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ABSTRACT
Recent advances in the hardware available for commodity
computer systems are enabling the construction of virtual
machine monitors (VMMs) that provide complete isolation
between virtual machines (VMs). This paper predicts that
the availability of this isolation will increase the demand for
VMM-based systems running mutually distrusted coalitions
of VMs. Because the VMM systems can provide reliable iso-
lation, some controlled sharing responsibilities of operating
systems will be moved to the VMM, where practical; we in-
vestigate the efficacy of providing such controls in the VMM
in this paper.

This paper describes the design of the sHype security
architecture, carefully considering which virtualizable re-
sources are appropriately controlled by the VMM. sHype en-
ables control of these resources using a system-wide manda-
tory access control (MAC) policy. One sHype design goal
is to permit the hypervisor to retain a very stable, near-
minimal code base, allowing significant security assurances
(e.g., Common Criteria) to be achieved. Notably, this paper
argues that it is not necessary to aim for the highest levels
of assurance when designing secure VMMs for commodity
hardware—when absolute isolation is required (e.g., the to-
tal prevention of covert timing channels), a multi-system,
separate hardware architecture is recommended. Finally,
this paper describes an implementation of the sHype ar-
chitecture controlling virtual LAN (vLAN) resources in a
fully-functional research hypervisor.

1. INTRODUCTION
As general-purpose workstation- and server-class computer

systems grow in available power and capability, it becomes
more attractive to aggregate the functionality of multiple
standalone systems onto a single hardware platform. For
example, a small business that originally used three com-
puter systems—perhaps to take customer orders using a
web server front-end, a database server in the middle, and a

file server back-end—can reduce the required physical space,
configuration complexity, management complexity, and over-
all hardware cost by running all three applications on a
single system. Taking this one step further, several small
businesses could achieve an even lower-cost solution by con-
tracting out the management of their respective business
computing applications to a centralized server managed by
a nonpartisan third party.

This idea of virtualization of standalone computer sys-
tems on a single system has been around for decades [1,
2], often being employed in “big iron” mainframe systems
whose hardware was explicitly designed with virtualized op-
eration in mind. However, until recently it has not been
feasible to build systems out of commodity PC hardware
that meets the security guarantees required by mutually dis-
trusted parties—i.e., that the data and execution environ-
ment of one party’s applications are securely isolated from
those of a second party’s applications. For example, such
systems were often vulnerable to DMA attacks where one
party’s application could break isolation by issuing DMA
instructions to effect a copy into or out of the memory used
by the second party’s applications. Such systems were vul-
nerable no matter what software mechanisms were used for
isolation—whether the property was enforced by the oper-
ating system, or by a virtual machine monitor (VMM) con-
trolling multiple virtual machines (VMs).

Emerging technology, such as the I/O-MMU, eliminates
these previous limitations on isolation for commodity sys-
tems and makes it feasible to ensure a VMM can control
all memory accesses, especially those between mutually dis-
trusted parties. This development, combined with the in-
ability to make definitive statements about resource sharing
among heterogeneous and potentially mutually distrusted
operating systems running as guests in VMs, motivates us
to claim that VMMs will not only need to provide isolation,
but also they will need to provide a basis for control of in-
formation flows and sharing of resources among VMs which
was formerly expected of operating systems.

As we recognize that one of the strengths of a well-designed
VMM is a minimal software base—i.e., building only as
much code and functionality into the VMM to accomplish its
goals, in order to facilitate code inspection and behavioral
verification—we are not proposing that a VMM take on all
characteristics of a full-fledged operating system. Rather, we
simply assert that a system’s security will depend on VMM
control and mediation of inter-VM resources. This is not
an entirely new notion, as the VAX VMM systems provided



high assurance (e.g., Orange Book A1 [3] or Common Crite-
ria EAL7 [4]) mediation of resources among VMs [5]. Also,
the Terra trusted VMM uses a management VM to arbitrate
resource usage among VMs [6]. However, we believe that
changes in hardware support and trade-offs in how virtual-
ization can be implemented need to be re-examined to justify
the design of a VMM security architecture that best bal-
ances system flexibility, minimization of trusted code, and
performance impact. For example, the VAX VMM predated
I/O-MMUs, so drivers had to be included in the VMM which
greatly limited system flexibility. With the respect to vir-
tualization decisions, we can choose to support virtualized
services either in the VM itself, a separate, trusted VM, or
in the VMM. Each of these choices has performance and
security considerations.

The problem we address in this paper is the design of
a VMM reference monitor that enforces a comprehensive,
mandatory access control (MAC) policies on inter-VM op-
erations. A reference monitor is defined to ensure mediation
of all security-sensitive operations, which enables a policy to
authorize all such operations [7]. A MAC policy is defined by
system administrators to ensure that system (i.e., VMM) se-
curity goals are achieved regardless of system user (i.e., VM)
actions. This contrasts with a discretionary access control
(DAC) policy which enables users (and their programs) to
grant rights to the objects that they own. In this paper, we
will focus on the design of the reference monitor interface,
rather than the MAC policy. A reference monitor design
that mediates all inter-VM resource usage will enable any
MAC policy to be correctly enforced.

Our reference monitor is the basis for the sHype hypervi-
sor security architecture. A hypervisor is a para-virtualization
VMM, where modest (e.g., tens of lines of code) operating
systems changes are made to enable the OS cooperation.
sHype implements a reference monitor interface for (1) iso-
lating virtual machines by default and (2) sharing resources
among virtual machines when desired according to MAC
policy. We examine which resources need to be controlled
based on an analysis of security, flexibility, and performance
properties. We describe how access control can be done in a
manner that has low impact on VM performance. Finally,
we demonstrate the enforcement using simple MAC policy
based on coalitions of VMs.

We implemented the core hypervisor security architec-
ture in an existing research hypervisor rHype [8] and, as
a proof-of-concept, demonstrated access controls for the vir-
tual network (LAN). Our modifications to the hypervisor
are small, about 1000 lines of code. Extending access con-
trol to the remaining virtual resources will require only a few
lines of code. The secure hypervisor architecture is designed
to achieve medium assurance (Common Criteria EAL4 [4])
for hypervisor implementations. Our security-enhanced re-
search hypervisor achieves near-zero security-related over-
head on the performance-critical path.

Section 2 introduces the typical structure of a hypervisor
environment for which we have developed a generic secu-
rity architecture. Mutually suspicious applications and run-
times serve as an example to illustrate requirements and the
use of our hypervisor security architecture. We introduce
the design of the sHype hypervisor security architecture in
Section 3 and its implementation in Section 4. Section 5
illustrates the use of sHype and Section 6 describes the re-
lated work.

2. PROBLEM STATEMENT
This work addresses the design and implementation of se-

cure inter-VM communications in a hypervisor environment,
with specific emphasis on four design issues: (1) strict hy-
pervisor enforcement of a MAC policy for all inter-VM com-
munications; (2) support for efficient communication among
coalitions of VMs as defined by the MAC policy; (3) minimal
communication-time overhead introduced by the run-time
policy checker in the hypervisor; and (4) the maintenance
of strong isolation between any VM pairs that are not oth-
erwise covered by the MAC policy.

This section begins by describing the need for hypervisor-
controlled enforcement of resource sharing among VMs, and,
by extension, the need for an in-hypervisor reference moni-
tor. We then describe the characteristics and role of a ref-
erence monitor, and examine the problem of designing a
hypervisor reference monitor to support coalitions of VMs.
We close the section by identifying the system evaluation cri-
teria that are useful for selecting among reference monitor
design options.

2.1 Coalitions of VMs
In the near future, we believe that VM systems will evolve

from a set of isolated VMs into sets of VM coalitions. The
main reason for this is that as the reliance in hypervisors
increases due to hardware improvements enabling reliable
isolation, we believe that some control now done in operat-
ing systems will be delegated to hypervisors. We aim for
hypervisors to provide isolation between coalitions and pro-
vide limited sharing defined by a system-wide MAC policy
within coalitions.

Consider a customer order system. The web services and
data base infrastructure that processes orders must be high
integrity in order to protect the integrity of the business.
However, the read-only operations advertising products and
collecting possible items to be purchased need not be as high
integrity. For example, an OEM’s code advertising a prod-
uct that the company distributes may be run in such a VM.
Obviously, we would like the latter system to work also, but
clearly the performance and flexibility requirements have
greater weight than the security requirements.

Such a view is analogous to the concept of privilege separa-
tion [9]. A privilege-separated system consists of sets of priv-
ileged and unprivileged components (e.g., VMs). The priv-
ileged components can perform certain operations (e.g., use
certain virtual resources) that the unprivileged cannot and
they are entrusted with protecting those resources. How-
ever, the unprivileged components can communicate through
limited interfaces with the privileged components. The se-
curity protection of such interfaces should be verifiable, so
that the company can ensure that no unprivileged inputs
can compromise the integrity of the privileged component
and that the privileged component protects the secrecy of
its secret, privileged data. The analytic integrity model [10]
provides an example of such security guarantees in oper-
ating systems, but the smaller trusted computing base of
hypervisors makes them a more attractive basis.

In the customer order example, the coalition of VMs per-
forming customer orders are separated from the other VMs
on the system. We separate them into the order VMs and
the other VMs. The order VMs may communicate, share
some memory network, and disk resources. Thus, they are
coalition and protected from other VMs completely by the



hypervisor. Within the Order VM coalition, the hypervisor
controls sharing using a MAC policy that permits inter-VM
communication, sharing of network resources and disk re-
sources, and some sharing of memory. All this sharing must
be verified to protect security of the order system. However,
the MAC policy also enables the hypervisor to protect the
order data base memory from being shared with the unpriv-
ileged components.

2.2 Reference Monitor
The key component of the security architecture is the ref-

erence monitor which enforces system access control pol-
icy. The classical definition of a reference monitor [7] states
that it possesses the following properties: (1) it mediates
all security-critical operations; (2) it can protect itself from
modification; and (3) it is as simple as possible.

First, a security-critical operation is one that requires
MAC policy authorization. If such an operation is not au-
thorized against the MAC policy, the system security guar-
antees can be circumvented. For example, if the mapping of
memory among VMs is not authorized, then a VM in one
coalition can leak its data to any other VM.

We identify security-critical operations in terms of the
MAC resources whose use must be controlled in order to im-
plement MAC policies. We must also identify the location
of the mediation points for these resources. The combina-
tion of MAC resources to be mediated and mediation points
forms the reference monitor interface.

Second, the reference monitor must protect itself. Funda-
mentally, this requirement implies that the hypervisor must
protect itself from unauthorized modification. Further, some
VMs may be entrusted with some reference monitor tasks.
For example, a hardware device may be shared between two
coalitions, so the VM serving the device must also control
data flows to these coalitions. VM enforcement may also be
necessary because the code is too complex to include in the
We call these VMs entrusted to enforce MAC policy, MAC
VMs.

Because the hypervisor is more fundamental to the sys-
tem than any MAC VM (e.g., the hypervisor can always
restart a MAC VM), we distinguish between hypervisor self-
protection and MAC VM self-protection. The basis of self-
protection is a trusted computing base (TCB), so we identify
two distinct TCBs: (1) a TCB-VMM upon which the hyper-
visor protection depends and (2) a TCB-MAC upon which
the MAC VM protection depends.

Third, simplicity of design is determined by the complex-
ity of the reference monitor interface and the complexity
of the MAC policy. Because a reference monitor interface
that meets the mediation requirement (1) can enforce any
MAC policy, we do not consider any specific MAC policy in
this paper (see references for prominent examples of MAC
policies [11, 12]). Thus, the simplicity is dependent on the
reference monitor interface only. We aim to control only the
minimal set of resources necessary to enforce a MAC policy.
If this is achieved, then the reference monitor can be made
sufficiently simple.

We will also consider the impact of the reference monitor
on overall system function in Section 3.

2.3 Resources and Mediation Points
Resources that impact MAC policies are those that enable

inter-VM information flows. That is, use of these resources

may enable one VM to communicate information to another
VM. For example, memory may be shared between two VMs
unless there are controls on memory distribution. Histori-
cally, both overt and covert information flows have been ad-
dressed in VMM designs. An overt information flow uses
resources as the communication medium, whereas covert in-
formation flows result from observing system behaviors that
are not defined as resources. We discuss these two types of
resources separately below.

2.3.1 Overt Information Flows
We divide overt resources into the following categories:

(1) hypervisor resources; (2) VM resources; (3) virtualized
system resources; and (4) physical system resources.

Hypervisor resources include the CPU, I/O memory (I/O-
MMU), and hypervisor memory that are necessary for the
hypervisor itself to run. The hypervisor must control these
itself.

VM resources include inter-VM communication (IPC),
VM memory, and VM objects themselves that enable VMs
to be created and communicate. All could be implemented
by VMs, so we have a choice. The choices depend on size of
trusted code (e.g., small for IPC and large for VM creation)
and flexibility requirements (e.g., low for IPC and sometimes
useful for user-level VM). Performance is generally better if
the hypervisor serves these resources due to context switch
times.

Virtualized system resources include virtual LANs, virtual
block devices, virtual TTYs, etc. that support virtualization
of the single physical platform across multiple operating sys-
tems. Again, these can be implemented in either the hyper-
visor or VMs. Since these are indirect resources, code size is
the major factor. For example, vLAN implementations are
generally small whereas a vSCSI device is complex. Flex-
ibility is not an issue, and performance considerations are
the same as for VM resources.

Physical system resources differ from virtualized resources
in a couple of key ways: (1) I/O-MMUs removes the need to
trust such devices and (2) performance is best if the devices
are co-located with the code using them in the same VM.
Thus, the optimal case is a physical resource per VM, which
may not be practically feasible. Driver code is too complex
for inclusion in the hypervisor, so a device that is to be
shared by multiple coalitions requires a MAC VM.

2.3.2 Covert Information Flows
Covert information flows are categorized into two types:

(1) storage covert channels and (2) timing covert channels.
A storage channel uses storage limits on devices shared by
multiple coalitions (e.g., via a MAC VM) to leak data. If
the VM a can fill up the disk in a manner that VM b can
detect, then a communication from a to b is possible. Stor-
age channels are typically closed by preventing the use of
shared devices or by providing limits on use such that detec-
tion of use is not feasible. It is often feasible to close storage
channels. A timing channel uses other resources as virtual
clocks to measure modulated system behavior. Schaefer [13]
and Karger [14] show that disk arm optimization can allow
timing channels based on the sequence of completed write
requests. Timing channels are thwarted by normalizing per-
formance across all operations to the slowest operation in
which a timing channel is possible (e.g., fuzzy time [15]).
Timing channels have a tremendous performance and sys-



tem flexibility impact, so almost any timing channels is much
more expensive to address than the solution of moving the
coalitions to separate machines.

2.3.3 Mediation Points
Once we know which resources require control, we must

consider the mediation points for controlling these resources.
There are three ways in which resources can be controlled:
(1) in the hypervisor; (2) in a MAC VM; and (3) upon the
communication with an untrusted, general-purpose VM.

In the first two cases, the hypervisor and any trusted VMs
serve the objects and control access to them. This is the
model of the Flask security architecture [16] where resource
managers are responsible for authorizing access to the re-
sources that they serve. Unlike the Flask security architec-
ture, not every VM can be a resource manager. Only the
hypervisor and MAC VMs trusted to implement the MAC
policy may be MAC resource managers. We do not prevent
other VMs from serving resources, but their actions are lim-
ited by the MAC policy.

In the last case, the hypervisor and/or a MAC VM con-
trols communication between VMs. In this case, the VM
effectively serves objects that all have the same MAC label.
For example, a general-purpose VM memory server can be
used to map of its own label to other VMs that are permit-
ted by the MAC policy to map pages of that label. It does
not matter which individual page is served, as pages with
the same MAC label are in the same equivalence class from
a security perspective.

2.4 Design and Evaluation
The reference monitor design task is to determine the re-

sources to be controlled by the MAC policy and to identify
the mediation points for enforcing that policy. The design
should be evaluated to determine that it is the better (or
no worse) than another possible reference monitor design.
Since a global assessment across all resources is not likely
to be feasible, we propose assessment for the cross-product
of all distinct resource types and mediation points. Thus,
we can examine the impact of the system evaluation criteria
for each resource and reasonable mediation point. We dis-
cussed the approach to collecting the resources and choosing
the mediation points above, so in this section we discuss the
evaluation criteria.

From a security perspective, the quality of the reference
monitor design is based on the size of the trusted computing
base. In Section 2.2, we distinguished between the hypervi-
sor’s TCB and the MAC VM’s TCB. The minimization and
stability of the former is a higher priority than for the latter
because the fundamental integrity of the system depends on
the hypervisor.

Further, we identify that a reference monitor design must
meet other system design criteria, in particular system flexi-
bility, performance overhead, and resource utilization. Flex-
ibility implies changes in implementations or system behav-
ior policies. In most cases, the hypervisor provides no flexi-
bility. Performance overhead is a comparison of the system
performance metrics, such as throughput and latency. Con-
crete measurements should be used where available, but rel-
ative performance comparisons based on system architecture
is often possible. Resource utilization implies the amount
of physical resources consumed. For example, control at a
MAC VM may incur more resource utilization in order to

prevent storage channels than a hypervisor that may be as-
sured to prevent such channels. Also, mediation point (3)
where communication is mediated and devices are served
from one VM per coalition may result in significant costs
for independent devices.

3. DESIGN
In this section, we outline the design of the sHype security

architecture. We first describe the system architecture that
results from an sHype system. Next, we describe how sHype
reference monitors are implemented in the hypervisor and
MAC VMs. Finally, we examine the choice of mediation
points for some key system resources based on the evaluation
criteria discussed in Section2.4.

3.1 System Architecture
Figure 1 illustrates a canonical system based on the sHype

security architecture. The hypervisor creates VMs which are
virtual copies of individual systems running on the platform.
The hypervisor defers the handling of specific I/O devices
to a MAC VM VM0, sometimes called the I/O VM. VM 1
and VM 2 run guest operating systems (e.g., Linux). Guest
operating systems running on sHype are minimally changed
to replace access to essential but privileged operations with
specific hypervisor calls. Such privileged operations can-
not be called directly by guests because they are powerful
enough to compromise the hypervisor. In general, hyper-
visor calls implemented in the hypervisor have three char-
acteristics: (1) they offer access to purely virtual resources
(e.g., virtual LAN); (2) they speed up critical path opera-
tions such as page table management; and (3) they emulate
privileged operations that are restricted to the hypervisor
but might be necessary in guest operating systems as well.
The hypervisor can, under some circumstances, regain con-
trol over (revoke) resources already allocated.

System Hardware (CPU, Memory, SCSI, Ethernet, Serial, …)
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Figure 1: Canonical system on an sHype security
architecture

Security services run in separated and trusted run-time
environments (VM 3) in Figure 1. As an example of a secu-
rity service, we will introduce a policy management service
that manages the formal rules describing access authoriza-
tion of VMs to shared resources in our sHype security ar-
chitecture. Other security services could include auditing or
integrity attestation.

3.2 Reference Monitor
sHype strictly separates access control enforcement from

the access control policy according to the Flask [16] archi-



tecture. We describe the control architecture in the context
of the hypervisor, but it also is used in the MAC VMs.

Figure 2 shows the sHype access control architecture de-
sign as part of the core hypervisor and depicts the relation-
ships between its three major design components. Enforce-
ment hooks implement the reference monitor. They are dis-
tributed throughout the hypervisor and cover references of
VMs to virtual resources. Enforcement hooks retrieve access
control decisions from the access control module (ACM).

VM
(Subject)

Hook

Object
Core Hypervisor

Access
Control
Module

1. H_Call

2. Authorization Query

3. Authorization Decision

Hypervisor
Security
Policy

Security
Policy

Manager
VM

Figure 2: Hypervisor-based security reference mon-
itor.

The ACM applies access rules based on security informa-
tion stored in security labels attached to VMs (subjects)
and resources (objects) and the type of operation to make
an access control decision. The formal security policy defines
these access rules as well as the structure and interpretation
of security labels for VMs and logical resources. Finally,
a hypervisor interface enables trusted policy management
VMs to efficiently manage the ACM security policy.

Our sHype access control architecture is designed to meet
the following three practical requirements:

• high performance (≤ 1% security-related overhead on
the critical path)

• ability to enforce policies autonomously (without as-
suming co-operation of general VMs)

• allow for the flexible enforcement of various MAC poli-
cies, which guard the information flow between multi-
ple VMs

The position of a hypervisor in the system software stack
mandates the highest possible performance because any penalty
will affect the VMs, which depend on the hypervisor for
many privileged operations (e.g., memory management, schedul-
ing, or resource sharing among VMs). Consequently, a se-
curity architecture that introduces non-negligible overhead
will not become a core component of a hypervisor. To mini-
mize performance overhead, we perform access control deci-
sions are resource bind time (e.g., when connecting a virtual
Ethernet adapter to a logical LAN), rather than on each
resource access.

As described above we only control access to resources
that enable inter-VM communication. In general, the coarser
the granularity of the resources, the less code that will MAC
enforcement will depend. We have a trade-off between the
flexibility of MAC VMs and amount of code that have to

depend on. For example, if a MAC VM serves data base
records for multiple coalitions, then the MAC controls may
have to describe individual records. The sHype architecture
enables such decisions to be made, such that MAC control
at the granularity desired is possible.

To support various business requirements, a security ar-
chitecture must support various kinds of MAC policies. The
sHype architecture supports Biba [11], Bell-LaPadula [12],
Caernarvon [17], as well as other MAC security policies.

3.3 Resource Mediation Points
Table 1 shows the relationship between: (1) the resources

and their possible mediation points and (2) the impact on
system evaluation criteria compared to a reference case. The
table provides an abstract comparison between factors that
identify preferred mediation points for system resources. Note
that the table is not exhaustive, but represents at least one
member of each resource aggregate discussed in Section 2.3.
The evaluation criteria are taken from Section 2.

The cases marked with either <<< or >>> are the most
important. These indicate either a significant increase >>>

or a significant decrease <<< in the dimension. For ex-
ample, mediation of the I/O-MMU in a MAC VM greatly
increases the size of the TCB that the hypervisor depends
upon for its protection. As a result, it is only reasonable to
consider I/O-MMU mediation in the hypervisor.

For other resources, first the differences of VM memory
management implemented in a VM compared to its imple-
mentation in the hypervisor is large if this VM implements
a general-purpose operating environment; the difference is
smaller if this VM implements a minimal run-time environ-
ment. Note that VM memory management does not include
hypervisor memory, which must be controlled by the hyper-
visor or the hypervisor TCB would increase dramatically.
Second, we note the difference between the two virtualized
resources, vLAN and vBlocks. Since the vLAN implementa-
tion is simple, it can be added to the hypervisor. Note that
the MAC VM TCB would grow significantly only if a new
MAC VM would have to be added. vBlocks on the other
hand would greatly increase the hypervisor TCB. Lastly, we
note that I/O devices have the best performance if they are
in the same VM as the request. Otherwise, context switches
are necessary which add significant overhead. On the other
hand, the resource requirements may make this design im-
practical because a device per coalition may not be possible.

4. IMPLEMENTATION
First, we describe the rHype isolation properties on which

sHype builds. Then, we describe the sHype reference moni-
tor implementation including the security policy and how it
is used to make access control decisions.

4.1 Isolation Properties
Access control in sHype depends on the strong isolation

between virtual resources (VMs) and between the hypervisor
and the virtual machines, i.e. the code running in them.

The hypervisor protects itself against malicious programs
running in VMs by retaining complete control over the phys-
ical resources it depends on (e.g., CPU, memory). On x86
platforms for example, rHype uses CPU protection rings to
ensure that VMs cannot execute privileged instructions and
gain control over resources the hypervisor depends on. The
hypervisor runs in “hypervisor” mode in CPU ring 0, the



Resource x Mediation reference TCB-hype TCB-MAC Flexibility Performance Resource Usage
/ Evaluation (size) (size) (malleability) (throughput) (quantity)

I/O-MMU in MAC VM >>> o o < o
I/O-MMU in Hypervisor x o o o o o

VM Memory in MAC VM o >->>> > < o
VM Memory in Hypervisor x o o o o o

vLAN in General VM < o > < >>>

vLANs in MAC VM < >->>> > < >

vLANs in Hypervisor x o o o o o
vBlocks in General VM x o o o o o

vBlocks in MAC VM o >->>> o o <

vBlocks in Hypervisor >>> >->>> o o <

I/O device in Same VM x o o o o o
I/O device in Other VM o o o <<< <<<

I/O device in MAC VM o >>> o <<< <<<

I/O device in Hypervisor >>> o <<< << <<<

Table 1: Impact of resource location. The implementation marked with ’x’ serves as the reference. Legend:
(<) smaller, (>) larger, (o) comparable to the reference.

highest privileged protection mode. VMs and the guest op-
erating systems run in ring 2 and applications on top of the
guest operating systems run in ring 3. From a CPU point of
view, programs can access configurations in their own ring
and rings with higher numbers. This way, the operating sys-
tem inside a VM running in ring 2 is still protected against
its applications running in ring 3. The privileged VM im-
plementing VM management and hardware device drivers
runs in ring 2 as well, however its I/O privilege level is set
to 2 (as compared to 0 for normal non-I/0 VMs) and en-
ables direct access to I/O device memory. The I/O VM is
seen as part of the virtual machine monitor infrastructure.
The hypervisor depends on its co-operation to manage the
peripheral system hardware devices.

rHype isolates virtual resources against each other, such as
virtual memory, CPU, and vLAN. For example, the rHype
memory management ensures that VMs see only virtual ad-
dresses, which are mapped under the control of the hypervi-
sor. The only way to share memory between VMs is through
a shared virtual memory resource. The CPU represents a
resource that has long been virtualized to enable interleaved
execution of multiple programs on a single real CPU. The
conventional context switch ensures that the CPU state is
saved and replaced with the saved CPU state of the next
VM that will be running on this CPU. Isolation is achieved
since no explicit information can flow from the former VM
context to the new VM context. Different vLANs are also
isolated against each other and must be bridged inside VMs,
which are subject to sHype access control when connecting
to the vLANs.

Note that other resources, such as virtual disks, are im-
plemented in the I/O VM which assumes the role of a MAC
VM for resource.

4.2 Access Control Enforcement
Mediation is implemented by inserting security hooks into

the code path inside the hypervisor where VMs access vir-
tual resources. A security hook is a specialized access en-
forcement function that guards access to a virtual resource.
In this case, it enforces information flow constraints between
VMs according to the security policy. Each security hook
adheres to the following general pattern:

1. gather access control information (determine VM la-
bels, virtual resource labels, and access operation type)

2. determine access decision by calling the ACM

3. enforce access control decision

Using security hooks, sHype minimizes the interference with
the core hypervisor while enforcing the security policy on
access to virtual resources.

Figure 3 shows the hook that mediates the attachment
(binding) of VM 2 to a virtual LAN vLAN A inside the
hypervisor. First, the security hook looks up the VM secu-
rity label range void pointer SSLRP in the VM data struc-
ture and retrieves the security label void pointer OSLP of
vLAN A. Then it queries the ACM for an access control
decision based on the label pointers and the joinvLAN oper-
ation. The ACM decides, whether a subject with the secu-
rity range to which SSLRP points is allowed to perform the
operation joinvLAN on the object with the security label to
which OSLP points. If the hook receives the decision per-
mitted, then the hook continues with normal operation and
connects the VM to vLAN A. The subsequent sending and
receiving of packets via the connected adapter will not be
mediated explicitly. If the hook receives the decision denied,
it will deny this VM access to vLAN A and indicates this to
the VM.

To keep access control overhead on the performance-critical
path near-zero most of the time, we use bind-time authoriza-
tion and explicit caching of access control decisions.

Bind-time authorization restricts access control decisions
to the time a VM binds to a virtual resource (see joining
a virtual LAN in Figure 3). Subsequent access to this re-
source (e.g. sending or receiving packets) is implicitly cov-
ered by the access control at binding time. This method
applies to virtual resources that require explicit binding be-
fore they can be used and which can be revoked if neces-
sary. It works for most high-performance resources, such as
vLAN, vSCSI, shared memory, and vTTY. With bind-time
authorization, access control decisions occur on the non-
critical performance path and the overhead on the critical
path will be near-zero. Even bind-time authorization might
require some security-related control on the performance-
critical path, e.g., to enforce isolation between virtual LANs.
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The binding must be revoked if the policy changes and the
access control decision does not hold any more (see Sec-
tion 4.5).

Explicit caching supports access control for virtual re-
sources that do not follow the binding-before-use paradigm
(e.g., signals or spontaneous inter-VM communication). In
this case, we cache access control decisions locally in the
VM structure (preserving cache locality) in a single bit per
VM and resource: The bit being “1” means that access is al-
lowed. The bit being “0” means that a new access control de-
cision is necessary. If only permitted access is performance-
critical and if access control decisions are rate-controlled (to
counter DOS attacks of malicious VMs causing repeatedly
time-consuming access control decisions that yield denied),
the cache resolves the access control decision most of the
time through local cache-lookup. If the system configura-
tion enables prediction of usage patterns for non-binding
virtual resources, cache pre-loading can move even initial
access decisions out of the critical path. Explicit caching
mechanisms pay for near-zero overhead on the critical path
with additional management and complexity.

4.3 Access Control Module
The ACM stores the current policy, enables flexible policy

management, makes policy decisions based on the current
policy, and triggers call-back functions to re-evaluate access
control decisions in the hypervisor when the policy changes.

The ACM stores all security policy information locally
in the hypervisor and supports efficient policy management
through a privileged H Security hypervisor call. A privi-
leged policy management VM uses this hypervisor call to
manage the security policy stored in the ACM. Privileged
VMs are explicitly assigned an access right for managing
access to the ACM control data structure, which is verified
by a security hook in the H_Security hypervisor call. This
right may only be assigned to a trusted VM. Consequently,
the access control for security management is integrated into
the general mandatory access control framework.

For initial labeling of virtual resources, the ACM exports
an acm_init call that determines the security label of a vir-
tual resource based on its resource type and ID, and links
the label to the virtual resource. Calls to acm_init are in-
serted where VMs or virtual resources are created and ini-
tialized in the hypervisor core. The ACM also exports the

acm_authorize function, which takes a VM label, a virtual
resource label, and an operation type as parameters and de-
cides whether access is permitted or denied according to the
security policy. The enforcement hooks call this function
to enforce the policy on access of VMs to virtual resources.
We describe re-evaluating access decisions in case of policy
changes in Section 4.5.

4.4 Security Policy
To specify security policy, we attach security labels to vir-

tual resource data structures (e.g., vLAN). To specify au-
thorizations, we attach security labels to VMs structures.
Those security labels store information needed to make ac-
cess decisions inside the hypervisor. sHype assigns security
labels through a call to acm_init when the respective virtual
resource or VM data structures are initialized inside the hy-
pervisor (see Section 4.3). It retrieves type-specific security
labels from the current security policy and stores pointers
to them in a pointer variable added to the initialized data
structure (e.g. VM, vLAN). Following the implementation
of the Linux Security Modules [18], we use void pointers
to attach label structures to virtual resources and VMs in
sHype. This way, the hypervisor-core remains independent
of the policy representation. This promotes modularity of
the code for maintenance and assurance reasons.

To allow access of VMs to virtual resources, the VM’s la-
bel must reflect the required authorization to access the re-
source. We say the VM’s security label must “dominate” the
resource’s security label with regard to the access type. The
interpretation of security labels and the implementation of
the “dominates” predicate are specific to the security policy.
We use the Caernarvon [17] security policy. Caernarvon is
a static security policy that does not re-label resources dur-
ing normal operation. Because of the static resource labels,
access control decisions change only if the underlying secu-
rity policy itself changes. The benefit is that we can move
access control decisions out of the critical path into the bind-
ing phase of virtual resources (e.g., mounting a virtual disk
or connecting to a virtual LAN). This access decision holds
during subsequent use of the resource until the policy is ex-
plicitly changed.

VMs serving multiple coalitions must be assigned multiple
labels in order to receive such requests. The VMs ability to
enforce information flow control constraints inside the VM
determines whether it should be given MAC VM status.
Once the hypervisor allows a VM to control multiple security
labels, the hypervisor can no longer independently enforce
the boundaries but must rely on the co-operation of the
MAC VM to prevent leakage of information to VMs of these
labels.

4.5 Change Management
When the policy changes, we must explicitly revoke a

shared resource from a VM that is no longer authorized to
use it. Since we use extensive caching, we must propagate
access authorization changes into the caches near the en-
forcement hooks. For this purpose, each enforcement hook
defines a re-evaluation callback function. When invoked by
the ACM, the re-evaluation function (i) re-evaluates the
original access control decision and (ii) revokes shared re-
sources in case the authorization is no longer given.

Figure 4 shows the hooks for evaluating and re-evaluating
access control decisions for a VM X joining vLAN Y (bind-



time authorization). Binding an adapter of a VM to a vir-
tual LAN initially triggers an access control decision. This
decision is assumed valid for subsequent send and receive
operations. Once the policy changes, the ACM calls the
re-evaluation callback at the enforcement hook inside the
vLAN implementation to validate this initial access con-
trol decision. If access is still permitted under the changed
policy, no further action is taken and continuous access to
the vLAN is granted. If access is not permitted under the
changed policy, the original joinvLAN operation is reverted
and the access to the vLAN is disabled for the VM. We
revoke the binding of a virtual Ethernet adapter by discon-
necting the link between the virtual Ethernet adapter and
the vLAN structure. This way, sending further packets to a
vLAN, the related hypervisor call will return an error code
to the VM. Receiving data packets on this adapter is no
longer possible because its virtual Ethernet MAC address
is no longer registered with the vLAN. Packets in the send-
ing and receiving queues can be removed. To the operating
system inside the VM a revocation looks as if the network
cable was unplugged.
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Figure 4: Re-evaluating a joinvLAN AC decision.

Where we use explicit caching, e.g. spontaneous IPC or
events, policy changes result either in invalidating the ac-
cess control cache entries by writing “0” into the cache entry
(inducing re-evaluation at the next use) or in re-loading the
access control entries (inducing re-evaluation immediately).
In both cases, changing the policy involves re-evaluating
affected cached access control decisions. We currently re-
evaluate all policy decisions for all hooks when a policy
change occurs, i.e., we don’t interpret the policy changes
to reduce the re-evaluation to those hooks that actually are
affected. If policy changes occur more often, then the trade-
off might change and affording more control code to restrict
the necessary re-evaluations to affected VMs or resources
might prove worthwhile.

5. EXPERIMENT
Figure 5 illustrates how labels, label ranges, and access

control decisions are related. This example considers con-
fidentiality requirements only. In the figure, two different
virtual LAN domains vLAN A and vLAN B are defined.
vLAN A has the object security label {none,none} and is
used for legacy VMs that do not have confidentiality or in-
tegrity requirements. Such a label identifies resources that

do not participate in the security model. Only VMs that
do not participate in the controlled sharing are allowed to
access such labeled resources (legacy support). vLAN B is
controlled and has the object security label {ibm_secret,
none} requiring at least ibm_secret level VMs to connect
to it (no integrity requirements). Without loss of generality,
this example does not consider the category component of
the UAC. If the UAC includes a category component, any
VM connecting to vLAN B would have to be cleared for
vLAN B’s category as well as the confidentiality level.

Figure 5 shows VM 1, VM 2, and VM 3 connecting to the
virtual LANs A and B. VM 1 and VM 2 have the same se-
curity label range {{ibm_secret, none}from, {ibm_secret,
none}to}. In contrast, VM 3 has the subject security label
range {{none, none}from, {none, none}to}.
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Figure 5: Multi-level secure vLAN based on sHype.

In the above configuration and security policy setting,
sHype will allow VM 1 and VM 2 to connect to vLAN B
because they are cleared for confidentiality level ibm_secret
and there are no integrity requirements specified. None of
them will be allowed to connect to vLAN A. Only VM 3 will
be able to connect to vLAN A.

Results. To implement vLAN mandatory access control
in rHype, we added one hook into the hypervisor call reg-
istering a VM’s virtual Ethernet adapter to a virtual LAN.
This hook calls acm_authorize as described in Figure 3.
We inserted calls to acm_init into the initialization phase
of virtual Ethernet adapters and VM data structures for ini-
tial labeling. Due to the bind-time authorization, there is
no need for access control decisions when sending or receiv-
ing packets over the vLAN. Thus, we achieve zero overhead
for access control on the critical path. There are only a
few lines of sHype code in the architecture-dependent part
of the rHype implementation (PowerPC versus x86), e.g.,
the definition of a new H_Security hypervisor call allowing
policy VMs to manage the policy within the ACM and the
insertion points for the acm_init call for labeling the archi-
tecture dependent VM data structure. We have successfully
tested the revocation of vLAN access for VMs in case of
policy changes. We revoke the binding of a virtual Ethernet
adapter by disconnecting the link between the virtual Eth-
ernet adapter of a VM from the vLAN structure. To the
operating system inside the VM a revocation looks as if the
network cable was unplugged.

6. RELATED WORK
Secure operating systems have long been the subject for

challenging research. Only few of them found their way into



real use, such as GEMSOS [19, 20], KSOS [21], or Mul-
tics [12, 22]. The huge design, development, evaluation cost
proved to be justified only for specialized application do-
mains with very high security requirements.

One result was that virtualization of real hardware en-
abled the execution of multiple single-level virtual systems
on a single hardware platform that aimed to ensure that
those virtual systems where strongly isolated against each
other. The prevalent approach to create multiple virtual ma-
chines on a single real hardware platform is the Virtual Ma-
chine Monitor (VMM) approach [23]. In VMMs, the prin-
cipal subjects and objects are virtual machines and virtual
disks, rather than conventional processes and files. That is
the inherent difference between a VMM and a traditional
operating system.

Based on VMs, a single system could implement a multi-
level secure system by dividing it into multiple single-level
virtual systems and securely separating them. Separation
Kernels are virtual machine monitors that completely iso-
late different virtual machines. Rushby [1] proved that com-
plete isolation and separation of VMs is possible. Based on
Rushby’s work Kelem et. al. [2] derived a formal model
for separation Virtual Machine Monitors. One example of a
more recent separation kernel design based on virtualization
is NetTop [24]. NetTop implements different virtual systems
that are isolated against each other on a single hardware
platform to allow processing of data belonging to multiple
sensitivity levels on a single system.

Recognizing that a strictly-separated VM approach does
not map well into cooperating distributed applications, some
research examined kernels that enabled secure sharing be-
tween VMs. However, existing secure sharing VMM ap-
proaches [5, 25] suffer from high performance overhead as
well as large trusted computing bases due to necessary I/O
emulation inside the hypervisor layer. Additionally, they are
constructed to achieve highest assurance, requiring them to
address covert channels on cost of complexity and perfor-
mance.

Microkernel system architectures also struggled with the
problem of determining how to control access to system re-
sources. Some systems focus on minimality, forgoing all
but most basic security. Others concentrate system-wide
security features in the kernel. Notable examples include
EROS [26], L4 [27], and Exokernel [28].

Today, there are a number of virtualization technologies
that are deployed successfully in the commercial and re-
search domain, such as VMWare [29], Terra [6], Xen [30],
and rHype [8] that offer a basis for a broad application of
sHype.

7. CONCLUSION
We presented a secure hypervisor architecture, sHype,

which we are implementing into the rHype IBM research
hypervisor. sHype provides boot and run-time guarantees
currently lacking in most systems, addresses prevailing oper-
ating system security weaknesses by providing confinement
opportunities, and enables secure communication and shar-
ing between workloads on the same platform and potentially
across multiple platform and organizational domains. Com-
pared to operating system security controls, our resulting
hypervisor-based security architecture offers stronger iso-
lation of workloads and a security evolution path through
sHype. We described the design and the implementation of

the basic hypervisor security architecture and have success-
fully applied it to enable flexible policy-driven confinement
of virtual LANs.

A secure hypervisor, such as sHype, enables its users to
run a trusted operating system securely alongside a dis-
trusted operating system on a single platform. These capa-
bilities enable corporations to run text processing applica-
tions or do program development in function-rich operating
environments and –securely isolated from it– to run sensi-
tive applications processing confidential data in more secure
and restricted operating environments. End users can start
a trusted Web browser for Internet-banking (or for accessing
classified data bases) in its own VM, which might prove a
valuable step to on-demand security environments and en-
able the proliferation of user-friendly, functionrich, and less
secure applications alongside highly sensitive applications.

Currently, we are extending the security architecture to
cover multiple hardware platforms – involving policy agree-
ments and the protection of information flows crossing the
hardware platform boundary (i.e., leaving the control of the
local hypervisor). We need to establish trust into the se-
mantics and enforcement of the security policy governing
the remote hypervisor system before allowing information
flow to and from such a system. To this end, we are exper-
imenting with establishing this trust through the Trusted
Computing Group’s Trusted Platform Module [31] and a re-
lated Integrity Measurement Architecture [32]. Future work
includes the accurate accounting and control of resources
(such as CPU time or network bandwidth) and generating
audit trails appropriate for medium assurance Common Cri-
teria evaluation targets.
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