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Abstract

The paper proposes a Constrained Entity-
Alignment F-Measure (CEAF) for corefer-
ence resolution based on the best one-one
map between reference and system entities.
An efficient algorithm is presented to com-
pute the proposed metric. Problems asso-
ciated with the MUC link-based F-measure
(and its variation B-cube F-measure) are
fixed in the proposed metrics. Compared
with ACE-value, the official metric in the
ACE task, the proposed metrics are easier to
interpret.

1 Introduction

A working definition of coreference resolution is parti-
tioning noun phrases into equivalence classes, each of
which refers to a physical object. We adopt the ter-
minologies used in the Automatic Content Extraction
(ACE) task (NIST, 2003) and call each individual noun
phrase a mention and equivalence class an entity. In the
following example,

(1):  “The American Medical Association
voted yesterday to install the heir apparent as
its president-elect, rejecting a strong, upstart
challenge by a district doctor who argued
that the nation’s largest physicians’ group
needs stronger ethics and new leadership.”

mentions are underlined (and the set of mentions in the
same entity are marked with the same color). That is,
“American Medical Association”, “heir apparent,” and
“its” are examples of mentions. Mentions referring to
the same object form an entity. For example, “Amer-

ican Medical Association”, “its” and “group” refer to
the same organization (object) and they belong to the

same entity. Similarly, “heir apparent” and “president-
elect” refer to the same person and they form another
entity. It is worth pointing out that the entity defini-
tion here is different from what used in the Message
Understanding Conference (MUC) task (MUC, 1995;
MUC, 1998) — ACE entity is called coreference chain
or equivalence class in MUC, and ACE mention is
called entity in MUC.

An important problem in coreference resolution is
how to evaluate a system’s performance. A good per-
formance metric should has the following two proper-
ties:

e Discriminativity: This refers to the ability to dif-
ferentiate a good system from a bad one. While
this criterion sounds trivial, not all performance
metrics possess this property.

o Interpretability: A good metric should be easy to
interpret. In other words, a good metric should
make it easy to make a statement such as “a sys-
tem is about 80% correct” and that is, there should
be an intuitive “feeling” of how good a system is,
and when the metric suggests that a certain per-
centage coreference results are correct.

A widely-used metric is the link-based F-
measure (Vilain et al., 1995) adopted in the MUC
tasks. It is computed by first counting the number of
common links between the reference (or “truth”) and
the system output (or “response™); the link precision
is the number of common links divided by the number
of links in the system output, and the link recall is
the number of common links divided by the number
of links in the reference. There are known problems
associated with the link-based F-measure. First, it
ignores single-mention entities since no link can be
found in these entities; Second, and more importantly,
it lacks of power of differentiating system outputs with
different qualities. Third, the link-based F-measure



intrinsically favors systems outputting less number of
entities, and may result in higher F-measures for worse
systems (c.f. Example in Table 3). We will revisit
these issues and give examples in Section 3. In other
words, it lacks of discriminativity.

To counter these shortcomings,
Bagga and Baldwin (1998) proposed a B-cubed
metric, which first computes a precision and recall for
each individual mention, and then takes the weighted
sum of these individual precisions and recalls as the
final precision and recall. While the B-cubed metric
fixes some of the shortcomings of the link-based
F-measure, there are problems in itself: for example,
the mention precision/recall is computed by comparing
entities containing the mention and therefore an entity
can be used more than once. The implication of this
drawback will be revisited in Section 3.

In the ACE task, a value-based metric called ACE-
value is used. The ACE-value is computed by count-
ing the number of false-alarm, the number of miss, and
the number of mistaken entities. Each error is asso-
ciated with a cost factor that depends on things such
entity type and entity class. The total cost is the sum
of these error cost, which is then normalized against
the cost of a nominal system that does not output any
entity. The ACE-value is finally computed by subtract-
ing the normalized cost from 1. A perfect coreference
system will get a 100% ACE-value while a system out-
puts no entities will get a 0 ACE-value. A system out-
putting many erroneous entities could even get a neg-
ative ACE-value. The ACE-value is defined at entity
level and can distinguish a good system from a bad
one; Thus, it satisfies the discriminativity requirement.
The ACE-value is, however, hard to interpret the ACE-
value, especially after many weights depending on en-
tity type, entity subtype, entity class etc are used.

It is the goal of this paper to develop an evaluation
metric that is able to measure the quality of a corefer-
ence system —that is, an intuitively better system would
get a higher score than a worse system, and is easy
to interpret. To this end, we observe that coreference
systems are to recognize entities and propose a metric
called Constrained Entity-Aligned F-Measure (CEAF).
At the core of the metric is the optimal one-one map
between subsets of reference and system entities: sys-
tem entities and reference entities are aligned by max-
imizing the total entity similarity under the constraint
that an entity can only be used at most once. Once the
total similarity is defined, it is straightforward to com-
pute recall, precision and F-measure. The constraint
imposed in the entity alignment makes it impossible
to “cheat” the metric: a system outputting too many
entities will be penalized in precision while a system
outputting two few entities will be penalized in recall.

It also has the property that a perfect system gets F-
measure 1 while a system outputting no entity or no
common mentions gets F-measure 0. The proposed
CEAF has a clear meaning: for mention-based CEAF,
it reflects the percentage of mentions that are in the cor-
rect entities; For entity-based CEAF, it it reflects the
percentage of correctly recognized entities.

The rest of the paper is organized as follows. In Sec-
tion 2, the Constrained Entity-Alignment F-Measure is
presented in detail along with an efficient computing
algorithm. We also present two entity-pair similarity
measures that can be used in CEAF: one is the absolute
number of common mentions between two entities, and
the other is a “local” mention F-measure between two
entities. The two measures lead to mention-based and
entity-based CEAF, respectively. In Section 3, we com-
pare the proposed metrics with the MUC link-based
metric and ACE-value on both artificial and real data.

2 Constrained Entity-Alignment
F-Measure

Some notations are needed before we present the pro-
posed metric and the algorithm to compute the metric.
Let reference entities in a document d be

R(d) ={R;:i=1,2,---,[R(d)|},
and system entities be

To simply typesetting, we will omit the dependency on
d when it is clear from context, and write R(d) as R
and S(d) as S.

Let m = min{|R|,|S|}, and M = maz{|R|,|S|}.
Let R,, C R and S,, C S be any subsets with m
entities. That is, |R,,| = m and |S,,| = m. Let
G(Rm,Sm) be the set of one-one entity maps from
Rm t0 S, and G, be the set of all possible one-one
maps between the size-m subsets of R and S. Or

G(Rm,Sm) ={9:Rm — S},
Gm = U(Rm,sm)G(Rm;Sm)-

Note that for any ¢ € G(Rn,Sm), and any R; €
Rm and S; € Sp,, we have that R; # R; implies
g9(R;) # 9(R;), and g(R;) # g(R;) implies R; # R;.
Clearly, there are m! one-one maps from R ,,, to S,,, (or
|G(Rum Sm)| = m)), and |G| = (M) ml.

Let #(R,S) be a “similarity” metric between two
entities R and S. For example, ¢(R, S) could be the
number of common mentions shared by R and S, and
¢(R, R) the number of mentions in entity R. For any
g € Gn,, the total similarity ®(g) for a map g is the
sum of similarities between the aligned entity pairs:



®(9) = X ger,, ¢(R,9(R)). Given a document d,
and its reference entities R and system entities S, we
can find the best alignment maximizing the total simi-
larity:

* P
g" = arg max (9)

=argmax > ¢(R,g(R)). (1)

™ RERm

Let R, and S}, = g*(R},) denote the reference and
system entity subsets where g* is attained, respectively.
Then the maximum total similarity is

o(g") = Y 4(R,g"(R)). )

RER:,

Since we can compute the entity self-similarity
#(R;, R;) and ¢(S;, S;) as well, we are now ready to
define the precision, recall and F-measure as follows:

_ %)
P= 65, 5) ®
o ®(gY)
"= S 6B Ry *
2pr
- p+r ®)

Since the optimal alignment g* involves only m =
min{|R|, |S|} reference and system entities, and enti-
ties not aligned do not get credit, F-measure (5) penal-
izes a coreference system that proposes too many (i.e.,
lower precision) or too few entities (i.e., lower recall),
which is a desired property.

Formulae (3)-(5) assumes that there is only one doc-
ument in the test corpus. Extension to corpus with mul-
tiple test documents is trivial: just accumulate statistics
on the per-document basis for both denominators and
numerators in (3) and (4), and find the ratio of the two.

So far, we have tacitly kept abstract the similarity
measure ¢(R, S) for entity pair R and S. We will defer
the discussion of this metric to Section 2.2 after first
presening an efficient algorithm for computing g*.

2.1 Computing Optimal Alignment and
F-measure

A naive implementation of (1) would enumerate all the
possible one-one maps (or alignments) between size-
m (recall that m = min{|R|, |S|}) subsets of R and
size-m subsets of S, and find the best alignment max-
imizing the similarity. Since this requires computing
the similarities between m M entity pairs and there are
|G| = (X)m! possible one-one maps, the complex-
ity of this implmentation is O(Mm + (%)m!). This is
not satisfactory even for a document with a moderate

number of entities: it will have about 3.6 million op-
erations for M = m = 10, a document with only 10
reference and 10 system entities.

Since ultimately we are interested in finding the top
m links among the Mm links such that these m links
represent a one-one map between two size-m entity
subsets, it is not necessary enumerate all the possible
one-one maps, as shown in Algorithm 1.

Algorithm 1 Efficient algorithm to compute the F-
measure (5).

Input: reference entities:R;  system entities: S
Output: optimal alignment g*; F-measure (5).
L:Initialize: g* = 0; ®(g*) = 0.

2:Fori=1to|R|

3. Forj=1to|S]

4: Compute ¢(R;, S;).

5:A=Sort({¢(R,S): R€ R,S € S}).

6: Irzw;-[s:@;

7:While |g*| < m

8. Let (R;,S;) = argmax(g,s){#(R,S) € A}.

9: Ifi¢I.andj ¢ I; then

10: g* = g*U{(i, )} B(g*) = B(g") + $(R:, S,).
11 L =L u{i};I, =1, U {j}.

12: End-if

13: A=A {4(R;, 5))}.

14:End-While

15:8(R) = Y per A(R, R); 8(S) = Yges #(S,5).

. @(g"). ®(g"). 2
16ir = i) p = Sis}: F = 35

17:return g* and F.

The input to the algorithm is reference entities R and
system entities S. The algorithm returns an approx-
imation ! of the best one-one map g* and F-measure
in equation (5). Loop from line 2 to 4 computes the
similarity between all the possible reference and sys-
tem entity pairs. The complexity of this loop is in the
order O(Mm) (in time of computing ¢(R, S)). Line
5 sorts the |R||S| scores and stores the sorted result in
A. The complexity of this step is O(Mmlog(Mm)).
Two index sets, I,. and I, initialized on line 6, are used
to store the indices of reference and system entities that
have been linked so far. Loop from line 7 to 14 selects
the top m links that can form a one-one map between
m reference entities and m system entities: line 8 picks
the best entity pair at that point (constant time since A
is sorted); The if-block from line 9 to 11 checks if the
best entity pair is new: if neither the reference entity
R; nor the system entity S; has been used before, the
pair is selected and stored in g*, and the total similar-

LIt isan approximation because of the greedy nature of the
loop between line 7-14 in Algorithm 1. Optima algorithms
exists, eg., integer programming (thanks to Hans), or best
bipartite matching algorithm.



ity ®(g*), index sets I,. and I, are updated accordingly.
Line 13 removes the entity pair (R;, S;) from A so it
will be not examined in the next loop. In the worst
case, the loop from line 7 to 14 will be executed |R||S|
times. Line 15 computes the self-similarity for refer-
ence and system entities. The overall complexity of the

algorithm is O (R ||| log(IRIS]) ).

2.2 Entity Smilarity Metric

In this section we consider the entity similarity metric
¢(R, S) defined on an entity pair (R, S). It is desirable
that ¢(R,S) is large when R and S are “close” and
small when R and S are very different. Some straight-
foward choices could be

1, ifR=5
¢1(R,S) ={ 0, otherwise. ©
.1, fRNS#0
$2(R, S) = { 0, otherwise. "

(6) insists that two entity are the same if all the men-
tions are the same, while (7) goes to the other extreme:
two entities are the same if they share at lease one com-
mon mention.

(6) does not offer a good granularity of similarity:
For example, if R = {a, b, ¢}, and one system response
is 51 = {a,b}, and the other system response S, =
{a}, then clearly S; is more similar to R than Sy, yet
¢(R,S1) = ¢(R,S2) = 0. For the same reason, (7)
lacks of the desired discriminativity as well.

From the above argument, it is clear that we want to
have a metric that can measure the degree to which two
entities are similar, not a binary decision. One natural
choice is measuring how many common mentions two
entities share, and this can be measured by the absolute
number or relative number:

¢3(R,S) = [RN S| ®)
_2IRN S|

Metric (8) simply counts the number of common men-
tions shared by R and S, while (9) is the mention F-
measure between R and S, a relative number measur-
ing how similar R and S are. For the abovementioned
example,

¢3(R,51) = ¢3({aa b, c}a {a’ b}) =2
¢3(R,92) = ¢3({a,d,c}, {a}) =1
¢1(R,S1) = pa({a,b,c},{a,b}) =0.8
$4(R, S2) = ¢4({aa b, c}a {a}) = 0.5,

thus both metrics give the desired ranking
¢3(R, S1) > ¢3(R, S2), ¢a(R,S1) > da(R, S2).

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

) (5) system response (d)

Figure 1: Example entities: (1)truth; (2)system re-
sponse (a); (3)system response (b); (4)system response
(c); (5)system response (d)

If ¢5(-,-) is adopted in Algorithm 1, ®(g*) is the
number of total common mentions corresponding to the
best one-one map g* while the denominators of (3) and
(4) are the number of proposed mentions and the num-
ber of system mentions, respectively. The F-measure in
(5) can be interpreted as the ratio of mentions that are
in the “right” entities. Similary, if ¢4(-,-) is adopted
in Algorithm 1, the denominators of (3) and (4) are the
number of proposed entities and the number of system
entities, respectively, and the F-measure in (5) can be
understood as the ratio of correct entities. Therefore,
F-measure 5 is called mention-based CEAF and entity-
based CEAF when (8) and (9) are used, respectively.

It is worth emphasizing that it is crucial to have the
constraint that the similarity between reference entities
and system entities is calculated over the best one-one
map. We will see examples in Section 3 that misleading
results could be produced without the alignment con-
straint.

3 Comparison with Other Metrics

In this section, we compare the proposed F-measure
with the MUC link-based F-measure (and its variation
B-cube F-measure) and the more recent ACE-value.
The proposed metric has fixed problems associated
with the MUC and B-cube F-measure, and has better
interpretability than the ACE-value.

3.1 Comparison with the MUC F-measure and
B-cube Metric

We use the example in Figure 1 to compare the
MUC link-based F-measure, B-cube, and the proposed
mention- and entity-based CEAF. In Figure 1, men-



tions are represented in circles and mentions in an
entity are connected by arrows. Intuitively, the sys-
tem response (a) is better than the system response (b)
since the latter mixes two big entities, {1, 2, 3,4, 5} and
{8,9, 4, B, C'}, while the former mixes a small entity
{6, 7} with one big entity {8,9, A, B,C}. System re-
sponse (b) is clearly better than system response (c)
since the latter puts all the mentions into a single en-
tity while (b) has correctly separated the entity {6, 7}
from the rest. The system response (d) is the worst;
the system does not link any mentions and outputs 12
single-mention entities.

Table 1 summarizes various F-measures for system
response (a) to (d): the first column contains the indices
of the system responses found in Figure 1; the second
and third columns are the MUC F-measure and B-cubic
F-measure respectively; the last two columns are the
proposed CEAF F-measures, using the entity similarity
metric ¢s(-,-) and ¢ (-, -), respectively.

System CEAF

response || MUC | B-cube | ¢3(-, ) | éa(-,-)
€)] 0.947 | 0.865 | 0.833 | 0.733
(b) 0.947 | 0.737 0.583 | 0.667
(©) 0.900 | 0.545 | 0.417 | 0.294
(d) - 0.400 | 0.250 | 0.178

Table 1: Comparison of coreference evaluation metrics

As shown in Table 1, the MUC link-based F-measure
fails to distinguish the system response (a) and the sys-
tem response (b) as the two are assigned the same F-
measure. The system response (c) represents a trivial
output: all mentions are put in the same entity. Yet the
MUC metric will lead to a 100% recall (9 out of 9 ref-
erence links are correct) and a 81.2% precision (9 out
of 11 system links are correct), which gives rise to a
90% F-measure. It is striking that a “bad” system re-
sponse gets such a high F-measure. Another problem
with the MUC link-based metric is that it is not able to
handle single-mention entities, as there is no link for a
single mention entity. That is why the entry for system
repsonse (d) in Table 1 is empty.

B-cube F-measure ranks the four system responses
in Table 1 as desired. This is because B-cube met-
ric (Bagga and Baldwin, 1998) is computed based on
mentions (as opposed to links in the MUC F-measure).
But B-cube uses the same entity “intersecting” pro-
cedure found in computing the MUC F-measure (Vi-
lain et al., 1995), and it sometimes can give counter-
intuitive results. To see this, let us take a look at recall
and precision for system response (c) and (d) for B-
cube metric. Notice that all the reference entities are
found after intersecting with the system responsce (c):

{{1,2,3,4,5},{6,7},{8,9, A, B,C}}. Therefore, B-
cube recall is 100% (the corresponding precision is
L% (10 x & + 2 x &) = 0.375). This is counter-
intuitive because the set of reference entities is not a
subset of the proposed entities, thus the system re-
sponse should not have gotten a 100% recall. The same
problem exists for the system response (d): it gets a
100% B-cube precision (the corresponding B-cube re-
callis £ (5% £ + 2% 2 +5x 1) = 0.25), but clearly
not all the entities in the system response (d) are cor-
rect! These numebrs are summarized in Table 2, where
columns with R and P represent recall and precision,
respectively.

System B-cube CEAF

response R P #3-R ¢3-P $4-R ¢4-P
() 1.0 0375 | 0417 0417 | 0196 0.588
(d) 0.25 1.0 0250 0250 | 0444 0111

Table 2: Example of counter-intuitive B-cube recall or
precision: system repsonse (c) gets 100% recall (col-
umn R) while system repsonse (d) gets 100% precision
(column P). The problem is fixed in both CEAF met-
rics.

The counter-intuitive results associated with the
MUC and B-cube F-measures are rooted in the proce-
dure of “intersecting” the reference and system entities,
which allows an entity to be used more than once! We
will come back to this after discussing the CEAF num-
bers.

From Table 1, we see that both mention-based ( col-
umn under ¢3(-,-)) CEAF and entity-based (44(-,-))
CEAF are able to rank the four systems properly: sys-
tem (a) to (d) are increasingly worse. To see how the
CEAF numbers are computed, let us take the system re-
sponse (a) as an example: first, the best one-one entity
map is determined. In this case, the best map is: the ref-
erence entity {1,2,3,4, 5} is aligned to the system en-
tity {1, 2, 3,4, 5}, the reference entity {8,9, 4, B,C}
is aligned to the system {6,7,8,9, A4, B,C} and the
reference entity {6,7} is unaligned. =~ The num-
ber of common mentions is therefore 10 which re-
sults in a mention-based (¢3(-,-)) recall g and preci-
sion 2. Since ¢4({1,2,3,4,5},{1,2,3,4,5}) = 1,
and ¢4({8797A7B70}7 {67778797A7B7C}) = %'
®(g*) =1+ % (c.f. equation (4) and (3)), and the
entity-based F-measure (c.f. equation (9)) is therefore

2x(14+12) 11
312 S5 0.733.
CEAF for other system responses are computed simi-
larly.

CEAF recall and precision breakdown for system
(c) and (d) are listed in column 4 through 7 of Ta-
ble 1. As can be seen, neither mention-based nor entity-



based CEAF has the abovementioned problem associ-
ated with the B-cube metric, and the recall and preci-
sion numbers are more or less compatible with our in-
tuition: for instance, for system (c), based on ¢3-CEAF
number, we can say that about 41.7% mentions are in
the right entity, and based on the ¢,-CEAF recall and
precision, we can state that about 19.6% of “true” enti-
ties are recovered (recall) and about 58.8% of the pro-
posed entities are correct.

A comparison of B-cube and CEAF’s computation
reveals that the crucial difference is that B-cube allows
an entity to be used multiple times while CEAF insists
that an entity can not be aligned with more than one
entity. Take the system repsonse (C) as an example,
intersecting three reference entity in turn with the ref-
erence entities produces the same set of reference enti-
ties, which leads to a 100% recall. In the intersection
step, the system entity is effectively used three times.
In contrast, the system entity is aligned to only one ref-
erence entity when computing CEAF.

3.2 Comparison On Real Data

We have seen the different behaviors of the MUC F-
measure, B-cube F-measure and CEAF on the artificial
data. We now compare the MUC F-measure, CEAF,
and ACE-value metrics on real data. The B-cube is
not implemented as of this writing, and it will not be
compared. Comparsion between the MUC F-measure
and CEAF is done on the MUCG6 coreference test set,
while comparison between the CEAF and ACE-value
is done on the IBM’s 2004 ACE devtest set. The setup
reflects the fact that the official MUC scorer and ACE
scorer run on their own data format and are not easily
portable to the other data set. All the experiments in
this section are done on true mentions.

The coreference system is the one used in (Luo et
al., 2004). Results in Table 3 are produced by a sys-
tem trained on the MUCS training data and tested on
the 30 official MUC6 test documents. The test set
contains 460 reference entities. The coreference sys-
tem uses a penalty parameter to balance miss and false
alarm errors: the smaller the parameter, the less num-
ber of entities will be generated. We vary the parame-
ter from —0.6 to —10, listed in the first column of Ta-
ble 3, and compare the system performance measured
by the MUC F-measure and the proposed mention-
based CEAF.

As can be seen, the mention-based CEAF has a clear
maximum when the number of proposed entities is
close to the truth: at the penlaty value —1.2, the sys-
tem produces 483 entities, very close to 460, and the
¢3-CEAF achieves the maximum 0.768. In contrast,
the MUC F-measure increases almost monotonically as
the system proposes fewer and fewer entities. In fact,

Penalty | #sys-ent | MUC-F | ¢3-CEAF
-0.6 561 .851 0.750
-0.8 538 .854 0.756
-0.9 529 .853 0.753

-1 515 .853 0.753
-1.1 506 .856 0.764
-1.2 483 .857 0.768
-1.4 448 .863 0.761
-1.5 425 .862 0.749
-1.6 411 .864 0.740
-1.7 403 .865 0.741
-10 113 .902 0.445

Table 3: MUC F-measure and mention-based CEAF
on the official MUCS test set. The first column con-
tains the penalty value in decreasing order. The second
column contains the number of system-proposed enti-
ties. The column under MUC-F is the MUC F-measure
while ¢3-CEAF is the mention-based CEAF.

the best system according to the MUC F-measure is
the one proposing only 113 entities. This demonstrates
a fundamental flaw of the MUC F-measure: the metric
intrinsically favors a system producing less number of
entities and therefore lacks of discriminativity.

Penalty | #sys-ent | ACE-value(%) | ¢3-CEAF

0.6 1221 88.5 0.726
0.4 1172 89.1 0.749
0.2 1145 89.4 0.755

0 1105 89.7 0.766
-0.2 1050 89.7 0.775
-0.4 1015 89.7 0.780
-0.6 990 89.5 0.782
-0.8 930 88.6 0.794

-1 891 86.9 0.780
-1.2 865 86.7 0.778
-1.4 834 85.6 0.769
-1.6 790 83.8 0.761

Table 4: ACE-value and mention-based CEAF on
IBM’s 2004 devtest set. The first column contains the
penalty value in decreasing order. The second column
contains the number of system-proposed entities. ACE-
values are in percentage.

Now let us turn to ACE-value. Results in Table 4
are produced by a system trained on the ACE 2002 and
2004 training data and tested on IBM’s 2004 devtest
set. The devtest set contains 853 reference entities.
Both ACE-value and the mention-based CEAF penal-
izes systems over-producing or under-producing enti-
ties: ACE-value is maximum when the penalty value is
—0.2 and CEAF is maximum when the penalty value



is —0.8. However, the optimal CEAF system produces
930 entities while the optimal ACE-value system pro-
duces 1050 entities. Judging from the number of enti-
ties, the optimal CEAF system is closer to the “truth”
than the counterpart of ACE-value. This is not very
surprising since since ACE-value is a weighted metric
while CEAF treats each mention and entity equally. As
such, the two metrics have very weak correlation.
While we can make statement such as the system
with penalty —0.8 puts about 79.4% mentions in right
entities, it is hard to interpret the ACE-value numbers.

4 Conclusions

A coreference performance metric — CEAF — is pro-
posed in this paper. The CEAF metric is computed
based on the best one-one map between reference en-
tities and system entities. An efficient algorithm is
presented to compute the metric. Depending how the
entity-pair similarity is calculated, the metric can be
mention-based or entity-based. It has been shown that
the proposed CEAF metric has fixed problems associ-
ated with MUC link-based F-measure and B-cube F-
measure. The proposed metric also has better inter-
pretability than ACE-value.
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