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ABSTRACT 

Mature microRNAs are short (21-22nt long) RNAs that are enzymatically excised from endogenously-
encoded, longer precursors and have been shown to hybridize to mRNAs transcripts causing the transcripts’ 
downregulation through the RNA interference mechanism.  Because of the importance of RNAi in the 
regulation of cell processes, attempts to answer the questions of cardinality and location of the miRNA 
precursors which are encoded by a given genome have been at the center of scientific research for several 
years already.  The arguably open question of cardinality not withstanding, many miRNA precursors have 
already been reported in the literature for several genomes, and additional are continuously sought.  
A component that is equally important for shedding more light on the details of the RNAi process is that of 
determining the cardinality and location of the targets of these mature miRNAs as well as the identity of the 
mature miRNA that will hybridize to a given target.  Generally assumed to be located in the 3’ UTRs of 
mRNA transcripts, these miRNA targets have proven to be much more elusive, and, despite great amounts 
of work by many scientists around the world, very few of them have been validated experimentally to date.  
Due to the high cost (in materials and time) of the experimental approach, computational methods are 
becoming increasingly important as they can help focus the experimentalist’s attention and effort while 
maximizing the rate of experimental success.  All of the computational methods that are available in the 
literature have generally treated the problems of miRNA precursor discovery, mature miRNA localization, 
miRNA-target-island determination and mature-miRNA/miRNA-target identification as separate tasks with 
varying degrees of reported success.  In this paper, we present a method that simultaneously tackles the 
four problems of miRNA precursor discovery, mature miRNA localization, miRNA-target-island 
identification and mature-miRNA/miRNA-target determination, in a single, uniform framework.  To the 
best of our knowledge this is the first method of its kind that addresses all these questions in a unified way.  
In contrast to some of the previously reported techniques that were developed and focused on specific 
genomes, our method, rna22,§ is genome-independent and applies equally-well to genomes spanning the 
spectrum from viruses to mammals.  Key to our method is the use of a greatly redundant scheme for 
representing locally conserved signatures that are identified by processing the sequences of known 
precursors and mature miRNAs using an exhaustive pattern discovery technique.  The use of local 
signatures liberates us from the limitations associated with seeking precursor-wide conservation across the 
genomes of related species while potentially permitting the identification of precursors and 3’ UTR target-
islands that are potentially mosaic-like structures composed of known elemental blocks.  Using a very 
extensive computational analysis, we examine the capabilities of our method and demonstrate that it a) 
identifies essentially all currently known miRNA precursors, b) very accurately locates the mature miRNAs 
in all known precursors, c) correctly predicts most of the 3’ UTR regions that have been shown to be 
targeted by known mature miRNAs, and, d) correctly predicts a large percentage of the miRNA/mRNA-
target pairs that have appeared in the literature.  Additionally, our method has the very desirable 
characteristic of simultaneously exhibiting substantially high sensitivity and specificity values.  We have 
used our method to analyze several genomes and to obtain revised estimates for the number of 
endogenously coded miRNA precursors as well as for the number of 3’ UTR islands that will act as targets 
of one or more mature miRNAs: summarily, our analysis suggests that both of these numbers are likely to 
be substantially higher than initially believed.  Taken together, our analysis suggests that there exist a very 
extensive combinatorial mechanism for carrying out post-transcriptional gene regulation within the cell and 
that the RNA interference-based regulation of cellular processes is a very pronounced and wide-ranging 
mechanism. 

                                                 
§ Our method’s name, rna22, is both a word-play and a tribute to the late Douglas Adams, the brilliant writer who gave 
us the famous Hitchhiker’s Guide to the Galaxy.  Among other things he gave us “42,” the answer to “Life, Universe 
and Everything.”  Just as “42” was the quotable number of the late 20th century, “22” is slowly shaping into the magic 
number of the early 21st century.   And, of course, in keeping with Douglas Adams’ sense of humor, we would like to 
point out that the number 22 happens to also be the string representing the number 8 in a base 3 number system: 
notably, both 8 and 22 are numbers which have become very meaningful in the context of RNA interference. 



  

INTRODUCTION 
Following a serendipitous discovery in the early 1990's, scientists realized before long that a 

wide spectrum of organisms had the ability to exploit short RNA sequences for the purpose of 
degrading mRNA or disrupting translation of mRNA into amino acids. The phenomenon has 
become known as RNA interference (RNAi for short) or "post-transcriptional genomic silencing" 
(PTGS).  

In recent years, RNAi was catapulted to the forefront of attention and research activity. The 
reason for this attention lies on the potential of harnessing RNAi for a number of purposes 
including speedy elucidation of gene function, targeted gene silencing for therapeutic uses, etc.  

The broad process of RNAi was first uncovered in experimentation on the gene responsible 
for the purple color of petunia flowers: chalcone synthase.  Jorgensen and colleagues wanted to 
increase the purple color of petunia flowers; they hypothesized that injection of extra copies of 
the chalcone synthase gene would have the desired effect.  Surprisingly they found that injection 
of the transgene led to a large percentage of entirely white and/or patterned flowers.  
Experimentation revealed transgenic white flowers had a 50-fold decrease in chalcone syntase 
mRNA levels compared to the wild-type.  They termed this phenomenon “co-suppression” 
because both the endogenous and introduced chalcone synthase genes were suppressed (Napoli et 
al. 1990). 

A similar reduction of gene expression was seen in the fungus N. crassa.  Romano and 
Macino were investigating the albino-3 and albino-1 genes that produce enzymes involved in 
carotenoid biosynthesis.  They found that Neurospora transformed with portions of these genes 
exhibited an albino phenotype.  The authors referred to this process as quelling due to the sudden 
and forceful suppression of carotenoid biosynthesis (Cogoni et al. 1994). 

RNAi was then found to extend into the worm C. elegans.  Guo and Kemphus were 
characterizing the par-1 gene which encodes a serin-threonine kinase responsible for asymmetric 
cleavage of the developing C. elegans embryo.  Deletion of the gene was lethal to embryos and 
the authors hypothesized that injection of anti-sense par-1 into the gonad of wildtype worms 
would produce a similar phenotype in the progeny, which it did.  However, the negative control, 
injected sense par-1, also exhibited this phenotype (Guo and Kemphues 1995).  This 
counterintuitive result was explained by subsequent work by Fire and colleagues (Fire et al., 
1998) who varied both the structure and delivery of the RNA.  They found that double stranded 
RNA, compared with either sense or antisense RNA was 10 times more potent at eliciting RNAi.  
Since then, RNAi has been observed in a variety of organisms including zebrafish, hydra, fungi, 
drosophila, mammalian systems, and one virus.  

Insight into the molecular mechanisms underlying the RNAi process was first revealed in 
(Hamilton and Baulcombe 1999) who noted that 25 bp species of dsRNA was found in plants 
under co-suppression.  Additionally, they found that these small RNAs had a sequence similar to 
the gene under suppression.  Elbashir and colleagues demonstrated, first in drosophila then 
mammals, that RNAi was mediated by these small interfering RNAs (Elbashir et al. 2001). 

RNAi is effected by two classes of short RNAs that are currently considered to be distinct: 
siRNAs and miRNAs.  The two classes differ in the mechanism that triggers them but share a 
common mechanism in the manner that the class members act on their targets.  Briefly, siRNAs, 
or small interfering RNAs, are activated by exogenously-supplied double stranded RNA which 
acts as a silencing trigger.  With the help of the DICER enzyme, the dsRNA is processed into 
short fragments, 21 to 23 nucleotides in length (mature siRNA), which in turn act on their target 
genes by degrading these genes’ mRNA.  siRNAs typically exhibit perfect or near-perfect 
complementarity to the sequence of their target gene.  Unlike siRNAs, miRNAs, a.k.a. micro-
RNAs or small temporal RNAs, begin their journey by first being transcribed from the host 
genome as pri-miRNAs.  These are in turn cleaved by the RNase III endonuclease Drosha into 
60-70 nucleotide-long segments that have been termed precursor miRNAs (Lee et al. 2002).  A 



  

precursor miRNA forms a very characteristic hairpin-like double stranded RNA structure by 
folding back on itself.  The newly transcribed precursor miRNA is then transported across the 
nuclear membrane into the cytoplasm through a process that depends on exportin 5 (Lund et al., 
2003, ; Yi et al. 2003).  Once in the cytoplasm, a precursor miRNA is cleaved by the Dicer 
protein into 22mers that are subsequently unwound by a helicase into single-stranded species 
(Khvorova et al. 2003; Schwarz et al. 2003; Tomari et al. 2004).  One of the ssRNA molecules is 
degraded while the other is incorporated into RISC (=RNA-induced silencing complex), a multi-
subunit ribonuclear particle complex (Hutva´gner and Zamore, 2002a; Martinez et al. 2002; 
Tomari et al. 2004).  Once complexed with RISC, the mature miRNA directs either the 
translational inhibition or the degradation/cleavage of target messages (Doench and Sharp 2004). 

A lot of progress has been made in recent years towards elucidating the specific details of this 
mechanism.  Nonetheless, several questions which naturally arise here still remain open, in our 
opinion: how many miRNA precursors are encoded by a given genome?  how many mature 
miRNAs will a given precursors give rise to and where are they located?  how many and which 
locations in a given gene’s 3’ UTR region will become the targets of a RISC-complexed mature 
miRNA? and, probably the most important question of all,  which mature miRNA(s) will target a 
given gene’s 3’ UTR and where?   

Given a set of candidate sequences, the above questions can be answered in a more or less 
straightforward manner through wet-lab experimentation.   For example, a typical avenue for 
validating the presence of a given miRNA is the use of Northern blots.  However, lack of 
validation through Northern blotting is not proof positive of the absence of a miRNA.  Indeed, 
there is the possibility that the sought miRNA is expressed in quantities too small to be detectable 
by mRNA hybridization.  Alternatively, the miRNA may be expressed in large quantities but in a 
very limited set of cells or during specific developmental or cell-life stages (Johnston and 
Hobert 2003).  In the case where the sought RNA exists in very small quantities, the use of PCR 
could conceivably provide an alternate solution.  But the use of PCR necessitates the availability 
of the appropriately designed, non-universal primers, something that to this date has been 
hindered by the inability of all previously-reported computational methods to localize a mature 
miRNA with reasonable confidence. 

Computational approaches have an advantage over the traditional, labor-intensive 
experimental techniques in that they can help focus the latter and avoid time consuming trial-and-
error schemes.  Consequently, more and more techniques are being proposed in the literature 
which address various aspects of the RNAi process.  One immediate observation is that the 
methods proposed to date have attempted to answer each of the above questions independently of 
one another and using methodologies attuned to the specific task.  With regard to the discovery of 
miRNA precursors, this has largely focused on hairpin assessment aided by comparison to known 
miRNAs and constrained by the requirement for cross-species conservation (Kiriakidou et 
al. 2004; Lim et al. 2003; Lim et al. 2003; Grad et al. 2003; Lai et al. 2003; Lee et al. 2001; 
Ambros 2003). Alternatively, one could search for cis-regulatory signals that presumably affect 
the transcription of miRNA precursors and which signals help locate the latter.  Judging from 
what is currently available in the open literature, one can conclude that the question of how many 
miRNA precursors are coded by a given genome has been effectively answered.  As will become 
apparent during this discussion, we believe that this question has all but been addressed.  In fact, 
our results suggest that the number of precursors and mature miRNAs that are encoded by 
genomes such as those of C. elegans, D. melanogaster, H. sapiens, M. musculus, etc. is likely to 
have been underestimated by as much as one order of magnitude in some of the genomes. 

Another open question that is amenable to computational treatment pertains to the 
determination of the number and the location of the sites that are the targets of mature miRNAs.  
Equally importantly, one would like to determine for each such site the identity of the miRNA 
that will hybridize to it.  Generally assumed to be located in the 3’ UTRs of mRNA transcripts, 
these miRNA target sites have proven to be elusive, and, despite great amounts of work by many 



  

scientists around the world, very few of them have been validated experimentally and reported to 
date.  For reasons that will become apparent shortly, we introduce the term “3’ UTR target-
islands” to refer to the sites that will be targeted by miRNAs – this term is meant to reflect the 
passive nature of these sites as well as what we believe is a clear separation of these locations or 
groups of these locations from the surrounding regions. 

On the miRNA-target-discovery front, the proposed methods have been more varied.  Here as 
well, almost all methods place a strict requirement for a potential site to be conserved across 
several species.  Summarily, the methods for the discovery of miRNA targets have been based on 
one of the following categories: a) dynamic programming (Enright et al. 2003, Kiriakidou 2004); 
b) signature-based – here it is typical to use as a signature 6 consecutive nucleotides taken from 
the first 8 nucleotides in the 5’ region of the miRNA at hand and this ‘signature’ is used either 
explicitly (Lewis et al. 2003, Lewis et al. 2005) or implicitly (Rajewsky and Socci, 2004); 
c) hidden Markov models (Stark et al. 2003); d) semi-exhaustive techniques – for example, 
running the miRNA along a candidate 3’ UTR, calculating interactions at every site and 
subselecting those that are significant according to a specific statistical measure (Rehmsmeier et 
al. 2004).   

In what follows, we present a method that addresses all of the above questions: cardinality of 
precursors and mature miRNA, cardinality of miRNA islands in 3’ UTRs, miRNA/3’UTR pairs, 
in a single, unified framework.  Key to our method is the use of a greatly redundant set of 
signatures, that are derived through a pattern discovery process, and which capture locally 
conserved signatures.  This is continuing along a line of research that we begun several years ago 
on the discovery of locally conserved motifs in amino acid sequences and their exploitation in the 
context of protein annotation, gene discovery, etc. (Rigoutsos and Floratos 1998a; Rigoutsos and 
Floratos 1998b; Rigoutsos et al. 1999; Shibuya and Rigoutsos 2002; Rigoutsos et al. 2002; 
Rigoutsos et al. 2003; Huynh and Rigoutsos 2004).  Interestingly, the possibility of miRNA 
precursors having a modular nature has received very little attention, presumably due to the fact 
that there is not enough available data at this point that would allow us to draw such conclusions.  
Of course, one ‘module’ that is mentioned in the literature is the 8-nt block which has been 
identified in the 5’ region of the currently known miRNAs (Lewis et al. 2003, Lewis et al. 2005).  

The use of local signatures gives us the ability to locate miRNA precursors without the 
limitations imposed by the requirement for precursor-wide conservation across the genomes of 
related species.  In parallel, the use of local signatures permits, at least in principle, the 
identification of precursors and 3’ UTR target-islands that are potentially mosaic-like structures 
composed of currently unknown elemental blocks.  Summarily, our method allows us to identify 
essentially all currently known miRNA precursors and mature miRNAs in these precursors.  The 
method also allows us to correctly predict most of the 3’ UTR regions which have been shown 
experimentally to be targeted by known mature miRNAs.  Finally, the method correctly predicts a 
large percentage of mature miRNA/miRNA-target pairs that have been published in the literature.  
These results are coupled with simultaneously high values for sensitivity and specificity.   

We have applied our method to the analysis of several genomes and report on estimates for 
the number of endogenously coded miRNA precursors.  Additionally, we have obtained first and 
report on estimates for the number of 3’ UTR target-islands which we believe will form 
complexes with one or more mature miRNAs.  Finally, we give examples of predicted RNA/RNA 
complexes that have been derived using our method.  The results of our analysis suggest that the 
number of precursors in at least some of the publicly available genomes may have been 
underestimated, in some cases by a very significant amount.   Also, the estimated number of 
predicted 3’ UTR target-islands suggests the existence of a very extensive combinatorial 
mechanism for carrying out post-transcriptional gene regulation within the cell and that the 
regulation of cellular processes through RNAi is a very pronounced and wide-ranging 
mechanism. 



  

In the Methods section, we describe our method, rna22, and explain how it is applied to solve 
the various problems that we mentioned above.  In the Results section, we describe preliminary 
experimental results and briefly examine their ramification. And finally, we conclude with a brief 
discussion and some closing comments. 

 

METHODS 
 
Method: Background  
The discovery and exploitation of patterns in computational biology has a long history that 

goes back at least two decades (see Rigoutsos et al. 2000 for a related review).  For the most part, 
the use of pattern discovery in the biological context has been confined at the amino acid level 
whereas most of the very interesting applications and results have appeared in the literature only 
in the last 10 years.  The use of pattern discovery on DNA inputs has for the most part been 
limited to the discovery of tandem repeats or of cis-regulatory signals in the 5’ UTR of genes.   
To the best of our knowledge, this is the first time that a pattern discovery method is proposed as 
a mechanism for addressing questions that arise in the context of studying RNAi. 
 

Method: The Key Idea 
Let us consider the situation where we are presented with a database of sequences and a 

query and are asked to determine whether the query can be edited into a sequence that is already 
present in the database, under the constraint that the number of edit operations be bounded from 
above.  Traditionally, this version of the string editing problem has been solved by variations of a 
basic process during which the query is compared with every one of the sequences in the database 
in turn – this comparison can either be exhaustive, e.g. using dynamic programming techniques 
(Smith and Waterman 1981), or rely on heuristics that are meant to speed up the process e.g. 
FASTA (Pearson 1996), BLAST (Altschul et al. 1997). 

Several years ago, we proposed an approach which is the logical inversion of this basic 
process (Rigoutsos et al. 1999a; Rigoutsos et al. 1999b, Rigoutsos et al. 2000): beginning with 
the sequence database, we use pattern discovery (Rigoutsos and Floratos 1998a) and 
combinatorially generate a collection C of regular expressions (i.e. patterns) that is a redundant 
representation of the original database and ‘covers’ it as completely as possible.  Given the 
collection C of patterns, we can answer the above problem by searching the query sequence for 
one or more instances of the patterns from C.   Unlike the previous approach where one searches 
the database with a query, we search the query for instances of an alternative representation of the 
database’s contents. 

One can think of the sequence database in question as a repository of information that 
describes a specific context, a training set; for example, the database could comprise the 
sequences of all currently known miRNA precursors.   Patterns derived from such a treatment of 
the various sequences are bound to capture intra- and inter-family signatures.  Clearly, in a 
context such as the one we are discussing, i.e. RNAi, the concept of a sequence “family” is not 
well-defined yet (except perhaps for definitions aligned with species boundaries).  Intra-family 
signatures are typically global in terms of their span/extent whereas the inter-family ones are 
local.   

This pattern discovery approach is particularly suitable in situations where the nature and the 
cardinality of the characteristics shared by a given group of sequences cannot be easily identified 
or described. To the extent that the input sequences in such a database represent a large and 
diverse sampling of the underlying sequence space, the patterns which would be derived from this 
process would also represent an exhaustive collection of intra- and inter-family signals that have 
been discovered in an unsupervised manner. 



  

One can distinguish two stages in the rna22 method:  “off-line” and “on-line.”  The off-line 
stage is also the training stage during which we generate descriptors from the available data.  
These descriptors are then used during the on-line stage to address each one of the questions of 
interest. 

Figure 1 below outlines the generic steps that we follow during the off-line stage.  We begin 
with an appropriately selected training set (miRNA precursor sequences and mature miRNA 
sequences respectively), then use the Teiresias pattern discovery algorithm [Rigoutsos and 
Floratos 1998a; Rigoutsos and Floratos 1998b] to discover patterns that are contained in it.  We 
use statistical significance criteria to subselect from among these patterns and conclude with the 
generation of a set of patterns that can be used as predicates for membership in the collection that 
the training set represents. 

 

appropriate   appropriate   
training settraining set

pattern discoverypattern discovery
using ‘using ‘TeiresiasTeiresias’’

large collection
of patterns

large collectionlarge collection
of patternsof patterns

“good”
patterns

“good”“good”
patternspatternsuseful predicatesuseful predicates

filtering/cleanupfiltering/cleanup
(optional)(optional)

 
Figure 1.  The generic process that is used in the off-line stage of rna22.  

 
If the training set comprises the sequences of all miRNA precursors that are currently known, 

then, by definition, the resulting patterns will capture various characteristics that are conserved 
locally and possibly globally and are shared by 2 or more of the input sequences.  If, on the other 
hand, the training set comprises the sequences of all known mature miRNAs, then the pattern set 
will correspond to local (or global) characteristics shared by two or more mature miRNA 
sequences.  What is important and should be stressed here is that pattern discovery as a process 
obviates the requirement that there be a global alignment between any two or more sequences in 
the training set.  As such, rna22 can accommodate the possibility that sequences such as our 
miRNA precursors are actually composed of as-yet-unidentified modules in a manner analogous 
to what has been encountered and described in amino acid sequences (as well as in the rest of the 
hierarchy that extends from nucleic acid to genome, for that matter). 

 
Method: Discovering Precursors 
We begin with the sequences of known miRNA precursors that are contained in RFAM 

(Griffiths-Jones 2004) and following the process of Figure 1 we generate a set of precursor-
specific patterns Ppre  that appear in two or more of the RFAM precursor sequences and have been 
filtered for statistical significance.  It should be stressed here that, unlike previously proposed 
methods, we do not draw lines across organismal boundaries but rather use the union of all 
known miRNAs from all organisms to generate Ppre.  Subsequently, we use Ppre to process 
intergenic/intronic regions from the genome of interest.   If a sequence of nucleotides corresponds 
to a miRNA precursor, we expect that it will also contain numerous instances of many patterns 



  

from Ppre in clear contrast with its surrounding region – each candidate precursor island is 
subsequently filtered to ensure a minimum length (typically 60 nucleotides) and that a minimum 
number of patterns from Ppre have instances across the candidate precursor’s span.  The candidate 
sequences are then folded using RNAfold (Hofacker et al. 1994) to ensure that they form a 
hairpin.  Those candidates that do not form a hairpin or contain internal self –hybridizations are 
discarded at this stage.  Candidates can also be discarded based on the Gibbs free energy of the 
formed hairpin structures (typical threshold -28 Kcal/mol).  Since we are also interested in the 
mature miRNAs that will be derived, we will discard candidate precursors if a mature miRNA 
cannot be localized in them. 

 
Method: Localizing a Mature miRNA 
We begin with the sequences of known matures miRNAs that are contained in RFAM and 

following the process of Figure 1 we generate a set of mature-miRNA-specific patterns Pmat  that 
appear in two or more of the RFAM mature sequences and have been filtered for statistical 
significance.  As in the case of miRNA precursors, we process all known miRNAs from all 
organisms at once to generate Pmat.  With the collection Pmat at hand, we process the sequences of 
the candidate precursors from the previous step looking for concentrations of instances of mature 
miRNA patterns.   The sought regions will be clearly separated from their surrounding area as 
they will be ‘hit’ by many more patterns.  Candidate mature miRNA regions are checked to 
ensure that they do not overlap with the loop region, have a minimum length (typically 18 nts), 
and that a minimum number of patterns from Pmat have instances across their span.  If more than 
one region within a precursor exceed threshold, rna22 will report each and every one of them. 

 
Method: Identifying 3’ UTR target-islands 
This is arguably one feature of rna22 that, to the best of our knowledge, really distinguishes it 

from all previously-proposed methods.  In particular, rna22 can identify automatically those 
segments in a gene’s 3’ UTR that will be the targets of some miRNA and can do so in the absence 
of any knowledge about the targeting miRNA.  This is revisited below in the context of the LSY-
6/COG-1 interaction. 

As we mentioned above, the patterns which are generated using the generic process shown in 
Figure 1 capture generic properties of the training set and abstract them in the form of regular 
expressions.  This will also hold true for the patterns contained in Pmat.  Recall now that, by 
definition, the target site of a given miRNA is expected to look like the reverse complement of 
the targeting miRNA’s sequence.   This is precisely the property we use to identify 3’ UTR 
target-islands.  Starting with the set Pmat we first generate its reverse complement revcomplPmat  I.e. if 
pattern [AT][CG].TTTTT[CG]G..[AT][AT][AT]G[CG].CTT is contained in Pmat then the pattern 
AAG.[CG]C[AT][AT][AT]..C[CG]AAAAA[CG][AT] will be contained in revcomplPmat.  We then 
use the set revcomplPmat  to process the 3’ UTR of each gene seeking concentrations of instances of 
the reverse complements of mature miRNA patterns.  As before, the sought regions will be 
clearly separated from their surroundings as they will be ‘hit’ by many more patterns.  Candidate 
3’ UTR target-islands are filtered to ensure a minimum length (typically 16 nts), and that a 
minimum number of patterns from revcomplPmat have instances across their span.    Clearly, if there 
is reason to believe that miRNAs can target other regions in addition to a gene’s 3’ UTR, then the 
process we just described can be used to examine these additional regions as well. 

Method: Determining Complexes between miRNA and 3’ UTR Target-islands 
At this point, and for a given organism we have described methods that allow us to determine 

candidate miRNA precursors and their corresponding miRNAs, and candidate target-islands that 
are present in the 3’ UTRs of all of the genes of the organism (or elsewhere – see also above).   
Let us assume that we have a collection CmiRNA of  mature miRNAs and a collection of Cgenes of 
interest.  The task at hand is one of determining the answers to the following questions: (a) given 



  

a miRNA m from CmiRNA, determine its target genes and report the locations in each gene’s 3’ 
UTR that m will target; (b) given a gene g from Cgenes determine the miRNAs from CmiRNA that 
will target g. Given the previous discussion, the process we outline here should be 
straightforward.  In order to answer (a) above, we do the following:  for each gene g in Cislands 
determine g’s 3’ UTR target-islands gCislands then proceed by generating and ranking the 
interactions between m and {1Cislands, 2Cislands, 3Cislands,…}.   In order to answer (b) above, we do 
the following:  we compute gene g’s 3’ UTR target-islands gCislands  then proceed by generating 
and ranking the interactions between each member of CmiRNA, and each island (if more than one) 
in gCislands.    

Clearly, this approach assumes that for a given gene g the set gCislands  is non-empty, that it 
contains the ‘correct’ target sites (which are of course unknown), and, that what it contains is but 
a small subset of the g’s original 3’ UTR (so as to also enjoy performance gains).  Whether these 
constraints are satisfied is also dependent on the employed thresholds.  As we will see in the 
Results section, and to the extent that we can evaluate our performance by analyzing all currently 
known RNA/RNA complexes, rna22’s does indeed perform well. 

The last remaining item is that of specifying how these interactions are computed.  At least 
two possibilities exist at this point. First, one can use only the subset of revcomplPmat that is formed 
from only those patterns of Pmat that are also present in the mature miRNA m under consideration.  
This choice will generally lead to increased specificity in determining the correct target but is 
likely to adversely affect sensitivity.   As a second possibility, one can simply form putative 
complexes of m that start at each location of every island in gCislands.  From a performance 
standpoint, this is actually an acceptable process because gCislands will contain only a small 
fraction of g’s original 3’ UTR.   Several other possibilities exist, each with its own sensitivity 
and specificity characteristics but their discussion escapes the score of this document. 

 

RESULTS 
This section is organized as follows.  We begin by presenting results on publicly available 

data that highlight the various aspects of our method.  We then proceed with a performance 
evaluation of our method’s various modules again using publicly available data.  This is followed 
by the reporting of new findings and the mention of several interesting observations which 
showcase the power of our method.  Finally, we conclude by presenting estimates on the numbers 
of miRNA precursors, mature miRNAs and target sites for several genomes of interest. 

But first, we would like to point out that our training set intentionally comprises a set of 
publicly available data that is more than 1 year old.  In particular, we worked with Release 3.0 of 
the RFAM database from January 2004.   This release contained 719 entries from human, mouse, 
worm, fly and plants.  Since the available datasets are still relatively small, we wanted to use an 
older dataset for training as it would create an ideal setting for evaluating rna22 using more 
recent data and determining how well it can extrapolate. 

 
Discovering Precursors / Locating Mature miRNAs:  
We begin by showing an example of the kinds of pattern coverage that will be received by a 

nucleotide region that encodes for a miRNA.  Figure 2 below shows such a plot for hsa-miR-224 
which was part of the training set.  The x-axis shows nucleotide position.  The y-axis of the left 
plot shows the coverage in terms of Ppre patterns, whereas the y-axis of the right plot shows the 
coverage in terms of Pmat patterns.  As can be seen from this Figure, the support that the region 
obtains is non-zero for the length of the precursor.  Moreover, the Pmat pattern support clearly 
delineates the location of the mature miRNA for this precursor between positions 8 and 29 
inclusive. 
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Figure 2.  Example of pattern coverage for the region that encodes the 
has-mir-224 precursor. Left:  coverage in terms of Ppre patterns as a function of 
position.  Right: coverage in terms of Pmat patterns as a function of position. 

 
 

Extrapolating From Old-Known to New-Unknown Cases: Precursors and Matures 
A question that typically arises in data mining applications has to do with overfitting a given 

training set:  the mining method at hand has learned to fit the training set so well that it has lost its 
ability to generalize.  Here we report on how many of the entries of Release 5.1 from December 
2004 can be correctly predicted by rna22.  It should be noted that Release 5.1 is almost twice the 
size of our training set and contains 1420 entries.   Table 1 below shows how many new entries 
have been added to RFAM since version 3.0 and what percentage of these entries is correctly 
predicted by rna22.  Numbers are given separately for each genome.  As can be seen, despite the 
fact that the original training set is rather small, rna22 can extrapolate and can discover de novo 
almost 90% of all miRNAs that have been added to RFAM since release 3.0 with a notable 
weakness in the plant genomes. 

 

 

Precursors 
in training 

set 

RFAM 5.1 
Dec 2004 Difference discovered by 

rna22 

% of new 
items 

discovered 
by rna22  

ATH 43 112 69 18 25.0% 
CBR 48 79 31 10 30.3% 
CEL 106 116 10 0 0.0% 
DME 78 78 0 0 N/A 
DPS 0 73 73 67 91.8% 
DRE 0 30 30 27 90.0% 
EBV 0 5 5 3 60.0% 
GGA 0 121 121 109 90.1% 
HAS 176 222 46 71 65.7% 
MMU 202 224 22 100 76.3% 
OSA 28 134 106 35 32.4% 
RNO 38 186 148 148 93.7% 
ZMA 0 40 40 37 78.7% 

Total= 719 1420 701 625 89.2% 
 

Table 1.   This table shows for each genome separately, the percentage of the new 
entries which have been added to RFAM since release 3.0 and which can be 
correctly discovered de novo by rna22. 
 



  

Identifying Target-islands and the Ability to Extrapolate 
As we discussed above, rna22 has the ability to identify miRNA target sites in a gene’s 3’ 

UTR without any need to know the identity of the miRNA that will bind to it.  We have selected 
the gene COG-1 as an example which will demonstrate this capability. 

Since the release of RFAM 3.0 that we used for training, many examples of miRNA/mRNA 
complexes have appeared in the literature.  One such notable case is the LSY-6/COG-1 complex 
(Johnston and Hobert, 2003).  LSY-6 is the first miRNA that has been identified as having a role 
in neuronal patterning and is responsible for controlling left/right asymmetry in the taste 
chemoreceptors of C. elegans.   LSY-6 has been shown to repress COG-1, Nkx-type homeobox 
gene, by binding to its 3’ UTR.   Moreover, LSY-6 has two very interesting characteristics:  it is 
only expressed in a very small fraction of the nematode’s cells, and, the precursor is not 
conserved in the closely related nematode C. briggsae (but the mature miRNA itself is 
conserved). 

LSY-6 was not contained in RFAM 3.0 and thus was not part of our training set.   Moreover, 
and this is evidenced by a similarity search, LSY-6 shares no discernible similarity with any other 
mature miRNAs contained in RFAM 3.0, whether from nematodes or other genomes.   
Consequently determining the site in COG-1’s 3’ UTR where LSY-6 will bind is a non-trivial 
discovery event.   Figure 3 below shows the coverage in terms of revcomplPmat patterns as a function 
of position in the 3’ UTR of COG-1.  As can be seen, rna22 is able to correctly determine the 
binding site even though it has never seen LSY-6, the targeting miRNA.  The yellow region 
indicates the unusually-long, 29 nucleotide binding region which was reported in (Johnston and 
Hobert 2003).  Its agreement with the result reported by rna22 is exceptional.  Equally 
importantly, several more clearly-delineated target-islands, all of them being 21-22 nucleotides 
long in width are present in COG-1 3’ UTR suggesting the possibility that more miRNAs than 
just LSY-6 target COG-1. 
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Figure 3. Plot showing the identification of distinct target-islands in the 3’ UTR  
of COG-1 where LSY-6 has been shown to bind.  The yellow region indicates the 
unusually long, 29 nt region which was reported in the literature as the target site 
for LSY-6 and which is in near-perfect agreement with rna22’s estimate for a 3’ 
UTR target-island.  See also text. 



  

 
In Table 2 below we show which of the 3’ UTR target sites that have been reported in the 

literature as being the targets of interfering miRNAs are picked up by rna22 for various threshold 
values (=number of revcomplPmat patterns that cover the reported region).   

 
     s  Value of Pattern Threshold u 

Target 
GENE miRNA 20 25 30 35 40 45 50 55 60 65 70 

StartPos 
 

lin41-cel-2 cel-let-7            738 
hid-dme-1 dme-bantam            874 
hid-dme-2 dme-bantam            1711 
hoxb8-has hsa-mir-196a            411 
lin28-hsa hsa-let-7b            890 

mapk14-hsa. hsa-mir-24            651 
fbxwib-hsa hsa-mir-103            2392 
brn3b-hsa-3 hsa-mir-23a            463 
enx1-hsa-2 hsa-mir-101            114 
cog-1-cel cel-lsy-6            257 

myotrophin- has-mir-375            3126 
bdnf-hsa-1 hsa-mir-1b            220 
lin28-cel cel-lin-4            328 

g6pd-hsa-2 hsa-mir-1b            433 
nmyc-hsa. hsa-mir-101            494 

laminin-hsa hsa-mir-199b            209 
lin41-cel-1 cel-let-7            689 
dmtf1-hsa hsa-mir-15a            123 

smad-hsa-2 hsa-mir-26a            103 
clock-hsa hsa-mir-141            214 
cgi38-hsa hsa-mir-16            294 
bdnf-hsa-3 hsa-mir-1b            1322 

brn3b-hsa-1 hsa-mir-23a            102 
smad-hsa-1 hsa-mir-26a            46 
smc1l1-hsa hsa-let-7e            73 
enx1-hsa-1 hsa-mir-101            59 
g6pd-hsa-1 hsa-mir-1b            97 
pten-hsa-1 hsa-mir-19a            411 
pten-hsa-2 hsa-mir-19a            N/A 

 
Table 2.   Color coded reporting of the number and validated targets sites are 
discovered by rna22 as a function of the used pattern threshold. 

 
From this Table, and for a rather conservative threshold of 35 revcomplPmat patterns, we can 

generate a rough estimate of rna22’s sensitivity in identifying a true 3’ UTR target-island to be 
equal to 21/29=72.4% - the true number is likely to be higher.  In terms of specificity when 
identifying a 3’ UTR target-island, rna22’s performance can be estimated with the help of the 
negative examples mentioned in (Kiriakidou et al. 2004).  We again use the same threshold of 35 
patterns.  Of the 9 reported sites that were predicted to be targets of several known miRNAs but 
could not be validated experimentally, 3 are reported by rna22 as corresponding to 3’ UTR target-
islands.  Since the experiments in (Kiriakidou et al. 2004) only investigated the possibility of 
complexes with specific miRNAs, the possibility exists that the 3 sites which are reported by 
rna22 do indeed function as miRNA targets but for a miRNA other than the one that was 
investigated by the authors.  Thus, using this admittedly limited set of negative examples, we 
estimate the specificity of rna22 to be at least 66%. 

Next, let us examine the binding energies for the mRNA/miRNA complexes that have been 
reported in the literature.  These energies are shown in Table 3 below.   This is of interest because 



  

it permits us to estimate an appropriate threshold for the binding energy of miRNA/mRNA 
complexes that will be reported by rna22: only predicted complexes with energies lower than the 
value of the selected threshold should be reported.  Being conservative, we decided to select a 
threshold of -28 Kcal/mol for rna22 and did so with the full understanding that we would be 
forced to ignore a substantial number of true interactions. 
 

             s   Value of Gibbs Free Energy ( in –Kcal/mol)   u 

mRNA miRNA -
15.0 

-
17.5 

-
20.0 

-
22.5 

-
25.0 

-
27.5 

-
30.0 

-
32.5 

-
35.0 

-
37.5 

-
40.0 

Energy of 
complex 

hoxb8-has hsa-mir-196a -45.7
delta-hsa-1 hsa-mir-34 -38.3
lin28-hsa hsa-let-7b -38.2

lin41-cel-1 cel-let-7 -34
mapk14-hsa. hsa-mir-24 -32.3
delta-hsa-3 hsa-mir-34 -31.4
laminin-hsa hsa-mir-199b -31.3
lin41-cel-2 cel-let-7 -31.1
hid-dme-2 dme-bantam -30.9
lin28-cel cel-lin-4 -30.6

fbxwib-hsa hsa-mir-103- -30
dmtf1-hsa hsa-mir-15a -29.6
nmyc-hsa. hsa-mir-101 -28.1
g6pd-hsa-2 hsa-mir-1b -26
hid-dme-1 dme-bantam -25.7
enx1-hsa-1 hsa-mir-101 -25.6
smad-hsa-1 hsa-mir-26a -25.5
pten-hsa-2 hsa-mir-19a -24.6
smc1l1-hsa hsa-let-7e -24.2
clock-hsa hsa-mir-141 -24

g6pd-hsa-1 hsa-mir-1b -24
myotrophin-hsa has-mir-375 -23.4

enx1-hsa-2 hsa-mir-101 -23.4
cgi38-hsa hsa-mir-16 -22.7
bdnf-hsa-1 hsa-mir-1b -21.9
bdnf-hsa-3 hsa-mir-1b -21.7

brn3b-hsa-1 hsa-mir-23a -21.1
pten-hsa-1 hsa-mir-19a -21.1

brn3b-hsa-3 hsa-mir-23a -20.2
smad-hsa-2 hsa-mir-26a -19
cog-1-cel cel-lsy-6 -17.8

Table 3.   Color coded reporting of the experimentally validated interactions that 
would be reported by rna22  at a given choice of threshold for the binding energy 
of the RNA/RNA complex. 

 
Naturally, the question now arises of how many 3’ UTR target-islands can rna22 identify in 

the 3’ UTRs of the genes for which experimentally verified bindings are available.   Table 4 
below shows precisely this as a function of threshold (=number of revcomplPmat patterns that cover 
each region).   

      s  Value of Pattern Threshold u 
 

GENE miRNA 20 25 30 35 40 45 50 55 60 65 70 
lin41-cel-2 cel-let-7 12 12 12 13 10 8 8 7 7 7 4 
hid-dme-1 dme-bantam 31 31 25 29 23 21 21 19 19 18 17 
hid-dme-2 dme-bantam 31 31 25 29 23 21 21 19 19 18 17 
hoxb8-has hsa-mir-196a 9 10 10 10 9 7 7 4 4 4 4 
lin28-hsa hsa-let-7b 31 28 29 25 24 21 19 16 16 12 11 

mapk14-hsa. hsa-mir-24 26 28 26 26 24 22 21 17 17 17 15 
fbxwib-hsa hsa-mir-103 31 33 30 28 22 22 21 17 15 13 12 
brn3b-hsa-3 hsa-mir-23a 17 19 19 17 14 11 9 9 8 7 6 
enx1-hsa-2 hsa-mir-101 3 3 2 2 2 2 2 2 2 2 2 
cog-1-cel cel-lsy-6 7 6 5 5 5 3 2 2 2 2 1 

myotrophin-hsa has-mir-375 35 41 32 31 27 24 19 16 15 14 13 
bdnf-hsa-1 hsa-mir-1b 30 34 34 29 27 24 22 20 18 16 13 
lin28-cel cel-lin-4 39 36 36 31 30 27 24 21 20 15 14 

eif3s1-hsa hsa-let-7e 13 14 12 10 11 10 7 7 7 7 6 
g6pd-hsa-2 hsa-mir-1b 6 6 4 4 4 3 1 0 0 0 0 
nmyc-hsa. hsa-mir-101 12 10 11 9 9 9 8 6 6 5 4 

laminin-hsa hsa-mir-199b 16 15 14 15 15 15 11 10 8 6 5 
lin41-cel-1 cel-let-7 12 12 12 13 10 8 8 7 7 7 4 
dmtf1-hsa hsa-mir-15a 12 14 14 13 11 10 10 9 7 6 5 



  

smad-hsa-2 hsa-mir-26a 2 2 1 1 1 0 0 0 0 0 0 
ste20-hsa hsa-mir-141 16 17 16 15 15 10 9 8 9 8 7 
clock-hsa hsa-mir-141 34 32 31 32 31 29 27 23 22 20 18 

c22orf5-hsa hsa-mir-15 22 19 19 15 12 10 9 8 7 6 6 
cgi38-hsa hsa-mir-16 4 4 3 2 2 2 2 2 2 2 1 
bdnf-hsa-3 hsa-mir-1b 30 34 34 29 27 24 22 20 18 16 13 

kiaa0152-hsa hsa-mir-24 66 64 57 55 53 45 43 42 36 33 28 
brn3b-hsa-1 hsa-mir-23a 17 19 19 17 14 11 9 9 8 7 6 

vegf-hsa hsa-mir-16 23 20 19 16 16 14 13 11 11 8 6 
smad-hsa-1 hsa-mir-26a 2 2 1 1 1 0 0 0 0 0 0 
smc1l1-hsa hsa-let-7e 62 65 59 63 57 56 51 46 42 36 35 
enx1-hsa-1 hsa-mir-101 3 3 2 2 2 2 2 2 2 2 2 
g6pd-hsa-1 hsa-mir-1b 6 6 4 4 4 3 1 0 0 0 0 
pten-hsa-1 hsa-mir-19a 2 3 3 3 3 3 2 2 2 2 2 
pten-hsa-2 hsa-mir-19a 2 3 3 3 3 3 2 2 2 2 2 
klf5-hsa hsa-mir-141 18 14 13 14 15 13 12 10 11 9 9 

tmod3-hsa hsa-mir-145 11 11 10 10 8 7 5 4 3 2 1 
ripa-hsa hsa-let-7b 9 8 9 6 6 6 7 6 5 5 4 
gpd1-hsa hsa-mir-103 18 17 16 17 12 10 9 6 6 6 6 

 
Table 4.   Number of target-islands that are discovered by rna22  in the 3’ UTRs 
of the genes that has been experimentally studied in the literature, as a function 
of the used pattern threshold. 

 
As can be seen, the 3’ UTRs for several of these genes contain numerous predicted target-

islands that persist at very high threshold values.  And given rna22’s results on COG-1 that we 
presented above we are inclined to accept that many of these islands are indeed valid.  We will 
return to this topic below when discuss the specific case of BDNF. 
 

Validating rna22 on Old-Known Cases: miRNA / 3’ UTR Target-island Interactions 
Could we have predicted the mRNA/miRNA complexes that exist in the literature de novo 

using the current version of rna22?   To answer this question, we used a threshold of 20 for the 
revcomplPmat  set of patterns (so as to accommodate the discovery of as many of the known islands as 
possible – see Table 2) and a binding energy threshold to -17Kcal/mol (so as to accommodate 
COG-1 – see Table 3), then used rna22 to process all of the genes for which targets have been 
validated in the literature.  From each of these genes, many target-islands were extracted (Table 4 
above shows the exact numbers) and were used to form the set {1Cislands, 2Cislands, 3Cislands,…}.   We 
then combined all of the miRNAs from the latest RFAM 5.1 into the set CmiRNA of candidate 
targeting miRNAs.  Finally, we used rna22 to determine which entries from CmiRNA should pair up 
with which island from {1Cislands, 2Cislands, 3Cislands,…} and form a complex with binding energy 
less than or equal to -17 Kcal/mol.   Invariably and for every single one of the processed islands, 
rna22 identified the correct miRNA as the top ranking targeting miRNA for the island, in 
agreement with what had been reported in the literature.  Additional interactions between 
miRNAs in RFAM 5.1 and the genes of Table 4 were also reported by rna22 – this is precisely 
what we discuss next.  No interactions were reported for enx1-hsa-1, g6pd-hsa-1, pten-hsa-1 and 
pten-hsa-2 since rna22 cannot find the corresponding island even at a pattern threshold of 20 (this 
is shown in Table 2). 

 
Predicting miRNA / 3’ UTR Target-island Interactions 
We have just described that rna22 can correctly identify sites in 3’ UTR regions which are 

known to form RNA/RNA complexes with interfering RNAs.  We now show an example of how 
one can go about predicting a previously unreported mRNA/miRNA pair.   In what follows, 
rna22 used a threshold of 35 revcomplPmat  and a binding energy threshold of  -28 Kcal/mol – these 
are actually rna22’s default settings.  Let us assume that BDNF is our gene of interest.  Figure 4 
below shows the coverage of BDNF’s 3’ UTR by patterns from the revcomplPmat collection.  As in 



  

the case of COG-1 above, several clearly delineated target-islands, approximately 22 nucleotides 
in length, are present.  

 
Figure 4. Plot showing the coverage of BDNF’s 3’ UTR by revcomplPmat patterns.  
As in the case of COG-1 above, several clearly delineated target-islands 
approximately 22 nucleotides in length are evident. See also text. 
 

We will focus on one of the more prominent islands, and in particular the one that is pointed 
to by the yellow arrow.  The question “which of the known human miRNAs is likely to bind to 
this target-island?” has what appears to be a very definite answer:  hsa-miR-213 will bind to a 
region within that island and form an RNA/RNA complex with a binding energy which is 
superior to that of the runner-up candidate by approximately 14 Kcal/mol (!).  The predicted 
complex spans locations 2489 through 2510 inclusive and is shown here: 

  BDNF(ENSG00000176697)        hsa-miR-213 
        5’                  3’   5’                  3’ 
  TCACAGTCACATGCTTGATGGT   ACCATCGACCGTTGATTGTACC   
  ..(((((((.(((.((((((((   )))))))).))))))))))... 

A picture of the RNA/RNA complex appears in Figure 5. 
 

 
 

Figure 5. The RNA/RNA complex that is predicted to form between hsa-miR-
213 and BDNF at locations 2489:2510.  The folding and the picture were 
generated by MFOLD (Zucker 2003; Matthews et al. 1999). 
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Estimating the Number of Precursors and 3’ UTR Target-Islands 
The above results have provided evidence for rna22’s ability to correctly discover bona fide 

miRNA precursors, localize the mature miRNA(s) within those precursors, correctly determine 3’ 
UTR target-islands and finally predict miRNA/mRNA complexes.  Naturally, the question arises:  
how many precursors are encoded by a given genome?  how many target islands exist in the 
various genes’ UTRs?  how many of the genome’s genes are under RNAi control?  Clearly, 
computationally predicted answers suffer from two drawbacks: they are highly-dependent on the 
choice of thresholds, and they are just that, predictions.  Table 5 below shows our initial estimates 
for several genomes of interest (using a threshold of 35 patterns and -28 Kcal/mol of binding 
energy).  There is an evident increase in the number of predicted precursors and 3’ UTR islands 
in direct correlation with the apparent complexity of the organism at hand. 

 
 

Genome 
 
 

# of precursors 
contained in 
RFAM 5.1 

# of 
precursors 
(predicted) 

# of 
matures  

(predicted) 

# of 3' UTR 
target-
islands 

(predicted) 

# of 
affected 

transcripts 
(predicted) 

HHV5 0 > 50  > 60 > 700 > 100 
C. elegans 116 > 250 > 350  > 12,000 > 3,000 

D. melanogaster 78 > 270 > 350 > 32,000 > 6,500 
M. musculus 224 >3,500 > 4,000 > 90,000 > 8,000 

H. sapiens 222 >4,000 > 4,500 > 120,000 > 10,000 
 

Table 5.   Computational estimates for the number of precursors, mature miRNAs 
and 3’ UTR target-islands for several genomes. 

 
 

DISCUSSION 
We have presented a unified framework for studying RNAi and computationally answering 

many of the important questions that arise in this context.   Our framework is based on a pattern-
discovery scheme and has been shown to perform well on most publicly available data and using 
as a starting point a very small training dataset, RFAM 3.0, that contained 719 miRNA 
precursors.   

The resulting algorithm, rna22, was put to the test using a very extensive set of experiments 
that were diverse in nature.  Rna22 demonstrated the ability to a) correctly predict previously 
unseen miRNA precursors, b) correctly predict previously reported binding regions for old and 
newly reported miRNAs, and c) correctly predict experimentally validated mRNA/miRNA 
complexes.  We also used rna22 to predict a mRNA/miRNA complex between BDNF and hsa-
mir-213. 
Finally, we used rna22 to estimate the number of miRNA precursors encoded in several genomes 
as well as the number of 3’ UTR target-islands and the number of affected transcripts in those 
genomes.  Even though, they have been generated using what we consider to be rather stringent 
thresholds, our estimates are at odds with what has been reported to date.  These estimates 
suggest that, across genomes, there exist a very extensive combinatorial mechanism for carrying 
out post-transcriptional gene regulation and that the RNA interference-based coordination and 
control of cellular processes is a very pronounced and wide-ranging mechanism. 
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