PEAR
packager

Automated Component
Discovery System

Figure 2. Architecture diagram

6. Conclusion
This paper describes the automated component discovery
system built on top of IBM's Unstructured Information

Management Architecture framework and discusses its
main concepts and implementation aspects. The main
goal of the system is facilitating sharing and re-usability
of UIMA analysis components by providing common
packaging standard, searchable component repository and
testing environment, as well as the run-time application
container for UIMA developers. The system provides
wide variety of options for discovering analysis compo-
nents. The component repository back-end module pro-
vides an API that connects different clients to the reposi-
tory services, and enables automated or semi-automated
analysis solution planning based on component capabili-
ties. As the UIMA framework is accepted by more devel-
opers of unstructured information analysis technologies
and applications, the automated component discovery
system will play significant role in the mind sharing and
consolidating efforts of the developers’ community.

7. Future work

The first phase of the automated component discovery
system is available for UIMA developers at IBM Re-
search since summer 2004. Our future plans include the
following areas:
• implementing API for interacting with the component

testing and evaluation lab module;
• integrating all the system tools within the Eclipse based

UIMA development environment;
• enabling optimization of analysis solution planning,

based on the component rating;
• developing tools for interactive and automated quality

evaluation of analysis components;
• building ontologies of type systems and analysis com-

ponents to enable knowledge based and semantic
based planning of analysis solutions;

• developing a semantic based solution builder.

References

[1] Brooks, F. P. Jr. April 1987. No Silver Bullet: Es-
sence and Accidents of Software Engineering. Computer,
20(4).

[2] Eclipse IDE. http://www.eclipse.org

[3] Ferrucci, D.; Lally, A. 2004. Building an example
application with the Unstructured Information Manage-
ment Architecture. IBM Systems Journal, 43(3), pp.455-
475.

[4] Götz, T; Suhre, O. 2004. Design and implementation
of the UIMA Common Analysis System. IBM Systems
Journal, 43(3), pp.476-489.

[5] Hyland, R.; Holland, R.; Clifton, C. 2003. GeoNODE:
Visualizing News in Geospatial Context. The MITRE
Corporation,
http://www.mitre.org/tech/itc/g061/geonode/AFCEA99_
GeoNODE_paper.html

[6] Novel Intelligence from Massive Data (NIMD). 2002.
ARDA, http://www.ic-arda.org/Novel_Intelligence/

[7] Unstructured Information Management Architecture
SDK. December 2004. IBM alphaWorks,
http://www.alphaworks.ibm.com/tech/uima

[8] UIMA SDK User's Guide and Reference. December
2004. IBM alphaWorks,
http://www.alphaworks.ibm.com/tech/uima

