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ABSTRACT
BlueGene/L is currently the world’s fastest supercomputer.
It consists of a large number of low power dual-processor
compute nodes interconnected by high speed torus and tree
networks. Because the nodes do not have shared memory,
MPI is the the natural programming model for this machine.
The BlueGene/L MPI library is a port of MPICH2.

In this paper we discuss the implementation of MPI col-
lectives on BlueGene/L. The MPICH2 implementation of
MPI collectives is based on point-to-point communication
primitives. This turns out to be suboptimal for a number
of reasons. Machine-optimized MPI collectives are neces-
sary to harness the performance of BlueGene/L. We discuss
these optimized MPI collectives, describing the algorithms
and presenting performance results measured with targeted
micro-benchmarks on real BlueGene/L hardware with up to
4096 compute nodes.

1. INTRODUCTION
BlueGene/L is a new massively parallel computer architec-
ture developed by IBM in partnership with Lawrence Liv-
ermore National Laboratory (LLNL). BlueGene/L systems
use system-on-a-chip integration [6] and a highly scalable

architecture [2] to assemble an army of low power dual-
processor nodes with high speed interconnects. When oper-
ating at the target frequency of 700 MHz, LLNL’s 64K-node
BlueGene/L system will deliver up to 360 Teraflops of peak
computing power.

Each BlueGene/L compute node can address only its local
memory, making message passing the natural programming
model for the system. The BlueGene/L MPI implementa-
tion is an optimized port of Argonne National Laboratory’s
MPICH2 library [1]. The challenges of implementing high
performance point-to-point communication in the MPI li-
brary has been described in our previous work [3, 4, 7].

In this paper we describe improvements to BlueGene/L MPI
collective communication. The speed of MPI collectives is,
needless to say, often the critical factor determining the ul-
timate performance of parallel scientific applications. It is
typical of MPI implementations (such as MPICH2) to im-
plement collective communication in terms of point-to-point
messages. However, the MPICH2 collective implementa-
tions [17] suffer from low performance on BlueGene/L sys-
tems. Our initial analysis concluded that there are at least
three reasons for this:

• Network topology awareness. The MPICH2 col-
lectives are written without specific network hardware
in mind; they tend to perform well on crossbar-type
networks. However, the most important BlueGene/L
network hardware is a 3D torus, and the MPICH2 col-
lective algorithms tend to map poorly onto this net-
work, ending up using the limited cross-section band-
width of the torus network very inefficiently and cre-



ating network hot spots that spoil performance. The
collectives tend to scale poorly with network size.

• Special purpose network hardware. BlueGene/L
features special hardware designed to speed up cer-
tain collective operations. One such feature is the de-
posit bit which lets torus packets deposit a copy on
every node they touch on the way to their final des-
tination. There is also special purpose hardware just
to speed up reductions and barrier operations. The
default MPICH2 collective algorithms do not take ad-
vantage of these features.

• Other hardware properties. Like any computer,
the design process of BlueGene/L has resulted in a
number of architectural compromises that require soft-
ware to deal with. These compromises affect perfor-
mance to a large degree and caused many surprises
during the implementation process. As examples we
can cite the very high cost of memory copies on the
machine and the lack of cache coherence between pro-
cessors in a node.

We implemented of a number of optimized collective opera-
tions. Because MPICH2 was designed from the ground up
to be extensible, we were able to add them to MPICH2 as
plug-in modules. We did not try to provide better gen-
eral purpose algorithms; instead we concentrated on the
cases when optimization was possible and wrote special pur-
pose algorithms that only get triggered when the conditions
are right. For example, our MPI broadcast implementa-
tion is only triggered when the communicator it is invoked
on is a 1, 2 or 3-dimensional rectangle on the physical net-
work. In our first round of algorithm design we tackled only
the most commonly used collectives such as MPI Alltoall,
MPI Allreduce, MPI Barrier and MPI Bcast. We provide
performance and scaling data for each of our algorithms.

The rest of this paper is organized as follows. Section 2 pro-
vides an overview of the BlueGene/L system and the opti-
mized implementation of MPI collectives. Section 3 presents
MPI collective algorithms for long and short messages on
BlueGene/L torus network. Section 4 describes collective
implementations for BlueGene/L tree and global interrupt
networks. Section 5 compares the performance and scaling
of our implementations. We conclude in section 6.

2. OVERVIEW
2.1 Brief overview of BlueGene/L systems
The BlueGene/L hardware [2] and system software [5] have
been extensively described in other publications. Here we
present a short summary of the BlueGene/L architecture to
serve as the background to the following sections.

Processing core: Each BlueGene/L node ASIC include
two standard PowerPC 440 processing cores. The standard
PowerPC 440 processors are not designed to support multi-
processor architectures. Hence the L1 caches are not cache
coherent. To overcome this limitation, BlueGene/L provides
a variety of custom synchronization devices in the chip such
as the lockbox (a limited number of memory locations for
fast atomic test-and-sets and barriers) and 16KB of shared

SRAM. The L2 and L3 caches are coherent between the
two processors. The CPU streaming memory bandwidth is
about 4.3 bytes/cycle.

Communication networks: The main network used for
point-to-point messages is the torus. Each compute node is
connected to its 6 neighbors through bi-directional links with
154 MBytes/s payload bandwidth in each direction. The 64
racks in the full BlueGene/L system form a 64 × 32 × 32
three-dimensional torus. The network hardware guarantees
reliable, deadlock free delivery of variable length packets.
Torus packets are routed on an individual basis, using either
the deterministic routing algorithm or the adaptive routing
algorithm. Deterministic routing assures in-order packet ar-
rival , whereas adaptive routing permits better link utiliza-
tion. Reading a full network packet (256 bytes) into aligned
memory takes about 204 CPU cycles and it is shorter for
smaller packets. Writing a packet takes between 50 and 100
cycles, depending on whether the data is from cache or main
memory.

The tree is a configurable network for high performance
broadcast and reduction operations, with a latency of 2.5 µs
for a 65,536-node system. It has reliability guarantee identi-
cal to the torus network and provides point-to-point capabil-
ities as well. The tree packet length is fixed at 256 bytes, all
of which can be used for payload. An additional 10 bytes are
used with each packet for operation control and link relia-
bility. Thus, the efficiency of the network is η = 256

266
= 96%.

The tree payload bandwidth is about 337MBytes/s. The
global interrupt (GI) network provides configurable OR wires
to perform full-system hardware barriers in 1.5 µs.

Operating modes: To deal with the non-coherence of the
processors in a node, software allows multiple modes of op-
eration. The simplest of these is heater mode, in which one
of the two processors is in an idle loop and does no use-
ful computation. In coprocessor mode one of the processors
runs the main thread of the user’s program, while the other
processor helps out with communication and/or computa-
tion tasks. In this case cache coherence has to be managed
by software. In virtual node mode the two processors of a
compute node act as different processes: each has its own
MPI rank, and all hardware resources are equally shared.

2.2 Software architecture of BlueGene/L MPI
We built BlueGene/L MPI by porting MPICH2 [1], an MPI
library designed with scalability and portability in mind.
MPICH2 provides the implementation of point-to-point mes-
sages, intrinsic and user defined datatypes, communicators,
and collective operations, and interfaces with the lower lay-
ers of the implementation through the Abstract Device In-
terface version 3 (ADI3) layer [10].

The ADI Layer is described in terms of MPI requests
(messages) and functions to send, receive, and manipulate
these requests. The ADI3 layer consists of a set of data
structures and functions that need to be provided by the
implementation. In BlueGene/L, the ADI3 layer is imple-
mented using the BlueGene/L Message Layer, which in turn
uses the BlueGene/L Packet Layer.



The BlueGene/L Message Layer is an active message
system [9, 13, 19, 20] that implements the transport of
arbitrary-sized messages between compute nodes using the
torus network. It consists of four main components: ba-
sic functional support, point-to-point communication primi-
tives (or protocols), collective communication primitives and
development utilities. The basic functional component acts
as a support infrastructure for the implementation of all the
communication protocols. The message layer breaks mes-
sages into fixed-size packets and uses the packet layer to
send and receive the individual packets. At the destination
the packets are re-assembled into a message.

The Packet Layer is a very thin stateless layer of software
that simplifies access to the BlueGene/L network hardware.
It provides functions to read and write the torus/tree net-
work hardware, as well as to poll the state of the network.

2.3 Software design decisions
The performance of MPI collectives tends to be highly de-
pendent on the circumstances of their invocation. This is
especially true for BlueGene/L because of the peculiarities
of the network hardware. Our mission statement was to en-
able high performance for the subset of invocation scenarios
where hardware or software can help. For all other scenarios
we allow MPICH2 default collectives to take over.

Plug-ins: We added a testing phase to every communi-
cator creation and every collective invocation in MPICH2
(as mentioned before, the library is designed to allow this).
During communicator creation we test for global proper-
ties of the communicator. The two most interesting tests
are (a) whether the communicator is MPI COMM WORLD and
(b) whether the communicator has a contiguous rectangular
shape on the torus network.

During invocation, we eliminate complex situations involv-
ing non-contiguous buffers and intercommunicators (we al-
low the MPICH2 default implementations in these cases).
Furthermore we discriminate based on message size, since for
certain collectives we have multiple algorithms optimizing
latency (for short messages) or bandwidth (for long ones).

Global algorithm decisions: The selection of the actual
algorithm to perform a collective operation is done when
the collective has been invoked. This can lead to undesir-
able situations if the decision is made locally, because MPI
programming errors (such as invoking MPI Bcast with dif-
ferent size arguments across the participating nodes), and
even certain legitimate MPI calls, can lead to individual
nodes choosing different algorithms to implement the same
operation. This usually results in deadlocks.

The only way to insure correct behavior in such cases is
to take the algorithm decision globally across the commu-
nicator (by invoking another collective). This leads to an
increase in latency, and therefore we tend to do this only
when we believe that the resulting gains in bandwidth are
more important.

Unexpected messages: Another decision we made was
not to deal with unexpected (or early) collective packets,
i.e. packets that arrive to a node before that node has en-

tered the collective implementation. Unexpected messages
are normally dealt with by the point-to-point messaging sub-
system. On BlueGene/L this is an expensive proposition be-
cause memory copies cause increased CPU loads and there-
fore performance loss. To keep our optimized algorithms
simple and efficient we do not allocate memory buffers for
early packets. We prevent early packets by prefixing collec-
tives with barrier calls, taking advantage of BlueGene/L’s
dedicated barrier network where we can.

Non-blocking collectives: All collective primitives de-
scribed in this paper are non-blocking, relying on termina-
tion callbacks to announce their completion. This was done
to allow computation/communication overlap and to let the
program service all networks simultaneously. It also allows
us to use the collectives for purposes other than MPI if we
have to.

Preconditions: In the remainder of this paper we will dis-
cuss a number of collective algorithms. For each of these
we will specify the pre-conditions that must exist for the
algorithm to be invoked, why we believe that the algorithm
is better than the default, and of course we will document
everything with numbers.

3. TORUS COLLECTIVES
In this section we deal with algorithms written for rectan-
gular sections of the torus. We first need to clarify what a
rectangular section is. We will denote a booted BlueGene/L
partition is a collection of nodes

Λ = {(x, y, z) ∈ R
3| 0 ≤ x < xs ∧ 0 ≤ y < ys ∧ 0 ≤ z < zs}

An MPI communicator is any set of nodes Γ ⊂ Λ. The
communicator Γ is rectangular if and only if

∀(x, y, z) ∈ Γ (x0, y0, z0) ≤ (x, y, z) < (x1, y1, z1) ∧
‖Γ‖ = (x1 − x0 + 1) × (y1 − y0 + 1)
×(z1 − z0 + 1)

A booted BlueGene/L partition is always rectangular, but
MPI COMM WORLD need not be rectangular because an MPI
job start on a subset of the booted partition. Rectangular
communicators are important to us because they are regular
and easy to reason about, but also because of the deposit
bit capability of the torus: packets sent along a line and
deposited on every node they touch. Next we will describe
a number of algorithms that map into rectangular regions.

3.1 Long-message collectives
MPI Bcast: The MPICH2 broadcast implementation uses
two algorithms. For short messages it uses a binomial tree
to minimize processor load and latency; for long messages
it performs a binomial tree scatter followed by an allgather.
On BlueGene/L the measured performance of these algo-
rithms is very low, mostly for lack of topology awareness
and high CPU overhead.

The BlueGene/L-optimized algorithm is suitable for long
MPI broadcasts executed on rectangular subsets, meshes
and tori. The implementation of MPI broadcast follows the
general pattern proposed by Watts and van de Geijn [21].
The basic idea is to find a number of non-overlapping span-
ning trees in the rectangular mesh/torus. The broadcast



(a) Single data stream
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(b) 3 streams

Figure 1: Optimized broadcast algorithm on a 3D
mesh

message is split into components, and each component is
pipelined separately (and simultaneously) along one of the
spanning trees. Thus the theoretical achievable bandwidth
of this algorithm is a multiple of single link bandwidth.

The multiplier cannot be more than the number of incoming
links on any of the nodes in the communicator (each node
has to get all pieces of the message). Thus, for a mesh
the multiplier is equal to the dimension of the rectangular
region (1, 2 or 3); if the rectangular region is wrapped back
(toroidal), the multiplier doubles. The theoretical maximum
bandwidth for a 3D torus is therefore 2 × 3 = 6 times the
bandwidth of a single link.

Figure 1(a) shows the structure of one data stream in a 3-
dimensional mesh. The other data streams are essentially
rotated versions of the one depicted; Figure 1(b) shows how
three streams can be used at the same time without using
any of the mesh links twice.

The algorithm attempts to exploit long straight lines in the
data streams. Packets traveling along these lines can have
their deposit bit turned on. The processors receiving these
packets don’t have to re-send them, thereby lowering CPU
overhead and improving latency. The only nodes that have
to re-inject packets onto the network are those that have
to “turn” the message by a 90 degree angle. To further
improve latency, packet re-injection is pipelined: each in-
coming packet is immediately sent forward along its data
stream.

The performance of the broadcast algorithm is unfortunately
not only limited by the network’s limitations, but by the
CPU load on the individual nodes. The busiest proces-
sors on the network determine performance. Unsurprisingly,
these turn out to be the very nodes that have to re-inject
packets on the network. These nodes limit practical perfor-
mance to no more than two network links worth. A better
algorithm, which uses both processors to ease CPU load, is
in the works.

MPI Reduce: Reduce can be viewed as broadcast in re-
verse; that is, the same stream used for a broadcast may be
reversed and used for reduction to the same root, as in Fig-
ure 2(a). However, this overlooks an important difference.
Here, each node must apply the specified reduce operation

(a) Reverse broadcast (b) Hamiltonian path

Figure 2: Optimized Reduce algorithm on a 3D mesh

to combine its own data with each incoming packet, pre-
senting a significant performance bottleneck (especially for
CPU-intensive operations such as floating-point sums). Ad-
ditionally, since each node’s contribution changes the data
it passes on, this prevents the use of the deposit bit.

Like broadcast, the busiest processors on the network de-
termine long-message performance. For Reduce, the busiest
are those that have to combine data from multiple neigh-
bors (that is, those with indegree > 1 in the directed graph
representing the stream). For these nodes, two or three in-
coming packets must be individually received and reduced
before the resultant data may be sent along to the next node,
slowing the overall operation.

Thus, to minimize the number of incoming data sources (in-
degree) per node, a Hamiltonian path chaining together all
nodes in the communicator ensures each node receives data
from only one neighbor. Figure 2(b) depicts such a path;
results are collected along the stream in the direction of the
root. As a result, the same per-packet overhead is experi-
enced at every node in the stream, boosting bandwidth at a
severe cost to latency.

For this reason, the Hamiltonian paths are preferred only for
long vectors. Much work has been done to minimize the per-
packet overhead of Reduce; for example, when possible, the
PowerPC floating-point units, which retrieve packets from
the network hardware, apply the reduce operation (e.g. sum,
max) before saving data to memory.

Computation of the routes for a stream are performed lo-
cally. For rectangular meshes where one of the dimensions
is even, a Hamiltonian path is constructed, producing two
streams (using opposing directions along the same path)
that may be be used simultaneously.

MPI Allreduce: The long-message Allreduce on torus is
essentially a pipeline connection of long-message Reduce and
long-message broadcast primitives. Two non-overlapping
streams are needed, the first leading to the root (for Reduce)
and the second starting from the root (for broadcast). The
second stream may be, most simply, the reverse of the first
stream; recall that torus links are bi-directional, so the two
streams do not interfere.

As in Reduce, Hamiltonian paths are desirable for long-



message Allreduce. Reduction takes place along a single
Hamiltonian path ending at the root, as in Figure 2(b); that
stream is used in reverse to broadcast the results.

For long-message Allreduce, MPICH2 uses Rabenseifner’s
algorithm [15]. This algorithm implements Allreduce in two
steps: first a Reduce-Scatter, followed by an Allgather.
Pipelining packets and utilizing architectural features help
our Allreduce achieve better bandwidth than the MPICH2
implementation for long messages.

MPI Alltoall and MPI Alltoallv: When designing Blue-
Gene/L MPI, we did not anticipate having to provide an
improved version of Alltoall. The operation is essentially
limited by the cross-section bandwidth of the torus network.
MPICH2 Alltoall is implemented by no less than four dif-
ferent algorithms. On BlueGene/L these algorithms suffer
from a multiplicity of problems, such as high CPU over-
head, creation of hot spots on the network and poor use of
the compute nodes’ memory subsystems.

The BlueGene/L-optimized Alltoall/Alltoallv algorithm
works well on all communicators and all message sizes. Since
Alltoallv subsumes Alltoall, the implementation of both
is provided by a single function in the message layer. The
algorithm keeps CPU overhead low by not using point-to-
point messaging, and avoids network hotspots by random-
izing torus packet injection. This randomization is done
through a permuted list of destinations (MPI ranks). The
algorithm scans through the permuted list and picks a des-
tination to send the next packet to. The permutation list is
the same on each node, because the random number gener-
ator is seeded with the same number everywhere. However,
every node starts from a different offset in the permutation
list.

The permutation list is lazy-allocated and initialized from
the group and communicator connection table when
MPI Alltoall/MPI Alltoallv is first called on a particu-
lar communicator. The ranks list uses a single unsigned
integer for each rank in the system. Thus, the maximum
memory used in a virtual node mode, 64K node system is
2 × 655356 nodes ×4 bytes = 512 KBytes. Lazy allocation
potentially reduces memory requirements for MPI by not
reserving memory for the permuted list unless it is needed.

Alltoallv is inherently unbalanced because there may be
more data to send to some ranks than others. As the algo-
rithm moves forward, the rank permutation list will contain
more and more destinations that the sender has no more
data to send to. To avoid excessive CPU overhead caused
by scanning empty slots in the permutation list, nodes that
have no more data to receive are removed from the permuted
rank array by rearranging the array in place.

Randomization of the send destinations implies randomiza-
tion of both packet receives and packet sends, which can be
up to 240 bytes (8 cache lines) of payload. Rapid switching
between destination strains the local memory subsystem. In
order to make the best possible use of intelligent prefetch-
ing in the cache architecture, the algorithm injects multiple
packets (from adjacent cache lines) to each destination be-
fore advancing to the next entry in the permutation list.

This leads to a compromise where more packets per des-
tination will ease the load on the memory subsystem, but
potentially create more hotspots on the torus network. Em-
pirically we found two packets per destination to lead to the
best performance.

The Alltoallv algorithm is also small message aware, and
will adjust the torus packet size to minimize latency when
the amount of data exchanged between pairs of MPI ranks
is less than a full packet worth.

3.2 Short-message collectives
The torus Allreduce and Broadcast algorithms described
so far are designed for throughput. They sacrifice latency for
better pipelining of concurrent data streams, and are really
unsuitable for short messages. At the same time we expect
the unprecedented number of processors in BlueGene/L to
cause messages to become shorter, especially in strong scal-
ing applications.

In this section we present an optimized Allreduce/Barrier
algorithm designed for very short (one packet) short mes-
sages on rectangular communicators. The basic insight of
the short message optimized algorithm is that we can trade
bandwidth against latency: instead of the classic store-and-
forward implementation of a reduction operation we broad-
cast all data to all nodes and replicate the necessary pro-
cessing on all nodes. On BlueGene/L this is advantageous
because it is possible to broadcast a packet to a line of nodes
without store-and-forward using the deposit bit feature of
the network.

However, since every node on the line is broadcasting its
packet to everyone else, the line becomes full very quickly.
The latency of this algorithm is determined not by the net-
work latency, but either by the network’s bandwidth or by
the processing capability of the nodes.

Using this algorithm Barrier can be implemented as a very
simple Allreduce in which each node waits until it receives
all incoming packets. Processing time is very low in this
case, and therefore Barrier latency is determined by the
network bandwidth. For floating point Allreduce the CPU
processing time tends to be higher, so the algorithm will be
limited by CPU overhead. In general the algorithm’s latency
can be expressed as

L = S + (n − 1) × max( ‖P‖
BW

, Tpkt),

where S is a constant overhead (CPU time spent in mes-
saging library and network link latency), n is the number of

nodes on the line, ‖P‖
BW

is the time necessary for a packet to
traverse a link (packet size divided by link bandwidth) and
Tpkt is the CPU processing time for a received packet. The
formula can be derived by looking at the nodes at one end
of the line: it receives and processes n − 1 packets over a
single link; hence the linear dependence on n.

Linear dependence on n is obviously not good for scaling.
However, we can mitigate bandwidth with store-and-forward
latency by employing a two-phase hierarchical algorithm as
depicted in Figure 3. This algorithm uses broadcast in the
subgroups; the nodes at the ends of the subgroups then be-



Phase 1 Phase 2

Figure 3: Two-phase hierarchical Allreduce on a sin-
gle line

(a) Horizontal phase (b) Vertical phase

Figure 4: Multi-phase hierarchical Allreduce on 2D
mesh

come representative for the group and broadcast results to
the other nodes. In the two-phase algorithm depicted in the
figure latency can be calculated as follows:

L = 2 × S + (m − 1 + n − 1) × max( ‖P‖
BW

, Tpkt),

where m is the size of a node group and n is the number of
groups. Note that the static overhead S is incurred twice
because partial results have to be re-injected into the net-
work.

The algorithm can be trivially expanded to rectangular meshes
of arbitrary dimensions by executing multiple rounds, one
for each new dimension. In the first round each processor
performs the algorithm along the first dimension. In the sec-
ond round the partial results are combined along the second
dimension; and so on. Figure 3.2 illustrates the algorithm in
an 8×8 2D mesh with horizontal and vertical phases. Since
virtual node mode can be thought of as operating in a 4-
dimensional mesh, the algorithm translates to virtual node
mode without modification.

The optimal number of subgroups and group size in the
hierarchical algorithm are determined by both the size of
the message and by the dimensions of the communicator
the algorithm is performed in. Our current implementation
limits the algorithm to messages no longer than a single
torus packet (we intend to address this issue in the future).
We have found through measurement that a group size of
4 is suitable for Allreduce and a group size equal to the
dimension is good for Barrier.

Algorithms for global reduction and barrier synchronization
have been extensively studied in [16, 8, 14, 11, 22]. MPICH2
uses a recursive doubling algorithm [18] for short Allreduce
type operations and the dissemination algorithm [12] for
Barrier. Both algorithms try to optimize the number of
hops that the message data has to traverse. Our algorithm

is superior because it optimizes “software hops” instead of
“network hops” by exploiting special capabilities available
only on the BlueGene/L torus network.

4. COLLECTIVES FOR THE TREE AND
GLOBAL INTERRUPT NETWORKS

In this section we describe algorithms implemented for the
tree and global interrupt networks on BlueGene/L.

MPI Barrier on the global interrupt wires: we have
implemented a non-blocking barrier for MPI using the global
interrupt network. The global interrupt barrier works on 32,
128, 512, and multiples of 512 nodes.

MPI Allreduce and MPI Bcast on the tree: the tree net-
work routes packets upward to the root and/or downward
to the leaves as desired. It comes with a fixed point arith-
metic unit in every node. The operation performed by the
arithmetic unit is determined by the type of the packet.

For instance, MPI Bcast is implemented by idling the arith-
metic unit. The logical root of the broadcast sends the
message up to the physical root of the tree, which then
re-broadcasts the message to everyone else. Tree hardware
takes care of the proper routing. Pipelining at a packet level
insures minimum latency and maximum bandwidth.

Fixed point versions of MPI Allreduce operations, such as
addition, maximum search or even MAXLOC, can be imple-
mented by just feeding the tree network with packets with
the correct operation type. The tree hardware performs
combine operations as the packet streams converge on the
route from the leaves to the root. Packets reaching the root
are turned back and re-broadcast to all leaves.

MPI Barrier can be trivially implemented on the tree by
each node injecting a combine packet into the tree and wait-
ing for the response from the root. The contents of the
packet and the performed operation do not matter.

The situation is somewhat more complex in the case of
floating-point Allreduce operations. Because the tree hard-
ware can only perform fixed-point operations, our imple-
mentation of floating-point Allreduce must deal with the
complexities of IEEE floating-point representation in soft-
ware. This costs CPU cycles, resulting in lower bandwidth.
In our current implementation, the tree collectives work on
MPI COMM WORLD only.

5. PERFORMANCE
To measure the performance of our optimized MPI collec-
tives we wrote a set of micro-benchmarks targeted towards
testing performance on the network topologies that were im-
portant to us. We ran all benchmarks on the 4096 node
BlueGene/L hardware installed at IBM’s Rochester site. For
scalability measurements we booted smaller partitions inside
the large machine. Table 1 shows all the partition sizes and
topologies we used. Note that partition sizes below 8×8×8
can only be booted in a mesh configuration. All other par-
tition sizes are denoted by a “T” in the table to denote the
torus configuration.



Machine Torus Machine Torus
size topology size topology
32 4 × 4 × 2 64 8 × 4 × 2

128 8 × 4 × 4 256 8 × 8 × 4
512 8 × 8 × 8 (T) 1024 8 × 8 × 16 (T)

2048 8 × 16 × 16 (T) 4096 8 × 32 × 16 (T)

Table 1: Torus topologies of diff. machine sizes

5.1 Bandwidth of MPI Bcast
The torus broadcast implementation has a target bandwidth
equivalent to 3 network links on a 3D mesh. In fact, its
performance is bound by CPU overhead and memory band-
width, and therefore is limited to less than 2 network links.
The tree network offers performance close to the full band-
width of the tree network, 337MBytes/s, as shown in Fig-
ure 5(a).

One unforeseen aspect of optimizing Bcast was that the de-
cision whether to apply an optimized algorithm has to be
taken globally, across the whole communicator (in order to
avoid situations in which some nodes in the communicator
decide to use the optimized algorithms but others don’t).
The decision involves a round of short Allreduce that pre-
cedes the actual broadcast, driving latency up for all opti-
mized operations. Figure 5(b) focuses on message lengths
of less than 4 KBytes and shows the default MPICH2 im-
plementation outperforming the optimized ones for message
lengths of up to 2 KBytes. There is obvious room for im-
provement here.

5.2 Bandwidth of MPI Allreduce
We present a separate set of numbers for fixed point and
floating point implementations of MPI Allreduce.

Figure 6(a) compares the bandwidth of three implementa-
tions of MPI Allreduce sum of integers. It is immediately
evident that the tree network achieves a performance close
to the theoretical maximum, 337 MBytes/s. The torus ver-
sion of Allreduce with Hamiltonian reduction path, denoted
as Torus(HT), is the next best for long messages, but suf-
fers from high latency which makes it less advantageous for
short messages. Figure 6(b) highlights the short-message
portion of the performance comparison, in which the Torus
and Torus(HT) cases used the short-message torus allreduce
algorithm with simple multi-packet extension for message
length up to 8 KBytes. It is clear that our optimization
work here is not finished yet.

For MPI Allreduce with double precision floating-point num-
bers, the tree implementation has a much lower bandwidth.
This is because the network does not provide operations on
floating point numbers. We implemented a two-phase al-
gorithm instead which parses the exponents first, calculates
maximums, shifts mantissas into position, performs fixed-
point allreduce on the mantissas and finally re-arranges the
results into IEEE compliant double precision floating point
representation. This requires a lot of CPU overhead, result-
ing in low performance.

In contrast, both torus versions (with and without Hamil-
tonian path) perform much better than in the integer case

because of a design quirk in the network that allows network
to floating point number transfers at a much higher rate.

These performance changes are obvious in figures 7(a) and
7(b). The MPICH2 implementation behaves similarly for
integer and double numbers because it does not utilize the
network tricks we employed for the optimized Allreduce.

5.3 Bandwidth of MPI Alltoall
Personalized communication is bandwidth intensive. Perfor-
mance is ultimately limited by the shape of the network. For
a mesh of size m × n × p the theoretical maximum network
Alltoall bandwidth is 4L

max(m,n,p)
(where L is the band-

width of a single link). For a torus the formula is 8L
max(m,n,p)

.

The formula is based on cross-section bandwidth: in any
dimension of the mesh half the nodes will want to commu-
nicate to the other half. In the first dimension this amounts
to sending m×n×p

2
messages over the total available cross-

section bandwidth of 2 × n × p × L. Tori have twice the
number of links, hence the cross-section bandwidth doubles.

Figures 8(a), 8(b) and 8(c) compare the per-node bandwidth
of the default (MPICH2) and optimized MPI All2all im-
plementations for three machine sizes. The straight lines
at the top denote theoretical peak bandwidth, taking into
consideration all factors like packet payload. The graphs
show up the deficiencies of the MPICH2 implementation
on this network. MPICH2 switches between algorithms at
256 Bytes and again at 32 KBytes. Figure 8(c) shows the
switch from a store-and-forward algorithm to an all-post-
and-receive algorithm. Performance drops because of the
MPI overhead involved in posting so many messages. Fig-
ures 8(a) and 8(b) show the second switch, from all-post to a
pairwise send/receive algorithm. Performance then depends
on how the order of sends and receives interacts with the
physical network topology.

Table 2 shows how peak Alltoall bandwidth of the opti-
mized algorithm scales with machine size. The best achieved
bandwidth is highlighted. In all cases we achieve more than
75% of peak bandwidth, and the ratio seems better for ma-
chine topologies that are closest to cubic. Also note the low
message size (less than 1 KBytes) for which half of the peak
bandwidth is achieved. This makes the algorithm suitable
for short messages.

5.4 Latency of short-message MPI Allreduce
Figure 9(a) displays scaling properties of multiple imple-
mentations of short-message MPI Allreduce. We compare
the optimized implementations using the tree and torus net-
works with the default MPICH2 implementation. The mes-
sage length is 8 bytes. Figure 9(b) shows the same three al-
gorithms running on a fixed size partition but with variable
message size (up to 232 bytes). The torus optimized version
of MPI Allreduce is faster then the MPICH2 version and
scales better. The tree implementation of MPI Allreduce

always has the lowest latency and the best scalability for
short messages.

5.5 Latency of MPI Barrier



(a) (b)

Figure 5: Bandwidth comparison of MPI Bcast

(a) (b)

Figure 6: Bandwidth comparison of MPI Allreduce(int)

(a) (b)

Figure 7: Bandwidth comparison of MPI Allreduce(double)



(a) (b) (c)

Figure 8: Per-node bandwidth comparison of MPI Alltoall

Machine
topology

Aggr. peak
(MB/s)

Message size per node (Bytes) Best %
Peak16 64 256 1024 4096 16384 64KB 256KB 1MB

4x4x2 4928 237 619 1892 3133 3871 4123 4220 4196 4215 86
8x4x2 4928 566 1272 2817 3908 4459 4566 4618 4596 4603 94
8x4x4 9856 1330 2705 5524 7740 8724 9003 9053 9076 9087 92
8x8x4 19712 2727 4354 9905 14458 16538 16802 16935 16954 86
8x8x8(T) 78848 5463 9462 20015 40548 63261 73689 76622 77525 98
8x16x8(T) 78848 8751 12936 26845 47945 58518 61557 62536 79
8x16x16(T) 15769 14155 21867 48745 103111 126053 130628 135465 86
8x32x16(T) 157696 22860 32910 64398 97069 98616 118120 75

Table 2: Aggregate bandwidth of torus MPI Alltoall

(a) (b)

Figure 9: Latency comparison of MPI Allreduce for short messages



Figure 10: Latency comparison of MPI Barrier

Figure 10 compares the latency of four implementations of
MPI Barrier. Similar to the latency comparison of Allreduce,
the torus implementation performs much better than the de-
fault MPICH2 implementation in terms of both latency and
scalability. The tree Barrier implementation scales even
better than the torus Barrier and the execution time is less
than 5 µs for up to 4096 nodes. The GI Barrier implemen-
tation has the lowest latency of around 1 µs. Because the
tree and GI Barrier are not applicable to all machine con-
figurations they have fewer data points than the torus and
MPICH2 Barrier.

6. CONCLUSION AND FUTURE WORK
Tables 3 and 4 summarize the performance of the MPI col-
lectives discussed in this paper. B

2
denotes the message size

where half of the maximum bandwidth is achieved.

Our optimized MPI collective implementations are superior
to the default ones because they exploit knowledge of the
physical network topology and are tuned to use performance
features of the hardware and to avoid things that carry
heavy performance penalty (like memory copies). We spent
a lot of time optimizing the collectives, and we are a long
way from being done. The extreme scale of the BlueGene/L
and the inherent cost of operating it make it worthwhile to
develop these algorithms even if they were applicable only to
this machine. Time will tell whether the lessons we learned
will be applicable to other systems. We suspect that it will
– more and more large machines are built to compensate for
the slowdown in increase of individual CPU performance.

Our ongoing research effort to further optimize BlueGene/L
MPI collective communication is threefold: (a) to support a
more complete set of MPI collectives; (b) to optimize per-
formance for a larger subset of topologies, i.e. other than
MPI COMM WORLD and rectangular communicators, and (c) to
address the performance deficiencies of the current imple-
mentations by e.g. deploying the second processor to help
with CPU intensive tasks in our collective implementations.
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