
RC23553 (W0503-021) March 4, 2005
Computer Science

IBM Research Report

An Algorithm for Integrated Pin Assignment and
Buffer Planning

Hua Xiang, Xiaoping Tang
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Martin D. F. Wong
Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign
Urbana, IL 61801

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

An Algorithm for Integrated Pin Assignment and

Buffer Planning

Hua Xiang and Xiaoping Tang

IBM T. J. Watson Research Center

and Martin D.F. Wong

University of Illinois at Urbana-Champaign

The buffer block methodology has become increasingly popular as more and more buffers are
needed in deep-submicron design, and it leads to many challenging problems in physical design.
In this paper, we present a polynomial-time exact algorithm for integrated pin assignment and

buffer planning for all two-pin nets from one macro block (source block) to all other blocks of a
given buffer block plan as well as minimizing the total cost α · W + β · R for any positive α and
β where W is the total wire length and R is the number of buffers. By applying this algorithm
iteratively (each time pick one block as the source block), it provides a polynomial-time algorithm
for pin assignment and buffer planning for nets among multiple macro blocks. Experimental
results demonstrate its efficiency and effectiveness.

Categories and Subject Descriptors: B.7.2 [Integrated Circuits]: Design Aids—Placement and

routing; J.6 [Computer Applications]: Computer-Aided Engineering - Computer-Aided Design

General Terms: Algorithms, Design, Performance, Theory

Additional Key Words and Phrases: Buffer insertion, Pin assignment, Min-cost maximum flow

1. INTRODUCTION

As chip size grows larger and minimum feature size is reduced, the capacitance
and resistance of wires increase dramatically. This makes interconnects play a
critical role in achieving high performance and reducing circuit complexity in deep-
submicron design. Many techniques have been proposed to reduce interconnect
delay. One effective way is buffer insertion[3][9] and it is heavily used in chip design.
It is estimated that the amount of inserted buffers for on-chip interconnect may be
up to 800,000 in 50nm technology[4]. At the same time, the introduction of so

This work was partially supported by the National Science Foundation under grant CCR-0306244.
Author’s address:
H. Xiang, IBM T.J. Watson Research Center, 1101 Kitchawan road, Rte 134, P.O. Box 218, York-
town Heights, NY 10598; email: huaxiang@us.ibm.com

X. Tang, IBM T.J. Watson Research Center, 1101 Kitchawan road, Rte 134, P.O. Box 218, York-
town Heights, NY 10598; email: xtang@us.ibm.com.
M.D.F. Wong, Department of Electrical and Computer Engineering, University of Urbana-
Champaign, Urbana, IL 61801; email: mdfwong@uiuc.edu

2 · Hua Xiang et al.

many buffers raises many challenging problems in physical design. In a hierarchical
approach, buffers are clustered together as buffer blocks to facilitate floorplanning
and routing. Cong et al.[5], Tang and Wong[12] and Sarkar et al.[11] proposed
algorithms for buffer block planning to minimize the chip area and the number of
buffer blocks. In two recent works, Dragan et al.[7][8] gave algorithms for global
buffered routing problem with fixed pins. Their work is based on multicommodity
flow which is an NP-hard problem. In this paper, we address the problem of
simultaneous Pin assignment and Buffer planning (PB) for a given buffer block
plan. Our algorithm uses min-cost flow computation which is solvable in polynomial
time.

Informally, the problem can be described as follows: given a placement of macro
blocks and buffer blocks, assign pins and plan buffer insertions for the given set of
nets subject to the required lower and upper bounds of connection intervals (i.e., the
range of allowable distance between two buffers or two pins or a pin and a buffer) as
well as minimizing the total cost α ·W +β ·R where W is the total wire length and
R is the number of buffers. Figure 1 shows an example. The placement includes 3
macro blocks, and 3 buffer blocks. Buffer blocks may have different capacities, i.e.,
the number of buffers in a buffer block can be different. r1 has a capacity 1 while
the capacities of r2 and r3 are 2. A net set includes 2 nets between b1 and b2 and
1 net between b2 and b3. The range of allowable distance between two buffers or a
buffer and a pin is bounded by Manhattan distance 2 and 4. Also if the distance
of two pins is longer than 5, buffers have to be inserted, i.e., the lower and upper
bounds for the allowable distance between two pins are 0 and 5. The purpose is to
assign pins and plan buffers for the 3 nets while minimizing the number of buffers
and the total wire length.

b3

b2

b1

r1

r3

r2
a

a

b

c

c

0

1
2
3
4
5
6
7
8
9

10

1 2 3 4 5 6 7 8 9 10 11

b

b3

b2

b1

r1

r3

r2
a

a

b

c

c

0

1
2
3
4
5
6
7
8
9

10

1 2 3 4 5 6 7 8 9 10 11

b

(a) (b)

Fig. 1. (a) Three nets use 3 buffers and the total wire length is 20. (b) An optimal solution with
1 buffer and wire length 14.

The goal of pin assignment is to find the exact locations of pins on macro blocks.
Buffer planning is to decide buffer usages along net connections to maintain required
delay constraints. The two tasks are closely related. Pin assignment alone may
neglect many important factors since interconnect is hard to predict, and a global

An Algorithm for Integrated Pin Assignment and Buffer Planning · 3

view of net connections is always helpful. Figure 1(a) illustrates a solution by a two-
step approach (i.e., pin assignment following buffer planning). The pin assignments
are decided according to the shortest Manhattan distance. Totally 3 buffers are
used and the wire length is 20. Figure 1(b) shows an optimal solution with only
one buffer and the wire length is 14.

In this paper, we present a polynomial-time exact algorithm for simultaneous pin
assignment and buffer planning for all two-pin nets from one macro block (source
block) to all other blocks for a given buffer block plan such that each net satis-
fies the lower and upper bounds on connection intervals as well as minimizing the
total cost α · W + β · R for any positive constants α and β where W is the total
wire length and R is the number of buffers. By applying this algorithm iteratively
(each time pick one block as the source block), it provides a polynomial-time algo-
rithm for pin assignment and buffer planning for nets among multiple macro blocks.
Experimental results demonstrate its efficiency and effectiveness.

The rest of the paper is organized as follows. Section 2 defines the PBO (Pin
assignment and Buffer planning for One source block) problem which simultane-
ously assigns pins and plans buffers for nets between one macro block and all other
blocks. In section 3, we present a network flow formulation to solve the PBO prob-
lem. Then we extend PBO problem to PB(Pin assignment and Buffer Planning)
problem which considers all nets among multiple macro blocks in section 4. In
section 5, we also provide a node clustering method to speed up the computation.
Finally, we show the experimental results in section 6 and conclude the paper in
section 7.

2. PIN-ASSIGNMENT AND BUFFER PLANNING FOR ONE SOURCE BLOCK (PBO)

Given a placement of m + 1 macro blocks B = {bs, b1, ..., bm} with n buffer blocks
R = {r1, ..., rn}. (For convenience, we call bs source block and other blocks sink
blocks.) Each buffer block ri (i = 1, ..., n) is associated with a positive integer ci

denoting the capacity of ri, i.e., buffer block ri can hold ci buffers.
Let N = N1 ∪ N2 ∪ ... ∪ Nm where Ni (i = 1, ..., m) is the set of nets between

block bs and bi; P = Ps∪P1∪ ...∪Pm where Pi (i = s, 1, ..., m) is the set of available
pin locations of block bi.

The distance of two points u and v on a planar region is denoted as duv. Let
buffer interval be the allowable distance range between two buffers or a pin and
a buffer; and pin interval be the allowable distance range between two pins. For
convenience, let connection interval refer to buffer interval or pin interval.

Suppose the lower and upper bounds for buffer intervals are L̃ and Ũ respectively;
and those for pin intervals are L̄ and Ū respectively. A valid path means:

(1) If the path is p = (ps, r
′

1, ..., r
′

k, pt) where ps, pt ∈ P and r′i ∈ R (i = 1, ..., k),

then the distance of each path segment is bounded by L̃ and Ũ , i.e., L̃ ≤ dpsr′

1
≤

Ũ , L̃ ≤ dr′

i
r′

i+1
≤ Ũ (i = 1, ..., k − 1) and L̃ ≤ dr′

k
pt

≤ Ũ ;

(2) If the path is p = (ps, pt) where ps, pt ∈ P , then L̄ ≤ dpspt
≤ Ū .

The length of a path is the sum of the distances of all path segments.
For any given positive constants α and β, the PBO problem is to find a set of

valid paths connecting bs and all other macro blocks as well as minimizing the total

4 · Hua Xiang et al.

4

2

8

1

7

6

5

2

0

1

76

1

3

2

83 4 5

s

2r

r

2

r1

p

p

p

p

p

s2

s4

s6

s3

s5

p

p p

p p

p

232221

24 25 26

p
s1

p

p

p

12

1413

11

3

1

p

b

b

b

(a) (b)

Fig. 2. (a) A PBO problem with 3 macro blocks and 3 buffer blocks. The lower and upper bounds
of buffer intervals are 2 and 3 respectively. And the pin intervals are bounded 0 and 3. The tiny
squares pxy on the boundaries of macro blocks are available pin locations. The net set includes
one net between bs and b1 and two between bs and b2. (b) The corresponding flow network graph.

cost α ·W +β ·R where W is the total length and R is the number of buffers. Each
path corresponds to a net in N and the two end points of the path are assigned pin
locations for this net.

Figure 2(a) gives a simple example. There are 3 macro blocks and 3 buffer blocks.
The capacities of the three buffer blocks r1, r2 and r3 are 2, 1 and 2 respectively.
For any two points u and v on the planar region, their coordinates are (ux, uy) and
(vx, vy) respectively. Define distance duv = |ux−vx|+ |uy −vy|. The required lower
and upper bounds for buffer intervals are 2 and 3 respectively; and the bounds for
pin intervals are 0 and 3 respectively. The purpose is to decide pins and buffer
locations for 1 net between bs and b1 and 2 nets between bs and b2 with a minimum
cost α · W + β · R.

3. THE ALGORITHM

To solve the PBO problem, we first construct a network graph, then apply a min-
cost flow algorithm to get the solution.

Given a PBO problem, we construct the network graph G = (V, E) with capacity
U and cost C as follows:

(1) V = {s, t, t1, t2, ..., tm} ∪ R ∪ P , where s is the source node, t is the sink node,
and ti (i = 1, ..., m) is a subsink node.

(2) E = Es ∪ Et ∪ Et̃ ∪ Eb ∪ Er ∪ Ebr ∪ Erb, where
Es = {(s, ps)|ps ∈ Ps},
Et = {(ti, t)|i = 1, 2, ..., m},
Et̃ =

⋃m

i=1{(p, ti)|p ∈ Pi},
Eb =

⋃m

i=1{(ps, p)|ps ∈ Ps, p ∈ Pi, L̄ ≤ dpsp ≤ Ū},

Er = {(ri, rj)|i 6= j, i, j = 1, ..., n, L̃ ≤ drirj
≤ Ũ},

Ebr =
⋃n

i=1{(ps, ri)|ps ∈ Ps, L̃ ≤ dpsri
≤ Ũ},

Erb =
⋃n

i=1{(ri, p)|p ∈ Pj , j = 1, ..., m, L̃ ≤ drip ≤ Ũ}

(3) Edge Capacity:

An Algorithm for Integrated Pin Assignment and Buffer Planning · 5

for edges e(ti, t), U(e) = |Ni|,(i = 1, ..., m);
other edges e, U(e) = 1.

(4) Node Capacity:
for ri ∈ R, U(ri) = ci;
for p ∈ P , U(p) = 1;
other nodes are incapacitated.

(5) Edge Cost:
for e ∈ Es ∪ Et ∪ Et̃, C(e) = 0;
other edges e(u, v), C(e) = α · duv.

(6) Node Cost:
for r ∈ R, C(r) = β;
other nodes v, C(v) = 0.

Figure 2(b) illustrates the constructed network graph for the PBO problem in
Figure 2(a). Note that whether an edge (u, v) (u, v ∈ P ∪ R) should be added to
G depends on whether duv falls in the range [L̃, Ũ] (or [L̄, Ū]) or not. For example,
the distance between p13 and r2 is 1, which is less than the lower buffer interval
bound L̃ = 2. Thus there is no edge between p13 and r2 in the constructed flow
network. Similarly, the distance between ps2 and p13 is 5 which is larger than the
upper pin interval bound Ū = 3, thus the edge (ps2, p13) is not included.

v’ v"

v

(U(v),C(v))

(U(v),C(v))

Fig. 3. Node splitting for capacitated nodes. The new edge has capacity U(v) and cost C(v).

In the constructed flow network, every node in P ∪ R has a cost and a capacity.
However, classical network flow problem only assigns cost and capacity to edges.
This can be solved by splitting the capacitated node v into two nodes v′ and v′′. A
new edge (v′, v′′) is added with a capacity U(v) and a cost C(v). Then change the
original edges (u, v) and (v, w) into edges (u, v′) and (v′′, w) respectively (refer to
Figure 3).

Any flow in G can be mapped to a pin assignment and buffer planning solution
for a subset of the given nets. The used capacities of R nodes in the flow are the
number of buffers needed in the solution. Figure 4(a) illustrates a flow f , |f | = 3.
And Figure 4(b) is a solution of pin assignment and buffer planning derived from
the above flow. If a flow f exists and |f | = |N |, then we can find a feasible solution
of pin assignment and buffer planning for all of the nets in N . On the other hand,
given a pin assignment and buffer planning solution for n nets, a flow f (|f | = n)
can always be found on the constructed flow network. Since the total capacities of
edges going into sink node t are

∑m

i=1 U(ti, t) =
∑m

i=1 |Ni| = |N |, the maximum

6 · Hua Xiang et al.

0

7

6

3

2

76543 8

8

1

5

4

1 2

r

p
b

b

bs

2

2

p
r3

r1

p

p

p

p

p

s2

s4

s6

s3

s5

p

p

p

s1

p

p

232221

24 25 26

p

1p

p

p

12

1413

11

(a)

(b)

Fig. 4. (a) a flow f in the network in Figure 2(b), |f | = 3. (b) The corresponding solution of pin
assignment and buffer planning to the PBO problem of Figure 2(a).

flow fmax in G, |fmax| ≤ |N |. Thus if a flow |f | < |N |, then there is no feasible
solution to the original PBO problem, which requires considering all of the nets
between bs and all other macro blocks. Furthermore, the cost of the flow is also the
cost of pin assignment and buffer planning solution. Therefore min-cost maximum
flow assigns pins and plans buffers for as many nets as possible with minimum total
cost.

The following theorem shows that the PBO problem can be exactly solved by
min-cost flow computation on G.

Theorem 1. A min-cost flow f , |f | = |N |, in G corresponds to a pin assignment

and buffer planning solution to PBO problem for all nets in N with minimum total

cost α · W + β · R for any given α and β where W is the total wire length and R

is the number of buffers. If the size of the max-flow, |fmax| < |N |, then there is no

feasible solution to the PBO problem. A min-cost maximum flow assigns pins and

plans buffers for the maximum number of nets with minimum total cost.

The algorithm PBO-Flow can be summarized as the following:

Algorithm PBO-Flow(B, R, N , P , C, α, β)
1. Construct the network graph G(V, E)
2. Assign capacities U and costs C

3. Apply min-cost maximum flow algorithm on G

4. Derive the pin assignment and buffer planning solution

Finding a min-cost maximum flow in a network is a classical problem for which
several polynomial-time optimal algorithms are available[2][6]. Deriving a solution
of PBO from a flow in G can be done in O(E) time. Thus, if we adopt the double
scaling algorithm in[1], we get the following time complexity for the PBO problem.

Theorem 2. The PBO-Flow algorithm optimally solves the PBO problem in

O(V E log log Umax log(V Cmax)) time for G = (V, E), Umax is the maximum value

of U , and Cmax is the maximum value of C.

An Algorithm for Integrated Pin Assignment and Buffer Planning · 7

Note that the complexity of our PBO-Flow algorithm is mainly dependent on the
size of the constructed network graph G(V, E). According to the graph construction
rules, |V | = 2 + m + 2(|P | + |R|) (consider node splitting), and the upper bound
of edges is m + |P | + |Ps| · |P | + |P | · |R|+ |R|2 + |P | + |R| (in fact, the number of
edges is much smaller due to distance constraint) which is bounded by (|P |+ |R|)2.

In applications, we may put more effort on reducing the number of buffers. In
this case, we can set a large weight to buffer nodes, i.e., a large β. For example,
let β larger than the upper distance bound Ũ . If we set β large enough, we tend to
get a solution with the minimum number of buffers.

Further in some circuits, some locations on a block may not be allowed for pin
assignment. In this case, these kinds of locations will not appear in the pin set P .
Obviously, our network-flow based algorithm will not assign a pin to these kinds of
locations.

4. PIN ASSIGNMENT AND BUFFER PLANNING (PB)

In the above section, we discuss how to solve PBO problem using min-cost maximum
flow computation. PBO problem only consider net connections between one source
block and other blocks. In reality, we need to deal with net connections among all
of the macro blocks, called PB(Pin assignment and Buffer Planning) problem. The
definition of PBO problem can be easily extended to PB problem as the following:
Given:

(1) a placement of m macro blocks B = {b1, b2, ..., bm} and n buffer blocks R =
{r1, r2, ..., rn}; buffer block ri has a capacity ci.

(2) a set of available pin locations P = P1 ∪ P2 ∪ ...∪ Pm where Pi (i = 1, ..., m) is
a set of available pin locations of macro block bi.

(3) a set of nets N̄ = N̄1 ∪ N̄2 ∪ ... ∪ N̄m where N̄i (i = 1, ..., m) is the set of nets
between block bi and all other blocks.

(4) two non-negative numbers L̃ and Ũ denoting the lower and upper bound of
buffer intervals.

(5) two non-negative numbers L̄ and Ū denoting the lower and upper bound of pin
intervals.

Goal:
For any given positive α and β, find a set of valid paths corresponding to the net
set N̄ as well as minimizing the total cost α · W + β · R where W is the total wire
length and R is the number of buffers.

PBO-Flow algorithm solves pin assignment and buffer planning for nets between
one block and all other blocks. Naturally, if we treat each macro block as the source
block and apply PBO-Flow algorithm repeatedly, we can get a solution for all nets
among multiple macro blocks. This is the basic idea of PB-Flow algorithm.

8 · Hua Xiang et al.

Algorithm PB-Flow(B, R, N̄ , P , C, α, β)
1. Let b1 be the source block;
2. Apply PBO-Flow(B, R, N̄1, P , C, α, β)
3. For i = 2 to m

4. Let bi be the source block;
5. Adjust the network graph G(V, E)
6. Apply PBO-Flow(B, R, N̄i, P , C, α, β)
7. Derive the pin assignment and buffer planning solution

Note that when different blocks are selected as the source block, their constructed
flow networks are slightly different, i.e., the edges incident from/to the pin nodes
of the two blocks are different. So in PB-Flow algorithm, at each iteration, we
need to do some adjustment to transform the existing network graph to the one
corresponding to the next source block(line 6).

Now suppose two different macro blocks bi and bi+1 are selected as the source
block sequentially. Let Gi be the constructed flow network when bi is chosen as the
source block. The following steps change Gi to bi+1’s corresponding flow network
Gi+1:

(1) delete edges connecting the pin nodes of Pi and the pin nodes of other blocks;
(2) add edges connecting the pin nodes of Pi+1 and the pin nodes of other blocks

as well as maintaining distance constraints.
(3) reverse the direction of edges (p, r) where p ∈ Pi and r ∈ R;
(4) reverse the direction of edges (r, p) where r ∈ R and p ∈ Pi+1;
(5) reverse the direction of edges (s, p) where p ∈ Pi;
(6) reverse the direction of edges (p, ti+1) where p ∈ Pi+1;
(7) let ti+1 be the source node s and the original source node become a subsink

node ti. Thus remove the edge (ti+1, t) and add one new edge (ti, t).

As illustrated in Figure 5, (a) is a PB problem. (b) shows the constructed flow
network when b1 is the source block. When the source block is switched to b2, t2
becomes the source node and the original one becomes a subsink node t1. But the
edges connecting two buffer nodes remain unchanged.

4

7

831 2

2

6

5

2

0

1

7

1

3

8

4 5 6

s

2

2r

r
r1

p

p

p

p

p

14

16

13

15

p

p p

p p

p

31

p
11

p

p

p

2221

3

1

p

23

b

b

b

12

24

32 33

34 35 36

(a) (b) (c)

Fig. 5. (a) A PB problem with 3 macro blocks and 3 buffer blocks. (b) The corresponding flow
network when b1 is the source block. (c) The corresponding flow network when b2 is the source
block.

An Algorithm for Integrated Pin Assignment and Buffer Planning · 9

For a newly added edge (u, v), the cost is α · duv and the capacity is 1. For other
edges (u′, v′), the cost is unchanged and the capacity is 1 if no flow flows through
the corresponding edge in the previous iteration. Otherwise, the capacity is 0. As
to the capacities of nodes, similarly, if a node v has c capacities left after pushing
flow in Gi, then the capacity of v is c in Gi+1.

Gi and Gi+1 have the same node set. Also it is easy to show that the number of
changed edges is bounded by (|Pi|+ |Pi+1|) · (|P |+ |R|). When taking the distance
constraint into consideration, this bound can be further greatly reduced. Thus the
adjustment to the graph can be efficiently accomplished.

A two pin net connecting bi and bi+1 belongs to both net sets N̄i and N̄i+1.
Suppose we can get a feasible solution to the PB problem with PB-Flow algorithm.
After applying PBO-Flow on Gi, the nets belong to N̄i ∩ N̄i+1 should have already
been found. Thus we only need to consider N̄i+1− N̄i− ...− N̄1 while pushing flows
on Gi+1.

On the other hand, as we notice that a net belonging to N̄i ∩ N̄i+1 should cor-
respond to a path (pu, r′1, ..., r

′

k, pv) (pu ∈ Pi, pv ∈ Pi+1, r′i ∈ R, i = 1, ..., k) in Gi.
Then in the modified flow network Gi+1, the path (pv, r′k, ..., r′1, pu) must exist since
the edge connections among buffer blocks are not changed. Thus we can remove all
paths connected to nodes in Pi+1 by increasing the capacities along all these paths,
and applying PBO-Flow with nets N̄i+1. The optimality of PBO-Flow guarantees
that the cost will not increase.

Further even if the algorithm doesn’t return a feasible solution, (e.g, no feasible
solution exists), the second way still outperforms the first one since the optimality
of PBO-Flow assures that the new solution won’t become worse: either connecting
more nets or reducing the cost.

5. IMPROVEMENT WITH NODE CLUSTERING

Fig. 6. The corresponding flow network of the PB problem in Figure 5(b) using node clustering
method.

When we handle a big circuit which may include a huge amount of nets, the
corresponding flow network might be quite large. In order to facilitate the process

10 · Hua Xiang et al.

of huge PB problems, we propose the following node clustering method to speed
up the computation.

For any p ∈ P , if p is inside a macro block, it must be connected to some pin
outside the block. Without loss of generality, we may assume that a pin is only on
the boundary of a macro block. Then by grouping neighbor pin nodes together,
we can greatly reduce the number of nodes, consequently reducing the number of
edges. Once several nodes are grouped together, we can use the average coordinate
as the location of the new “super-node”. And the capacity of the super-node is
the number of nodes it includes. Figure 6 illustrates a constructed flow network
for Figure 5(b) when 2 neighbor pins are clustered to one super-node. Actually, we
can set different scale rates to blocks according to their sizes or other requirements.

P1

P2

P3

P4

q1

q2

q3

| f |=3

P1

P2

P3

P4

q1

q2

q3

S t

P1

P2

P3

P4

q1

q2

q3

(a) (b) (c)

Fig. 7. (a) A flow f , |f | = 3 flows through a super-node. (b) The corresponding network and a
flow solution. (c) Deriving connections for original pin nodes.

Once we get a solution from the super-node flow network, we need to map the
flow to a solution of the original PB problem, i.e, distributing the flows through
one super-node to its pin nodes. Of course, we hope the mapping has the minimum
connection length. In Figure 7(a), a flow f , |f | = 3 flows through a super-node
which includes 4 pin nodes. 7(c) shows a feasible mapping. Still it can be solved
with min-cost maximum flow as shown in Figure 7(b). Each node pi (i = 1, 2, 3, 4)
in the super-node is connected to the destination nodes qj (j = 1, 2, 3) if dpiqj

satisfies the distance constraints. The capacity of each edge is 1. The cost of edge
(pi, qj) is the distance of two nodes dpiqj

. All other edges have a cost 0. Min-cost
maximum flow guarantees to find an optimal mapping.

6. EXPERIMENTAL RESULTS

Our algorithms were implemented in C++ on PC (733MHz) with 128M memory.
We tested PB-Flow on 7 circuits which were generated randomly. For all files, we
adopted the node clustering method in Section 5 to reduce runtime.

We compared PB-Flow algorithm with a two-step approach (first assign pins, then
plan buffers). We used a classical way[10] to assign pins as follows: by connecting
the centers of two macro blocks, we got two crossing points on the boundaries of
each block, then assign pins around the crossing points for the nets between these
two macro blocks. After pin assignment was done for all nets, we used a net-by-net
approach for buffer planning. The net-by-net approach considered only one net

An Algorithm for Integrated Pin Assignment and Buffer Planning · 11

Table I. Average results of PB-Flow for 5 times. All nets are found using PB-Flow
algorithm.

File A33n X40 H80 S100 F110 M200 T300
Grid 107x106 146x160 235x230 232x227 367x401 587x560 1192x1105
Blocks 33 40 60 91 110 100 99

Buffer Blocks 30 40 120 90 90 120 118
Nets 640 1022 1317 2021 4180 5659 11190

Node Clustering 1 ∼ 6 2 ∼ 10 1 ∼ 16 1 ∼ 14 2 ∼ 22 2 ∼ 34 2 ∼ 68
Time Net-Net 4.25 6.31 12.90 19.68 63.35 88.54 175.33
(s) PB-Flow 17.26 16.71 45.13 53.36 143.24 212.67 380.95

Found Net-Net 527.6 937.8 1317 1994 4167 5578 11009
nets PB-Flow 640 1022 1317 2021 4180 5659 11190

Net-Net 398.6 1732.0 2280.0 6425.0 9961.4 15463.0 30595
(per net) (0.755) (1.847) (1.731) (3.222) (2.391) (2.772) (2.779)

Buffers PB-Flow 323.6 1430 1949.6 5630.4 8639.2 13866.4 27567.2
(per net) (0.506) (1.399) (1.480) (2.786) (2.067) (2.450) (2.464)
Reduced 32.98% 24.26% 14.50% 13.53% 13.55% 11.62% 11.34%

Net-Net 926.2 2669.8 3597.0 8419.0 14128.4 21041.0 41604
Wire (per net) (1.755) (2.847) (2.731) (4.222) (3.391) (3.772) (3.779)

Length PB-Flow 963.6 2452.0 3266.6 7651.4 12819.2 19525.4 38758.2
(per net) (1.506) (2.399) (2.480) (3.786) (3.067) (3.450) (3.464)
Reduced 14.19% 15.74% 9.19% 10.33% 9.55% 8.54% 8.34%

Table II. Comparison on Node Clustering
File Time(s) Buffers Wire Length

No Clustering 64.86 307.6 947.6
A33n 2 Node Clustering 18.56 320.0 960.0

4 Node Clustering 6.56 325.4 965.4

No Clustering 138.44 1401.6 2423.6
X40 2 Node Clustering 36.37 1423.8 2445.8

4 Node Clustering 11.33 1436.0 2458.0

each time and found the min-cost path between the two pins of the net for buffer
insertion.

For each test circuit, we repeated both approaches 5 times. Table I listed the
average results of these 5 times. The block ordering of each run is created randomly,
but the solution quality varies very little. For example, for the five runs of the
largest test case T 300, all nets are routed for each run. The total wirelength varies
from 38719 to 38808 which are in the range of ±0.1% of the average 38758.2. Also
the total number of buffers varies from 27529 to 27618 which are in the range of
±0.2% of the average 27567.8.

Node clustering strategy is applied. The number of nodes to be clustered as
a supernode varies since the sizes of macro blocks are different, and the range is
listed in “Node Clustering”. Using PB-Flow, we could find a feasible solution of pin
assignment and buffer planning for all of the nets with a significant improvement on
both the total wire length and the number of buffers. The last two rows show the
comparison of the number of buffers and the total wire length. For both methods,
we listed the test results and the values per net. The percentage was calculated
according to the values per net since the numbers of found nets are different.

Node clustering method speeds up execution, but it may have some effects to
solution quality. Therefore, we also compare the running time and solution quality

12 · Hua Xiang et al.

on the two files A33n and X40. The results are listed at Table II. From the table, we
can see that by applying node clustering, the running time can be greatly reduced
while the increase on wire length or the number of inserted buffers is minor.

7. CONCLUSION

In this paper, we present a polynomial-time algorithm for simultaneous pin assign-
ment and buffer planning for all 2-pin nets between a source macro block and all
other blocks such that each net satisfies the lower and upper bound of connection
intervals as well as minimizing the total cost α · W + β · R. By applying this al-
gorithm iteratively (each time pick one block as the source block), it provides a
polynomial-time algorithm for pin assignment and buffer planning for nets among
multiple macro blocks. Experimental results demonstrate that the algorithm is very
efficient and effective.

REFERENCES

R.K. Ahuja, A.V. Goldberg, J.B. Orlin, and R.E. Tarjan, “Finding minimum-cost flows
by double scaling”, Mathematical Programming 53, pp. 243-266, 1992.
R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, Network Flows, Prentice Hall, 1993.
H.B.Bakoglu, Circuits, Interconnections, and Packaging for VLSI, Addison-Wesley,
1990.
J.Cong, “Challenges and opportunities for design innovations in nanometer technolo-
gies”, SRC Working Papers, http://www.src.org/prg mgmt/frontier.dgw, Dec 1997.
J.Cong, T.Kong, and D.Z. Pan, “Buffer block planning for interconnect driven floor-
planning”, Proc. ICCAD, pp. 358-363, Nov.1999.
T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to Algorithms, The MIT
Press, 1992.
F.F. Dragan, A.B.Kahng, I.I. Mandoiu, S. Muddu, and A. Zelikovsky, “Provably good
global buffering using an available buffer block plan”, Proc. ICCAD, pp. 104-109, 2000.
F.F. Dragan, A.B.Kahng, I.I. Mandoiu, S. Muddu, and A. Zelikovsky, “Provably good
global buffering by multiterminal multicommodity flow approximation”, Proc. ASP-
DAC, pp. 120-125, 2001.
R.Otten, “Global wires harmful?”, Proc. ISPD, pp. 104-109, 1998.
B.Preas and M.Lorenzetti, “Physical Design Automation of VLSI Systems”, Ben-
jamin/Cummings, Menlo Park, CA 1988.
P.Sarkar, V. Sundararaman and C.K. Koh, “Routability-Driven Repeater Block Plan-
ning for Interconnect-Centric Floorplanning”, Proc. ISPD, April 2000.
X.Tang and D.F. Wong, “Planning buffer locations by network flows”, Proc. ISPD, pp.
180-185, April 2000.

